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We extend the method of antisymmetrized molecular dynamics (AMD) to investigate dineutron correlation.
We regard the total system as the core plus two valence neutrons in the AMD framework and treat the valence
neutron wave functions by multirange Gaussians with the d-constraint method, in which the distance between the
core and the center of mass of the two neutrons is constrained, to describe the size changing effect and the motion
of two neutrons. We apply this method to the ground state of 10Be as an example and investigate the motion
of two neutrons around a largely deformed 8Be core by analyzing the two-neutron overlap function around the
core. Comparing the results including the different 8Be core structures, we show that the core structure plays an
important role in dineutron formation and expansion from the core. The radial fluctuation in the core leads to the
expansion of the core potential to the farther region and, as a result, two valence neutrons can be expanded far
from the core to form a dineutron. Differently, when the core is less deformed, the dineutron is dissociated by
the spin-orbit potential at the surface of the core. We can investigate the dineutron correlation clearly by using
the present framework and conclude that the framework is effective for the studies of dineutron correlation.
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I. INTRODUCTION

Many exotic phenomena have been found in neutron-rich
nuclei, and more have been suggested by both theoretical
and experimental studies. One such phenomenon is dineutron
correlation, a strong spatial correlation between two neutrons
coupled to a spin singlet. Although the two neutrons are
not bound in a free space, strong dineutron correlation has
been theoretically suggested, e.g., in a low-density region of
nuclear matter [1,2] or in the neutron-halo or -skin regions
of neutron-rich nuclei [3–17]. These studies clarify that the
strength of dineutron correlation reflected in the dineutron
size changes significantly depending on circumstances such
as nuclear density and potential from the core. In addition,
the dineutron and diproton correlations have been intensively
discussed via 2n and 2p emissions from the unbound nuclei
in connection with recent experiments [18–29].

Preceding studies have investigated dineutron correlation
in the ground and excited states in certain nuclei, but they have
not conducted a systematic investigation, and the formation
mechanism underlying dineutron correlation and the dynamics
of one or more dineutrons are not well understood. To
investigate in detail the dineutron motion with respect to the
core, a core + 2n three-body model is useful [3–6,8,9,11].
However, in three-body models, it is somewhat difficult to take
various structure changes into account (including excitation,
deformation, and clustering), and inert, spherical cores have
been assumed in most of the preceding studies. Core excitation
and deformation can affect dineutron correlation, and it is
necessary to consider changes in the core structure explicitly
for a systematic investigation of dineutron correlation.

In our previous studies, using dineutron condensate (DC)
wave functions [15–17], we showed that dineutrons in nuclei

are fragile and easily broken. To study the properties of
dineutron correlation, the following dineutron-breaking effects
should be considered. First is the dissociation of a spin-singlet
two-neutron pair due to the spin-orbit potential from the
core, as discussed in Refs. [17,30,31]. Without the spin-orbit
potential, two neutrons tend to be coupled to a spin-singlet
pair because of the spin-singlet s-wave attraction. However,
in reality, two valence neutrons at the nuclear surface feel
the spin-orbit potential from the core and tend to occupy the
LS-favored orbits, resulting in mixing of the spin-triplet pair,
i.e., reduction of the spin-singlet dineutron component. We call
this effect at the surface due to the spin-orbit potential the “LS
dissociation” of a dineutron. Second is the swell in the size of
a dineutron in the region far from the core. Two neutrons are
not bound in a free space; thus, dineutron correlation vanishes
in the asymptotic region far from the core, meaning that the
dineutron size becomes infinitely large as the distance from
the core increases, as discussed in Ref. [11]. We call such a
breaking effect at the region far from the core “dispersion” of
a dineutron.

To clarify the properties of the dineutron correlation
in neutron-rich nuclei, we use the extended method of
antisymmetrized molecular dynamics (AMD) [32–34]. The
AMD framework can describe various structures such as
deformation and clustering in general nuclei, and it is suitable
to describe various core structures. We extend the AMD
framework to investigate the degree of dineutron formation
at the surface and the degree of expansion of a dineutron
tail at the farther region while taking into account the above-
mentioned breaking effects of a dineutron based on the concept
of a core + 2n model. In addition, to analyze the detailed
two-neutron motion, we propose a method that enables us to
visualize the two-neutron spatial distribution around the core.
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As the first step, we apply the extended AMD framework and
the method of analysis to the ground state of 10Be, which has
a well-deformed 8Be (2α) core and not so extremely loosely
bound two valence neutrons, and discuss the effect of core
structure change on the dineutron correlation in this study. We
show that the core structure significantly affects the dineutron
formation and distribution around the core.

This paper is organized as follows. In Sec. II, we explain
the framework used to describe and analyze the dineutron
correlation in neutron-rich nuclei. In Sec. III, we apply the
framework to the 10Be ground-state system and discuss the
dineutron formation and distribution around the 8Be core. We
summarize our work in Sec. IV.

II. FRAMEWORK

We consider a total A-nucleon system composed of an
(A − 2)-nucleon core and two valence neutrons and investigate
the two-neutron motion around the core. We describe our
framework in this section.

A. AMD wave function

First, we explain the AMD wave function. An AMD wave
function for an A-nucleon system is given by the Slater
determinant of A single-particle wave functions:

�AMD(Z) = 1√
A!

A{ϕ1 · · · ϕA}. (1)

Here A is an antisymmetrizer and ϕi (i = 1, . . . ,A) are the
single-particle wave functions composed of the Gaussian-type
spatial part φi , the spin part χi , and the isospin part τi as
follows:

ϕi = φiχiτi, (2)

φi(rj ) =
(

2ν

π

)3/4

exp[−ν(rj − Y i)
2], (3)

χi = ξi↑χ↑ + ξi↓χ↓, (4)

τi = p or n. (5)

Z ≡ {Y 1, . . . ,YA,ξ 1, . . . ,ξA} in Eq. (1) are the variational
parameters that characterize the Gaussian centers and spin
orientations of the A nucleons. ν is the Gaussian width
characterizing the size of the single-nucleon motion, which
is generally common for all nucleons in the standard AMD
framework.

In the present AMD framework, the widths can differ from
one another (νi also has the label of the ith single-particle
state) and we choose νi = νc (i � A − 2; core) and νi = ν2n

(i � A − 1; two valence neutrons), as in Ref. [35]. Note that
in the case where all the Gaussian widths differ, the center-
of-mass motion cannot be separated exactly. Therefore, we
treat the center-of-mass motion approximately by reducing
the center of mass kinetic energy from the total energy, as
described in Sec. III A.

We comment upon the relation between the present AMD
framework and the similar fermionic molecular dynamics
(FMD) framework [36]. Our AMD framework, in which all
the Gaussian widths are not identical, is indeed quite similar

to the FMD framework; however, we use phenomenological
effective interactions in the Hamiltonian [Eq. (20)], whereas,
in a recent FMD calculation, they used effective interactions
derived from realistic interactions via the unitary correlation
operator method [37].

B. Core + 2n AMD wave function

We aim to efficiently describe dineutron correlation in
neutron-rich nuclei. To this end, we prepare the total wave
function in two steps. The A-nucleon system is regarded as a
core composed of A − 2 nucleons and two valence neutrons.
The two-step treatment of this system is explained below.

First, we prepare the core wave function composed of A − 2
nucleons:

�k
core = A{

ϕk
1 , . . . ,ϕ

k
A−2

}
, (6)

where k is the label characterizing the core structure, and
the core wave function is specified by the parameter sets
{Y k

1, . . . ,Y
k
A−2,ξ

k
1, . . . ,ξ

k
A−2}. We superpose the core wave

functions (
∑

k) to consider the core structure change. Here, we
consider the 8Be core, as shown later. We use the 2α cluster
wave function for the 8Be core for simplicity and choose the
α-α distance dα to parametrize the core structure. We can
simply generalize the core wave function to the AMD wave
function. For example, in principle, it is possible to prepare
the deformed cores by performing the β-constraint variation,
and the deformation parameter β is chosen as the parameter
for the core structure.

After preparing the basis wave functions of the core, we
express the A-nucleon total wave functions by distributing
two neutrons around each core wave function:

�k
total = 1√

A!
A{

�k
core ϕA−1ϕA

}
, (7)

with �k
total being an AMD wave function having the parameters

{Y k
1, . . . ,Y

k
A−2,YA−1,YA,ξ k

1, . . . ,ξ
k
A−2,ξA−1,ξA}, where the

parameters for the core are fixed. We perform energy variation
only on the parameters {YA−1,YA,ξA−1,ξA} for the two
valence neutrons to minimize the total energy under the
condition that the mean value of the total center-of-mass
position is located at the origin when ν2n = νc;

∑
i Y i =

(0,0,0) with Y i = Y k
i − (YA−1 + YA)/(A − 2) for i � A − 2.

The energy variation for two valence neutrons is performed
under the constraint on the distance of the center of mass,
(YA−1 + YA)/2, of two neutrons from the core, which we call
d2n:

d2n ≡
∣∣∣∣∣∣
1

2
(YA−1 + YA) − 1

A − 2

∑
i�A−2

Y i

∣∣∣∣∣∣, (8)

which depends only on the Gaussian center parameters Y i .
Performing the d2n-constraint energy variation for d2n = d2n,m

(m = 1, . . .), we calculate the two-neutron wave functions near
and far from the core. The variations of YA−1 and YA are
performed independently so the two neutrons near the core
tend to have the opposite momentum (i.e., the imaginary parts
are opposite to one another) and tend to be broken by the LS
dissociation effect due to the spin-orbit potential from the core.
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However, two neutrons far from the core tend to have almost
the same position, indicating the expansion of a spin-singlet
dineutron far from the core owing to the energy variation. A
similar constraint is proposed for an α cluster in Ref. [38] and
can efficiently describe α cluster development.

For the valence neutrons, we choose different values
of the Gaussian width from those of the core nucleons
(ν2n �= νc). Using the different values of the Gaussian widths
ν2n, the dineutron dispersion effect is taken into account.
Moreover, the description of the spatially expanded tail parts
of single-particle wave functions of valence neutrons such as
the neutron-halo tail should be improved using multirange
Gaussians.

We describe the total system by superposing all wave
functions with core deformation (k), core-2n distance (d2n),
and 2n size (ν2n):

�A(Jπ) =
∑
K

∑
k

∑
d2n

∑
ν2n

cKκPJπ
MK�k

total(Z,ν2n). (9)

PJπ
MK is the parity and angular momentum projection operator

to the eigenstate of Jπ . The coefficients cKκ (κ is the
abbreviation of {k,d2n,ν2n}) are determined by diagonalizing
the Hamiltonian [Eq. (20)]. Superposing the wave functions
with the set of {k,d2n,ν2n}, we can take the core structure
change into account as well as the two-neutron motion near
and far from the core while varying their size.

It should be noted that each basis wave function is not
a stationary state and has less physical meaning, though it
has specific characters in the present AMD framework. For
instance, the center of mass of the two valence neutrons is
described by the superposition of localized Gaussians with
various center positions d2n, but each localized Gaussian
is not necessarily a physical state. Also, as for the core
state, the core wave function for the physical state is given
by the superposition of basis wave functions with different
deformations. So, in this paper, we discuss not each basis state
but the physical state which is the superposition of many basis
states.

C. 10Be AMD wave function

Here, we specify the form of the AMD wave function for
10Be. The explicit form of the 10Be wave function is given by

�10Be(0+) =
∑
K

∑
dα

∑
d2n

∑
ν2n

cKκP0+
00 �

dα

total(Z,ν2n). (10)

10Be is regarded as a 8Be core with two valence neutrons.
The 8Be core is described with the 2α cluster wave

function for simplicity. An α cluster is composed of four
spin- and isospin-saturated nucleons in (0s)4 with the same
Gaussian center and width. We choose α-α distance dα as
the parameter characterizing the core structure [k = dα in
Eq. (9)]. We prepare three types of cores with dα = 2,3,4 fm
to describe the core structure fluctuation. The superposition of
these values gives the good convergence in the 10Be ground
state. The Gaussian widths of the core nucleons are fixed to
νc = 0.235 fm−2, used in the preceding works on 10Be [39,40].

Then, we distribute two neutrons around each core with
dα = 2,3,4 fm under the d2n constraint [Eq. (8)]. Here, we

choose d2n to be d2n = dmind
m−1 (m = 1, . . . ,mmax). We

define dmind
mmax−1 = dmax. We set (mmax,dmin,dmax) = (8,1,5).

We verified that the 10Be ground-state energy is lowered
by only 100 keV at most if the number of bases or the
maximum value of dmax is increased. When d2n is small and two
neutrons are distributed near the core, the LS dissociation for a
dineutron plays an important role and the two neutrons mainly
occupy the lowest allowed orbit 0p3/2 to gain the spin-orbit
potential from the core. However, when d2n is large, the tail
of the dineutron center-of-mass motion far from the core can
be well described. The present parameter set dα = 2,3,4 fm
and (mmax,dmin,dmax) = (8,1,5) are sufficient to describe the
ground state where 2αs in the core, and the core and the valence
neutrons are not extremely loosely bound. Note that a larger
value for dmax should be adopted to describe more loosely
bound neutron-rich nuclei. Also for dα , a larger value for the
maximum value should be used for cluster excited states near
the α-decay threshold, because such states are expected to have
a long tail of the α-cluster probability in the outer region.

In each d2n-constraint variation, we fix the Gaussian widths
of the two valence neutrons to be ν2n = 0.235, 0.125, or
0.08 fm−2 and perform variation for each ν2n value. The
superposition of three types of bases with different ν2n values
for each d2n can describe the dineutron size change.

At the nuclear surface, the LS dissociation of a dineutron
is predominant and dineutron correlation is suppressed. To
more effectively describe the dineutron formation at the
surface, we additionally superpose the bases prepared with the
d2n-constraint variation without the spin-orbit force (vLS = 0
MeV) when d2n is small. Here, we prepare the bases without
the spin-orbit force when d2n < 2 fm (four bases) for each
(dα,ν2n) set.

We summarize the number of bases used to describe 10Be.
We use three types of 8Be cores (dα = 2,3,4 fm) and three
widths of the two valence neutrons for each core (ν2n = 0.235,
0.125, 0.08 fm−2). We perform the energy variation on the two
valence neutrons in each (dα,ν2n) set under the d2n constraint.
We choose eight values for d2n with vLS = 1600 MeV (this
value is explained later) and four values for d2n(<2 fm) with
vLS = 0 MeV. Then, the number of bases used to describe 10Be
in the present full calculation is (8 + 4) × 3 × 3 = 108.

In this study, we would like to examine the effect of core
structure on dineutron correlation in 10Be. To this end, we
compare the results obtained by two types of calculations. One
is the full calculation mentioned above where the bases with
dα = 2,3,4 fm are superposed to describe the fluctuation of the
α-α distance in the core structure, i.e., the shape fluctuation
of the core. The other is the truncated calculation where
only the bases with dα = 2 fm are superposed, which gives
the state with the smaller core deformation. We denote this
calculation as the “fixed-dα” calculation. Note that, strictly
speaking, the fixed core in the fixed-dα calculation is not a
physical state for the core as mentioned previously. However,
we introduce the fixed core as a reference state for comparison
with the full calculation. The bases in the fixed-dα calculation
are recalculated because we use the interaction parameters
modified from those of the full calculation to reproduce the
two-neutron separation energy in each calculation. The main
difference between the full and fixed-dα calculations is whether
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or not the component of the larger core shape is taken into
account. In Sec. III, we mainly focus on the difference in the
dineutron correlation coming from this component.

D. 2n overlap function

For analysis to examine the dineutron correlation around
the core, we propose a method using a 2n overlap function.
The 2n overlap function f is defined as

f (r,rG) ≡ A〈
�dα

coreδ(rA−1 − rn1 )χ↑τn

× δ(rA − rn2 )χ↓τn |�10Be(0+)
〉
, (11)

r = rn2 − rn1 , rG = (rn1 + rn2 )/2, (12)

where �dα
core is the 8Be core wave function [Eq. (6)] specified

by the parameter dα . We use the core with dα = 3 fm in
the full calculation and that with dα = 2 fm in the fixed-dα

calculation, which gives the largest overlap with the ground
state obtained in each calculation. f (r,rG) is defined as a
function of the relative and center-of-mass coordinates of two
neutrons defined by the two-neutron coordinates, rn1 and rn2 ,
as shown in Eq. (12). We omit the recoil of the core and locate
its center of mass in the bra and ket states at the origin to
measure the largest overlap between these states. The quantity
f (r,rG) brings out information about the spatial distribution
of spin-up and -down neutrons in �10Be as a function of
r and rG. This quantity corresponds to a type of reduced
width amplitude extended to the three-body case. Although
the definition of the two-body density is nontrivial, we define
f (r,rG) to be totally antisymmetrized, and f (r,rG) directly
reflects the information about the spatial distribution of the two
neutrons. The 2n overlap function is useful for analysis of the
dineutron correlation, as accomplished using the three-body
model.

In particular, we are interested in the component of the
dineutron where two neutrons are coupled to a spin singlet
with a relative s wave (l = 0). We focus on the dineutron in
the S wave (L = 0) with respect to the core for simplicity.
Here, we use the label “s” (l = 0) for the angular momentum
for the relative coordinate r and “S” (L = 0) for the angular
momentum for the center-of-mass coordinate rG. Thus, we
project the angular momenta of the relative and center-of-mass
motions of the two neutrons to the s and S waves, respectively,
and consider the 2n overlap function, f S=0

l=L=0(r,rG), for the
states projected to l = L = 0 as a function of r = |r| and
rG = |rG|. The details of the calculation of f S=0

l=L=0 are given
in the Appendix.

Using the 2n overlap function f S=0
l=L=0, we calculate the

probability

P S=0
l=L=0 ≡

∫
r2dr r2

GdrG

∣∣f S=0
l=L=0(r,rG)

∣∣2
, (13)

which corresponds to the component of the spin-singlet and
relative s-wave 2n pair moving in the S wave around the core.

We also calculate the root-mean-square distance for r
and rG of the two neutrons in the S = 0 and l = L = 0

components:√
〈r2〉S=0

l=L=0

=
(∫

r2dr r2
GdrG r2

∣∣f S=0
l=L=0(r,rG)

∣∣2
/P S=0

l=L=0

)1/2

, (14)

√〈
r2
G

〉S=0
l=L=0

=
(∫

r2dr r2
GdrG r2

G

∣∣f S=0
l=L=0(r,rG)

∣∣2
/P S=0

l=L=0

)1/2

, (15)

which correspond to the dineutron size and the expansion from
the core, respectively.

Note that the asymmetry with respect to the exchange,
r/2 ↔ rG in f S=0

l=L=0(r,rG), reflects the mixing of single-
particle orbits for two neutrons of different parity in the S = 0
and l = L = 0 components. We decompose f S=0

l=L=0 and P S=0
l=L=0

into symmetric and antisymmetric components as follows:

f S=0
l=L=0(r,rG) = f

S=0(++)
l=L=0 (r,rG) + f

S=0(−−)
l=L=0 (r,rG), (16)

P S=0
l=L=0 = P

S=0(++)
l=L=0 + P

S=0(−−)
l=L=0 , (17)

where f
S=0(±±)
l=L=0 and P

S=0(±±)
l=L=0 are defined as

f
S=0(±±)
l=L=0 (r,rG) ≡ 1 ± Pr/2↔rG

2
f S=0

l=L=0(r,rG)

= 1

2

(
f S=0

l=L=0(r,rG) ± f S=0
l=L=0(2rG,r/2)

)
, (18)

P
S=0(±±)
l=L=0 ≡

∫
r2dr r2

GdrG

∣∣f S=0(±±)
l=L=0 (r,rG)

∣∣2
. (19)

Here Pr/2↔rG
is the r/2 ↔ rG exchange operator and the

projection (1 ± Pr/2↔rG
)/2 is equivalent to the double projec-

tion (1 ± Prn1 )/2 × (1 ± Prn2 )/2 of the single-particle parities
on f S=0

l=L=0(r/2,rG), as shown in the Appendix. Prn1,2 are the
space reflection operators of rn1,2 → −rn1,2 . This means that
f

S=0(++)
l=L=0 (f S=0(−−)

l=L=0 ) and P
S=0(++)
l=L=0 (P S=0(−−)

l=L=0 ) indicate the
contributions of pure positive-parity (negative-parity) single-
particle states of two neutrons in f S=0

l=L=0 and P S=0
l=L=0. We

hereafter label f
S=0(±±)
l=L=0 as the (++) or (−−) component of

the 2n overlap function. The dineutron correlation in 10Be is
seen in f S=0

l=L=0 as the coherent mixing of the minor f
S=0(++)
l=L=0

into the major f
S=0(−−)
l=L=0 , as shown in Sec. III C.

III. RESULT

A. Effective Hamiltonian

In the present work, we use the Hamiltonian

H = T − TG + Vcent + VLS + VCoul, (20)

where T and TG are the total and center-of-mass kinetic
energies. In the present framework, since all the Gaussian
widths in the present AMD wave functions are not equal,
the center-of-mass motion cannot be removed exactly. We
therefore treat the center-of-mass motion approximately by
reducing the expectation value of TG from the total Hamil-
tonian. VCoul is the Coulomb force that is approximated by
the summation of seven Gaussians. Vcent and VLS are the
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effective central and spin-orbit interactions. We use the Volkov
no. 2 force [41] as Vcent and the spin-orbit part of the G3RS
force [42] as VLS. In this work, we choose the strength of the
spin-orbit force to be vLS = 1600 MeV, as has been used in the
previous works on the subject of 10Be [39,40]. The Bartlett and
Heisenberg parameters in the central force are b = h = 0.125
which reproduce the deuteron binding energy and the n-n
unbound feature. We use the Majorana parameter m = 0.60
as it was used in Refs. [39,40] in the full calculation. In the
fixed-dα calculation, we choose m = 0.64 to give almost the
same two-neutron separation energy, S2n, that was obtained in
the full calculation.

B. 10Be fundamental properties

We calculate the two-neutron separation energy, S2n, the
matter, proton, and neutron radii, rm,p,n, and the expectation
value of the squared neutron total spin, 〈S2

n〉, shown in
Table I. The experimental proton radius is calculated from
the measured charge radius by using the equation in Ref. [44],

r2
p = r2

c − R2
p − N

Z
R2

n − 3�
2

4m2
pc2

, (21)

where rc, Rp, and Rn are the charge radii of a nucleus, a proton,
and a neutron, respectively. The proton and neutron charge
radii are 0.8791 and −0.1149 fm referred from Ref. [45]. The
last term is the Darwin-Foldy term, where mp is the proton
mass [46]. The two-neutron separation energy is calculated as
the difference between the total binding energy and the core
binding energy,

S2n = −(〈
�10Be(0+)|H |�10Be(0+)

〉 − 〈
�8Be(0+)|H |�8Be(0+)

〉)
,

(22)

where �8Be(0+) is the superposition of the 8Be core wave
functions with dα = 2,3,4 fm in the full calculation and that
with dα = 2 fm in the fixed-dα calculation, and they are
projected onto Jπ = 0+. We show the binding energies of
the 8Be cores and the 10Be bases giving the lowest energies
with dα = 2, 3, and 4 fm projected onto Jπ = 0+ calculated
with m = 0.60 in Table II. Although dα = 3 fm gives the
lowest energy in 10Be, we choose the dα = 2 bases in the
fixed-dα calculation to compare the less deformed case with
the superposing calculation. We superpose these bases of 10Be

TABLE I. The used Majorana parameter m, the two-neutron
separation energy S2n, the root-mean-square radii rm,p,n of matter,
protons, and neutrons, and the expectation value of the squared
neutron total spin 〈S2

n〉 in the full and fixed-dα (fixed) calculations. The
experimental values of the matter radii are referred from Ref. [43] and
the proton radius is calculated from the experimental charge radius
in Ref. [44].

m S2n rm rp rn 〈S2
n〉

(MeV) (fm) (fm) (fm)

Full 0.60 6.71 2.43 2.22 2.51 0.39
Fixed 0.64 6.34 2.33 2.01 2.38 0.50
Expt. 8.48 2.30(2) 2.18(2)

TABLE II. The binding energies of the 8Be cores and the lowest
binding energies of the 10Be bases with dα = 2, 3, and 4 fm (in MeV).
We use the parameter m = 0.60 in the central force.

dα = 2 dα = 3 dα = 4

8Be 46.33 51.49 52.65
10Be 54.26 55.80 51.26

with dα = 2,3,4 fm to get the binding energy of 60.42 MeV
(full calculation). For the calculation with the fixed value
of dα = 2 fm (fixed-dα calculation), we use the modified
interaction of m = 0.64 to fit the two-neutron separation
energy of the full calculation as mentioned previously, and get
the binding energy of 49.63 MeV. The root-mean-square radii
of matter, protons, and neutrons are larger in the full calculation
than those in the fixed-dα calculation. This is natural because
the core size becomes larger in the full calculation due to the
fluctuation in the α-α distance.

We show the neutron spin expectation value, 〈S2
n〉, in Table I.

In the present calculation, the 8Be core has zero proton and
neutron spins and, therefore, 〈S2

n〉 indicates the squared spin
expectation value of the two valence neutrons. The finite value
of 〈S2

n〉 reflects the spin-triplet component, that is, the degree of
the LS dissociation of a dineutron. 〈S2

n〉 is larger in the fixed-dα

calculation than that in the full calculation, indicating that the
LS dissociation increases when the core structure is fixed to
be small. This point is discussed later in connection with the
dineutron enhancement due to the core structure change.

We checked the relationship between the present AMD
wave function and the DC wave function used in our previous
work [40]. For the DC wave function, we assume a spin-
singlet 2n pair around a core, and we superposed the DC wave
functions with the AMD wave functions. The main role of
the DC wave function discussed in Ref. [40] is to describe
the dineutron-tail component in 10Be. If we superpose the DC
wave functions used in Ref. [40] with the present AMD wave
functions, the ground-state energy is lowered by only 300 keV
at most and the other properties are largely unchanged. This
means that the contribution of the DC wave function is minor,
and that the structure as well as the dineutron tail can be
well described with the present d2n-constrained AMD wave
functions, at least for a 10Be system with sufficiently bound
valence neutrons.

C. Effect of core structure change on dineutron
correlation in 10Be

In this section, we discuss the dineutron correlation in the
ground state of 10Be, focusing mainly on the effect of 8Be core
structure change.

As an example of the analysis of dineutron correlation using
the 2n overlap function, we plot the 2n overlap functions,
f S=0

l=L=0 and f
S=0(±±)
l=L=0 , in the full calculation as functions of

(r/2,rG) in Fig. 1. To show the asymmetry with respect to
the rG = r/2 line, we show the r/2-rG plot instead of the
r-rG plot. There are two peaks in f S=0

l=L=0 and f
S=0(−−)
l=L=0 and

three peaks in f
S=0(++)
l=L=0 . Hereafter, we refer to the peak in
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FIG. 1. The 2n overlap functions of (a) f S=0
l=L=0, (b) f

S=0(−−)
l=L=0 , and

(c) f
S=0(++)
l=L=0 in the full calculation as functions of (r/2,rG). For the

guide, the colors of the lines corresponding to the region where the
absolute amplitude is largest, intermediate, and smallest are black,
gray, and white, respectively.

the rG > r/2 region of f S=0
l=L=0 as the dineutron peak and the

peak in the rG < r/2 region of f S=0
l=L=0 as the cigar peak.

The two-peak structure in f
S=0(−−)
l=L=0 comes from the two

neutrons occupying the p2 orbits and the three-peak structure

in f
S=0(++)
l=L=0 comes from those occupying the (sd)2 orbits.

The (−−) and (++) components of the 2n overlap function,
f

S=0(−−)
l=L=0 and f

S=0(++)
l=L=0 , are antisymmetric and symmetric

with respect to the rG = r/2 line, respectively. In general,
without the mixing of different parity contributions for the
single-particle orbits, the absolute amplitudes of the dineutron
and cigar peaks are exactly the same, and we do not describe
the case as dineutron correlation. In other words, dineutron
correlation is reflected in the asymmetry between the dineutron
and cigar peaks with respect to the rG = r/2 line in f S=0

l=L=0.
In the present case, the asymmetry in f S=0

l=L=0 comes from
the mixing of the minor (sd)2 component (f S=0(++)

l=L=0 ) into the
major p2 component (f S=0(−−)

l=L=0 ), as shown in Eq. (16). The
relative phases at the dineutron peaks (r/2 ∼ 1 fm) in f

S=0(−−)
l=L=0

and f
S=0(++)
l=L=0 are coherent; however, those at the cigar peaks

(rG ∼ 1 fm) in f
S=0(−−)
l=L=0 and f

S=0(++)
l=L=0 are incoherent, leading

to asymmetry between the dineutron and cigar peaks. The
dineutron enhancement is seen in the obvious asymmetry
between the dineutron and cigar components coming from
significant mixing of the different-parity single-particle orbits
for each valence neutron.

We now investigate the dependence of the degree of
dineutron enhancement on the core structure by comparing
the results obtained from the full and fixed-dα calculations.
In Table III, we show some properties of the 2n pair in two
calculations. As mentioned above, the mixing of the different-
parity single-particle orbits for the two neutrons reflects the
dineutron correlation; in other words, the mixing ratio of
P

S=0(++)
l=L=0 into P

S=0(−−)
l=L=0 reflects the strength of dineutron

correlation. The mixing ratio P
S=0(++)
l=L=0 /P

S=0(−−)
l=L=0 is 5.1%

in the full calculation and 3.0% in the fixed-dα calculation,
meaning that the large deformation and large shape fluctuation
in the 8Be core structure enhance the dineutron correlation.
The stronger dineutron correlation in the full calculation is

also reflected in the slightly smaller value of
√

〈r2〉S=0
l=L=0 than

that in the fixed-dα calculation.
The reason for which the core structure change enhances the

dineutron correlation is as follows: when the core deformation
is fixed to be small in the fixed-dα calculation, two valence
neutrons are distributed near the core to a larger extent and they
feel the stronger spin-orbit potential at the surface. In the 10Be

TABLE III. The probabilities of the spin-singlet 2n pair P S=0
l=L=0,

those of the positive- or negative-parity components P
S=0(±±)
l=L=0 , the

mixing ratio of the positive-parity component to the negative-parity
component P

S=0(++)
l=L=0 /P

S=0(−−)
l=L=0 (tagged as “ratio”), and the root-

mean-square expectation values of the relative and center-of-mass
distances of the 2n pair,

√〈r2〉S=0
l=L=0 and

√〈r2
G〉S=0

l=L=0 , in the full and
fixed-dα (fixed) calculations.

P S=0
l=L=0 P

S=0(−−)
l=L=0 P

S=0(++)
l=L=0 ratio

√
〈r2〉S=0

l=L=0

√
〈r2

G〉S=0
l=L=0

(%) (fm) (fm)

Full 0.515 0.491 0.025 5.1 3.70 2.53
Fixed 0.546 0.530 0.016 3.0 3.75 2.37
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case, the LS-favored orbit of 0p3/2 is partially unoccupied and
the valence neutrons are favored energetically to occupy the
0p3/2 orbit. Under the smaller core deformation, the simplest
shell-model component (two neutrons occupy only the lowest
shell) is predominant because of the spin-orbit potential from
the core and, therefore, dineutron correlation is not greatly
enhanced because of the LS dissociation effect. However,
when the core deformation becomes larger, the mean field
generated by the core expands to the farther region so that
two valence neutrons can be radially expanded from the
core to form a spin-singlet compact dineutron. As a result,√

〈r2
G〉S=0

l=L=0 is larger in the full calculation. Moreover, the
spin-orbit potential becomes weaker in the region far from the
core, resulting in the suppression of the LS dissociation effect
on the dineutron. The suppression of the LS dissociation in the
full calculation is seen by the smaller spin-triplet component
(〈S2

n〉/2) than that in the fixed-dα calculation, as already shown
in Table I.

However, it should be noted that the P S=0
l=L=0 value itself

is smaller in the full calculation than that in the fixed-
dα calculation. This is due to the fact that, if the core
deformation becomes larger, the spin-singlet 2n components
in the strong-coupling channels between the core and 2n
[e.g., (Lcore = 2) ⊗ (L = 2) = 0 which is projected out in
the calculations of P S=0

l=L=0 and P
S=0(±±)
l=L=0 ] are mixed to a

greater extent. We emphasize that the mixing of the (++)
component of the single-particle orbits of 2n into the dominant
(−−) component increases, reflecting the enhancement of the
dineutron correlation.

To investigate the effect of the core structure on the 2n
properties in more detail, we compare the 2n overlap functions
in the full and fixed-dα calculations. In Fig. 2, we plot the
absolute values of the 2n overlap function, |f S=0

l=L=0|, projected
onto the r/2 axis obtained in the full and fixed-dα calculations.
It can be seen that the dineutron peak (r/2 ∼ 1 fm) is larger
than the cigar peak (r/2 ∼ 2 fm) in both calculations. However,
the difference between the dineutron and cigar peaks is larger

0
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 0.3

0 1 2 3 4 5 6

fS
=

0 l=
L=

0

r/2 (fm)

full (r/2 < rG)
full (r/2 > rG)

fixed (r/2 < rG)
fixed (r/2 > rG)

FIG. 2. The absolute values of the projection of the 2n overlap
functions of f S=0

l=L=0 onto the r/2 axis in the full and fixed-dα (fixed)
calculations. The red solid lines correspond to the full calculation and
the blue dashed lines correspond to the fixed-dα calculation. The thick
lines are the dineutron component (the amplitudes in the r/2 < rG

region) and the thin lines are the cigar component (the amplitudes in
the r/2 > rG region).

in the full calculation than that in the fixed-dα calculation.
This means that the dineutron correlation is enhanced due to
the fluctuation in the α-α distance, as discussed in connection
with the mixing of P

S=0(++)
l=L=0 into P

S=0(−−)
l=L=0 . It should be

noticed that the absolute amplitudes of both the dineutron and
cigar peaks themselves become smaller in the full calculation
because of the mixing of the (Lcore �= 0) ⊗ (L �= 0) = 0
components, as mentioned above. Introducing the fluctuation
in the distance between 2αs, the cigar peak decreases more
than the dineutron peak and the difference between these
peaks is certainly increased, indicating dineutron enhancement
depending on the core structure change.

As mentioned above, the difference in the results in the full
and fixed calculations mainly comes from the mixing of the
component of the more largely deformed core. Therefore, for
instance, the comparison between the full calculation and a
calculation where dα is fixed to 4 fm gives smaller differences
than that shown in the present result.

D. Utility of the d2n-constraint calculation

Finally, to show the utility of the present d2n-constraint cal-
culation, we compare the dineutron-tail component obtained
by the full calculation with that obtained by the single basis
having the parameters (dα,d2n,ν2n) = (3,1.8,0.235), which is
the minimum-energy AMD wave function with the assumption
of a 2α core. The minimum-energy basis has an overlap of
∼82% with the state obtained by the full bases calculation
(the largest overlaps with the ground state in the bases with
dα = 2 and 4 fm are ∼67% and ∼61%, respectively), and its
binding energy is 55.80 MeV, which is ∼5 MeV smaller than
the ground-state binding energy in the full calculation. This
indicates that the superposition of the basis wave functions
significantly improves the 10Be wave function. We plot in
Fig. 3f the absolute values of the 2n overlap function |f S=0

l=L=0|
projected onto the rG axis for the states obtained in the full

0
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 0.3

 0.35

0 1 2 3 4 5 6

fS
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full (r/2 < rG)
full (r/2 > rG)

min. (r/2 < rG)
min. (r/2 > rG)

FIG. 3. The absolute values of the projection of the 2n overlap
functions of f S=0

l=L=0 onto the rG axis in the full calculation and the
calculation using the basis that gives the minimum energy. The red
solid lines correspond to the full calculation and the green dashed lines
are the calculation using only the minimum-energy basis. The thick
lines are the dineutron component (the amplitudes in the r/2 < rG

region) and the thin lines are the cigar component (the amplitudes in
the r/2 > rG region).
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calculation and the minimum-energy basis calculation. In the
calculation using the minimum-energy basis, the amplitudes of
the dineutron (rG ∼ 2 fm) and cigar (rG ∼ 1 fm) peaks do not
differ greatly, because the 0p3/2 orbit (the lowest shell-model
limit) is dominant for 2n and the dineutron correlation mostly
disappears in this basis.

A remarkable difference between these calculations is
seen in the dineutron-tail component (rG � 4 fm). The
minimum-energy basis does not have the dineutron tail
expanded into the farther region because in a single basis, this
tail has a rapidly dumping Gaussian form. However, in the full
calculation where many bases with various d2n and ν2n values
are superposed, the dineutron tail is improved remarkably.
This indicates that the present framework well describes the
dineutron tail. It is also expected that this method can be
useful for extremely loosely bound nuclei with neutron-halo
or -skin structures. Further application to loosely bound nuclei
is future work.

IV. SUMMARY

In this study, we extended the AMD framework to describe
dineutron correlation around a core with various structures.
We first prepared the core wave functions using the cluster
wave function or the AMD wave function, which are useful
for describing various structure changes such as deformation
and clustering. We described the detailed two-neutron motion
around the cores considering the relative distance between
the core and the two neutrons as the degree of freedom, and
we superposed the basis wave functions with various core-2n
distances to describe the competition between the dineutron
formation and the LS dissociation at the nuclear surface as well
as the dineutron expansion far from the core. We additionally
changed the Gaussian widths of the two neutrons to take
into account the dineutron dispersion effect. Moreover, we
constructed a 2n overlap function as the analyzing method for
investigating dineutron correlation around a core in detail. This
method enabled us to visualize the spatial correlation between
two neutrons and made the discussion clear.

As a first step, we applied the framework to the ground state
of 10Be and focused on the effect of the 8Be core structure
change on the dineutron correlation. In the present work, we
assumed a 2α cluster structure for the 8Be core and considered
the fluctuation in the α-α distance as the core structure change.
Dineutron correlation was seen in the degree of mixing of
different-parity single-particle orbits, i.e., the mixing of the
minor (sd)2 component into the major p2 component for two
neutrons in the 10Be case. When the core was less deformed,
the two neutrons were distributed near the core and greatly
dissociated to the independent (0p3/2)2 component due to
the spin-orbit potential from the core; as a result, dineutron
correlation was suppressed. However, when the core was well
deformed by taking into account the fluctuation in the distance
between 2αs, two neutrons could be expanded radially and

they were favored to form a dineutron. Moreover, at the region
far from the core, the spin-orbit potential becomes weaker and
the LS dissociation effect was suppressed. As a result, the
dineutron correlation was enhanced at the surface and further
regions due to the core structure change.

In this work, we applied the extended methods to 10Be
and showed that the present framework is useful to describe
the dineutron component around the well-deformed core.
Additionally, we concluded that the core structure significantly
affects the dineutron correlation. Certainly, 10Be is not a very
loosely bound nucleus and the LS dissociation effect on the
dineutron plays an important role. However, we could see
the asymmetry between the dineutron and cigar components
indicating that the dineutron correlation somewhat occurs even
though two neutrons are rather deeply bound. It is expected
that dineutron correlation might be more or less apparent in
other neutron-rich nuclei, even in those without an outstanding
neutron-halo or -skin structure. In the future, we will apply the
present framework to various nuclei and clarify the universal
properties of dineutron correlation, e.g., the effect of the core
excitation and clustering in addition to that of the core deforma-
tion on dineutron correlation and the effect of the LS dissocia-
tion competing with the loose binding for two valence neutrons
in a halo nucleus, through the systematic investigation.
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APPENDIX: OVERLAP FUNCTIONS f AND f (±±)

Here we show the details of the overlap functions f and
f (±±). We define the general 2N overlap function f as below:

f (r,rG) ≡ A〈�coreδ(rA−1 − rN1 )χA−1τA−1

× δ(rA − rN2 )χAτA |�total〉, (A1)

r = rN2 − rN1 , rG = (rN1 + rN2 )/2, (A2)

where �total is the total wave function with A nucleons whose
center of mass of the core component is located at the origin
and �core is the core wave function with A − 2 nucleons whose
center of mass is located at the origin. χA−1,A and τA−1,A are
the spin and isospin wave functions of the (A − 1)th or Ath
nucleon and we can choose ↑ or ↓ for the spin components
and p or n for the isospin components for each purpose. In
the present work, we want to investigate the dineutron motion
that is a spin-singlet pair of two neutrons so that χA−1 =↑ and
χA =↓, and τA−1,A = n. In this Appendix, we show only this
case but generalization is simple.

In the case of a spin-singlet 2n pair, Eq. (A1), can be
rewritten as

f (r,rG) =
∑
i,j∈n

(
4νiνj

π2

)3/4

exp
[ − νi

(
rn1 − Y i

)2 − νj

(
rn2 − Y j

)2]〈χ↑|χi〉〈χ↓|χj 〉 × det B(i,j ) (A3)
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=
∑
i,j∈n

(
4νiνj

π2

)3/4

exp
[−(νi + νj )

(
r2
G + r2/4

) − νiY
2
i − νjY

2
j − (νi − νj )r · rG/2

]
4π

∑
l

∑
m

jl(−i(νiYi − νjYj )r)

×Ylm(r̂)Y ∗
lm(Ŷ r )4π

∑
l

∑
m

jl(−2i(νiYi + νjYj )rG)Ylm(r̂G)Y ∗
lm(ŶG)〈χ↑|χi〉〈χ↓|χj 〉 × det B(i,j ), (A4)

where jl are the spherical Bessel functions and Ylm are
the spherical harmonics. Ŷ r,G are the polar angles of the
vectors νiY i − νj Y j or νiY i + νj Y j , respectively. B(i,j ) is an
(A − 2) × (A − 2) norm matrix composed of 〈ϕcore,κ | (κ =
1, . . . ,A − 2) in 〈�core| and |ϕtotal,κ〉 (κ = 1, . . . ,A) in
|�total〉 except for the ith and j th single-particle wave
functions. f (r,rG) is totally antisymmetrized by A and
hence B(j,i) = −B(i,j ). We perform the angular integrals∫

d2 r̂Y00(r̂)
∫

d2 r̂GY00(r̂G) to project the relative and center-
of-mass motions of 2n onto l = L = 0, and we additionally
neglect the term proportional to r · rG in the exponential term
in Eq. (A4), resulting in f S=0

l=L=0(r,rG) as

f S=0
l=L=0(r,rG) =

∑
i,j∈n

(
4νiνj

π2

)3/4

exp
[−(νi + νj )

(
r2
G + r2/4

)

− νiY
2
i − νjY

2
j

]
4πj0(−i(νiYi − νjYj )r)

× j0(−2i(νiYi + νjYj )rG)

×〈χ↑|χi〉〈χ↓|χj 〉 × det B(i,j ). (A5)

This 2n overlap function only depends on the absolute values
of r = |r| and rG = rG. We calculate the probability of the
spin-singlet 2n pair, P S=0

l=L=0, the root-mean-square distance
between two neutrons

√
〈r2〉S=0

l=L=0 , and that between the two
neutrons and the core

√
〈r2

G〉S=0
l=L=0 simply using the numerical

integrals of r and rG [Eqs. (13), (14), and (15)].
We calculate the (++) and (−−) components f

S=0(±±)
l=L=0 ,

from the 2n overlap function f S=0
l=L=0 as Eq. (18). Here, we show

that f S=0(±±)
l=L=0 , defined in Eq. (18), is certainly equivalent to the

components where both neutrons are projected to positive- or
negative-parity single-particle orbits if the relative and center-
of-mass motions of 2n are projected as l = L = 0. We begin
by projecting both neutrons in the 2n overlap function f (r,rG)
to the positive- or negative-parity single-particle orbits. Noting
the definition of the coordinates r and rG in Eq. (A2), we have

(
1 ± Prn1

)
/2 × (

1 ± Prn2

)
/2 × f (r,rG)

= 1

4

[(
1 + Prn1Prn2

) ± (Prn1 + Prn2

)]
f (r,rG)

= 1

4
[(f (r,rG) + f (−r, − rG)) ± (f (2rG,r/2)

+ f (−2rG, − r/2))]. (A6)

If we project f to l = L = 0 with the operator Pl=L=0,
f S=0

l=L=0 becomes just a function of the absolute values of
r and rG[Pl=L=0f (r,rG) = f S=0

l=L=0(r,rG)]. As a result of
the projection to l = L = 0, the former two terms and the
latter two terms on the last line of Eq. (A6) give the same
contributions, respectively. We can therefore rewrite Eq. (A6)
under the projection to l = L = 0 as

Pl=L=0
[(

1 ± Prn1

)
/2 × (

1 ± Prn2

)
/2 × f (r,rG)

]
= 1

2

(
f S=0

l=L=0(r,rG) ± f S=0
l=L=0(2rG,r/2)

)
= f

S=0(±±)
l=L=0 . (A7)

This means that f
S=0(±±)
l=L=0 defined in Eq. (18) are certainly the

components in the 2n overlap function where both neutrons
are projected to the positive- or negative-parity single-particle
orbits if the relative and center-of-mass motions of the two
neutrons are projected as l = L = 0.
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M. Pfützner, A. Banu, C. R. Bingham, M. Ćwiok, I. G. Darby,
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