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1 Introduction

Gauge/gravity duality [1] is believed to be a key idea in resolving the black hole infor-

mation paradox. Witten [2] conjectured that 4d N = 4 super Yang-Mills (SYM) theory

compactified on a three-sphere S3, whose action is given by

S =
1

g2YM

∫
d4x Tr

(
1

4
F 2
µν +

1

2
(DµXM )2 +

1

4
[XM , XM ′ ]

2 − 1

2
X2
M + (fermion)

)
, (1.1)

can describe a black hole (BH) in AdS5×S5. Here the gauge group is SU(N) and XM

(M = 1, · · · , 6) are N × N Hermitian matrices. We consider ’t Hooft large-N limit,

g2YM ∝ N−1, and the radius of the S3 is set to 1. If the conjecture is correct, then the dual

gravity description suggests the following behavior in phase diagram of the microcanonical

ensemble at strong coupling (see e.g. section 3.4.1 of [3]):

• When the energy E is large enough, a large AdS-BH, which fills the S5 direction,

is formed. The energy scales as E ∼ R11
AdST

4

G10,N
at high temperature T , where G10,N

and RAdS are the ten-dimensional Newton constant and the AdS radius, respectively.

Note that the large AdS-BH has a positive specific heat.
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Figure 1. The microcanonical E-vs-T phase diagram of 4d SYM on R1×S3 at strong coupling

(λ = g2YMN � 1), obtained by assuming the validity of the AdS/CFT duality.

• The large AdS-BH shrinks as the energy is decreased and the temperature goes down.

When the Schwarzschild radius becomes of order RAdS, the BH localizes along the

S5 and can be regarded as a ten-dimensional BH. This transition is of first order [4],

and the BH becomes hotter after the localization.1 When the Schwarzschild radius

becomes much smaller than RAdS, the BH should behave like the ten-dimensional

Schwarzschild BH in flat spacetime, E ∼ 1
G10,NT 7 . We will call this localized BH, the

small BH. Note that the small BH has a negative specific heat.

• As the small BH shrinks towards the string scale, the description of it as a bunch

of long strings become better. The system shows the famous Hagedorn behavior,

E ∝ S ∝ L, where S is the entropy and L is the length of the strings.

• Finally, when the energy is very small, the system is well described as a gas of short

strings.

The relation between the energy and temperature is shown in figure 1.

Although the gauge/gravity duality conjecture has not been proven, there is accumu-

lating evidence that it is most likely correct. Hence the majority of string theorists believe

that 4d SYM has the same phase diagram. It is crucial however to understand this phase

diagram directly from the gauge theory for several reasons. First of all, the duality has

been poorly tested at finite temperature. As far as we know, the only quantitative tests

currently understood [5],2 are for the duality [10] between the type IIA black zero-brane

and D0-brane quantum mechanics [11–13], which is analogous to the large AdS-BH in 4d

N = 4 SYM. (For the AdS3/CFT2 correspondence, the supergravity limit and the uni-

versal logarithmic correction have been studied from CFT2 side; see [14] and references

therein.) Hence we need to test gauge/gravity duality for a small BH. Furthermore, if we

use the duality to understand the quantum gravitational aspects of black holes, we have

1The authors would like to thank Jorge Santos for the clarification.
2Analytic approaches for deriving nontrivial temperature dependence have been discussed in [6–9].
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to solve gauge theory. If we assumed the validity of the dual gravity description and used

the gravitational description to explain gravity, we would be just assuming the answer to

answer the question.

Previously, the gauge theory description of the large AdS-BH, the Hagedorn parameter

region, and string gas parameter region have been understood at least qualitatively (see

e.g. [3]). In this paper, we propose a simple gauge theory description of the small BH. By

assuming the validity of the AdS/CFT correspondence for the large black hole, we derive

the relation between the energy and temperature of the small black hole, E ∼ 1/(G10,NT
7),

at strong coupling. We also give a heuristic explanation supporting this assumption based

only on gauge theory. In addition, we will show that the same picture correctly reproduces

the Hagedorn behavior. In short,

• The large black hole is described by a bound state of all the eigenvalues of scalar

fields XM . All N2 matrix entries are excited.

• Suppose some of the eigenvalues are emitted, after which and only NBH < N eigen-

values form a bound state. Such matrices describe the small black hole. The black

hole is smaller when NBH is smaller.3

This paper is organized as follows. In section 2, we remind the readers how the

microscopic, stringy degrees of freedom can be read off from the fields (matrices) in 4d

SYM. Two seemingly different, but actually equivalent, pictures — ‘open strings+D-branes’

and closed strings — are introduced, and the meaning of the emission of the D-branes

(eigenvalues) from the BH [16, 17] is explained. Section 3 is the main part of this paper.

We propose a gauge theory description of the small black hole, and obtain the relationship

between the energy, entropy and temperature expected from the conjectured gravity dual

modulo a technical assumption explained at the end of the section. In section 4, we suggest

that the same picture can hold for a rather generic class of theories holographically dual

to superstring/M-theory. We study the ABJM theory as an example and derive the right

energy-temperature relation of the 11d Schwarzschild black hole.

Note added. While this work has been in progress, we have learned that Leonard

Susskind had essentially the same idea independently. He conjectured the small black

hole is described by a small sub-matrix, and considered a possibility of making the ‘box’

(AdS space) smaller in order to remove the degrees of freedom which are not needed for

describing the small BH. In terms of gauge theory, this means a truncation to U(NBH).

Then he assumed the ‘corresponding principle’ which relates the large and small black

holes. On the gauge theory side, mathematically, this is exactly what we have done in

order to derive E ∼ 1/(G10,NT
7). We would like to thank him for stimulating discussions

and collaboration toward the end of the project.

3The idea that the size of the matrix blocks changes with the energy has also been an important ingredient

of a proposal for a description of the Schwarzschild black hole in the Matrix Model of M-theory [15].
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Figure 2. Interpretation of matrix components as sites and links of a nonlocal lattice.

2 Stringy interpretation of the field theory degrees of freedom

In this section, we explain how the stringy micro-states of a black hole are encoded into

gauge theory. There are two seemingly different pictures, (1) the bound states of D-branes

and strings [11] and (2) long, winding strings [18, 19]. Here we explain how they are related

to each other.

Firstly let us consider the D0-brane quantum mechanics picture [11–13], the general-

ization to generic gauge theories including 4d N = 4 SYM is straightforward. We work in

the Hamiltonian formulation [20]. The gauge field is set to zero, At = 0, and the physical

Hilbert space is obtained by acting traces of products of scalars XM (M = 1, 2, · · · , 9) on

the vacuum state.4 When we follow the usual D-brane effective theory point of view [11],

the diagonal components XM,ii are regarded as the position of i-th D0-brane in R9, and the

off-diagonal components XM,ij describe open strings connecting i-th and j-th D0-branes.

Note that these strings are oriented. When XM,ij is large, a lot of strings are excited

between i-th and j-th D0-branes. This is picture (1).

In order to go to picture (2), let us regard the D0-branes and open strings as sites and

links of a non-local lattice (figure 2). Here we use the adjective “nonlocal” because all pairs

of sites can be directly connected by links. Gauge-invariant states are made of closed loops.5

For example, if we consider Tr(XM1XM2XM3XM4)|Vac〉; XM1,ikXM2,klXM3,ljXM4,ji with

different i, j, k, l is a closed loop made of four links (figure 3), while XM1,ikXM2,klXM3,ll

·XM4,li with different i, k, l is a closed loop made of three links and one site (figure 4). Hence

the black hole, which is a bound state of D-branes and open strings, is naturally regarded as

a long, winding string in the lattice description. (More precisely, a few long strings.) The

maximum possible number of string bits (open strings) is the maximum possible length of

a single trace operator, which is of order N2. This upper bound appears because single

trace operators beyond this bound can be expressed by using shorter operators. Note that

this is slightly different from the ‘correspondence principle’ [18, 22] in the usual sense, that

the black hole is always described by strings in this picture [18, 19].

When the number of spatial dimension is nonzero, the gauge fields form other links;

the picture should be clear if one imagines a lattice discretization of space-time. Then

4More precisely speaking, the adjoint fermions exist as well. The gauge-singlet condition follows from

the Gauss-law constraint.
5This idea is not new. See e.g. [21].
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Figure 3. XM1,ikXM2,klXM3,ljXM4,ji in Tr(XM1
XM2

XM3
XM4

)|Vac〉.

Figure 4. XM1,ikXM2,klXM3,llXM4,li in Tr(XM1XM2XM3XM4)|Vac〉.

the link variables also become strings; generic long string states are expressed by Wilson

loops (QCD strings) with scalar insertions. Here the black brane can be regarded as a

condensation of long strings. For more details, see [19].

2.1 Emission of D-branes and black hole evaporation

The dynamics of D-branes play an important role in the matrix (gauge theory) description

of the black holes [12]. Suppose the D-branes form well separated and localized bunches

consisting of N1, N2, · · · D-branes. Then strings inside each bunch are short, light and can

be very excited, while strings connecting different bunches are long, heavy and cannot be

excited much. In terms of matrices, such a configuration is expressed by almost block-

diagonal matrices with block sizes N1, N2, · · · . Each block is regarded as long strings with

maximum length N2
1 , N

2
2 , · · · , respectively. Typically, the i-th block carries the energy and

entropy of order N2
i .

Next let us consider the emission of eigenvalues, following [16, 17].6 When one of the

D-branes is emitted, open strings between the emitted D-brane and the others become

heavy and decouple from the dynamics. Hence fully noncommutative N ×N matrices turn

to block diagonal forms, (
XM

BH 0

0 xM

)
, (2.1)

6In the theories with flat directions, the emission is inevitable. In 4d N = 4 SYM on R1×S3, though

there are no flat directions, emission still plays an important role, as we will see shortly.
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where XM
BH are fully noncommutative (N − 1) × (N − 1) matrices and xM describe the

position of emitted D-brane.7 This is the Higgs mechanism. The number of light physical

degrees of freedom decrease from ∼ N2 to ∼ (N − 1)2 + 1, while the energy is conserved

during emission. Hence the energy per degree of freedom (' temperature) increases. As

the emission continues more eigenvalues can be emitted and the black hole becomes hotter

and hotter. The negative specific heat of the black hole follows from this simple fact. For

details, see [16, 17].

In the next section, we show that the emission of D-branes can explain the properties

of the small black hole in AdS5×S5 described by 4d SYM on R1×S3.

3 Analysis of the microcanonical ensemble

3.1 The large black hole (large energy and λ � 1)

The large AdS5 black hole is obtained by rolling up a black three-brane with charge N . The

black brane is a bound state of all N eigenvalues (D3-branes); as is the large black hole.

See figure 5. As we declared in the introduction, we assume the AdS/CFT duality between

SYM and the large BH is correct. In principle (and within a ten-year span, probably

in practice), the duality can be tested by Monte Carlo simulation. For recent numerical

studies, see e.g. [23, 24].

When the black hole on the gravity side fills the S5 completely, the AdS5 BH should

be used in the dual gravity calculation. It has the minimum temperature Tmin; see figure 6.

Let us call the energy at T = Tmin to be Emin, and the solutions at E > Emin and E < Emin

to be ‘large’ and ‘small’ AdS5 black holes, respectively. (Hence Emin is the minimum energy

of the ‘large’ BH.) To avoid confusion we will use small BH to refer to a 10d Schwarzschild

black hole and small AdS5 BH to refer to a small AdS black hole which still fills the S5.

The small AdS5 BH solution at E < Emin does not have a counterpart in 4d SYM; it is

unstable with respect to the Gregory-Laflamme instability [25] along the S5, and hence the

10d BH becomes the appropriate description. From the point of view of gauge theory, it

can be understood as follows. In order for a bound state of eigenvalues (non-commutative

block) to be formed, (almost) all of the off-diagonal elements must be excited, which costs

a lot of energy. Hence the AdS5 BH black hole can exist only when the energy is large

enough.

Strictly speaking, the ‘minimum energy’ Emin corresponding to the instability might

be slightly different from the energy at Tmin; they should be of the same order but it is hard

to determine the order one factor. A dual gravity analysis such as [4, 26] may provide us

with a concrete number. In the following we will not consider order one coefficients which

are sensitive to this ambiguity.

3.2 Emission of eigenvalues

The above argument, however, does not take into account the emission of eigenvalues.8

Even if the energy is not large enough to bind all N eigenvalues, it may still be possible to

7Here we implicitly took a gauge in which the emitted D-brane is described by the (N,N)-components.

Technical details about this gauge choice will be explained in section 3.2.1.
8The speculation that a subset of D-branes describes the small black hole existed for quite some time;

see e.g. [21].
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Figure 5. AdS black hole is obtained by rolling up black 3-brane.

bind NBH eigenvalues, with NBH < N . Note that, because the space is compactified, there

is no superselection of vacua; the value of the scalar field XM (M = 1, 2, · · · , 6) should

be determined dynamically, like in the Matrix Model of M-theory [12]. Also note that,

unlike the Matrix Model of M-theory, this theory does not possess flat directions, because

the scalars have a mass proportional to the inverse of the S3 radius. Hence the emitted

particles do not roll to infinity; they form a finite density gas and that can be absorbed

again by the black hole. At some point, the emission and the absorption rates can balance.

We consider a state consisting of BH and gas in 4d N = 4 on R1×S3. Our proposal

is that a black hole consisting of NBH eigenvalues and a gas consisting of Ngas particles,

where N = NBH +Ngas, can be described by matrices of the form9
XM

BH

xM1
xM2

. . .

xMNgas

 , (3.1)

where XBH is an NBH ×NBH matrix.

Intuitively,

• In order for a bound state of eigenvalues (non-commutative block) to be formed,

(almost) all off-diagonal elements must be excited, which costs a lot of energy.

• If the total energy of the system is big enough, say E ∼ N2, (almost) all off-diagonal

elements can be excited. Hence N = NBH, Ngas = 0 can be realized.

• If the energy is not that big, then NBH becomes smaller. The number of degrees of

freedom decreases dynamically, and the temperature of the system goes up. At some

9Here we implicitly took a gauge in which the ‘black hole’ comes to the upper-left corner. In section 3.2.1

we show how this gauge choice can be achieved, and that the gauge fixing and Faddeev-Popov terms are

negligible. Strictly speaking, in addition to the elements shown in (3.1), there is some ‘fuzziness’ which

describes short open strings stretched between nearby D-branes; see figure 7. Such a correction is negligible

in the situations we consider below, where both NBH/N is small but of order N0.
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Figure 6. The microcanonical E-vs-T phase diagram of AdS5-BH which is fills the S5 completely.

E < Emin does not have a counterpart in 4d SYM; it is unstable with respect to the Gregory-

Laflamme instability along the S5.

Figure 7. A more precise representation of the shape of the matrices describing a small black hole.

In addition to the elements shown in (3.1), there is some ‘fuzziness’ which describes short open

strings stretched between nearby D-branes. The light blue lines indicate where the blocks would be

if the matrix were block diagonal. The color refers to the magnitude of the matrix elements, darker

blue implying a larger magnitude.

point, (if the total energy is not too small) NBH can become small enough so that

off-diagonal elements in XBH (number of degrees of freedom ∼ N2
BH) can be excited.

• In the closed string picture: the string wants to become as long and winding as

possible with the available amount of energy. It does this in order to gain more

entropy. When the energy is not big enough, i.e. NBH becomes too big, it ends up

with a long but not very wound string. Then NBH becomes smaller so that the string

can take more complicated shapes.

Strictly speaking, there are strings connecting different gas-branes, and also the ones

connecting the BH and gas-branes. See figure 7. Here we are assuming that most of them

are long, heavy and do not play an important role.

In our calculation, we neglect the interaction between the emitted eigenvalues and the

small BH, and treat it similarly as the ‘large BH’ in the truncated U(NBH) gauge theory.

3.2.1 Gauge fixing

Here we explain how the (almost) block-diagonal form (3.1) and figure 7 can be obtained.

Let us first introduce the maximally-diagonal gauge [27]. This gauge condition is based on

– 8 –



J
H
E
P
0
2
(
2
0
1
7
)
0
1
2

the implicit assumption of the ‘D-brane+open string’ picture — diagonal elements are large,

off-diagonal elements are small. However this is actually a gauge-dependent statement.

Hence, we impose the condition that ‘the matrices are as close to simultaneously diagonal

as possible’. For that purpose we introduce Rij defined by

Rij ≡
∫
d3x

6∑
M=1

|XM,ij |2. (3.2)

Under the gauge transformation XM → ΩXMΩ−1, Rij transforms as

Rij → Rij(Ω) ≡
∫
d3x

6∑
M=1

|(ΩXMΩ−1)ij |2. (3.3)

We choose Ω = Ωmax which maximizes TrR =
∑N

i=1Rii(Ω). Unless there are accidental

degeneracies, such a Ωmax is unique up to U(1)N−1 and simultaneous permutations of

rows and columns. The X̃M ≡ ΩmaxXMΩ−1max are ‘as close to simultaneously diagonal as

possible’.

Now let us apply this gauge choice to the situation under consideration. Among the N

D-branes, NBH form the small black hole. We assume both N and NBH are parametrically

large, and NBH/N is small but of order N0. Then, the small black hole is stable, namely the

value NBH does not fluctuate much. The NBH diagonal elements in the maximally diagonal

gauge should then form a bunch (implying that the off-diagonal elements connecting them

are not small), while other Ngas = N − NBH diagonal elements are spread out. We can

(partly) fix the ambiguity of the permutation of rows and columns by putting the NBH size

bunch in the upper-left corner of the matrices. Then the matrices takes the form (3.1).

In our arguments throughout the paper, intuitively, we are ‘truncating’ (or freezing

out the gas degrees of freedom to reduce) X to X̃BH. Note that this ‘truncation’ makes

sense only in the microcanonical ensemble, and for a fixed value of the energy; when the

extra energy is added, the bunch size increases in the original theory, while the bunch

size is fixed and temperature increases in the truncated theory. The gauge fixing and the

Faddeev-Popov terms associated with the maximally-diagonal gauge should be taken into

account. But the maximally-diagonal gauge condition is rather nontrivial (note that Ωmax

is time-dependent!) and it is difficult to write down the gauge fixing and the Faddeev-

Popov terms. In the situation we have in mind, however, these terms are negligible up to

the interaction with emitted particles. This is because, at each time t the truncated action

written by X̃BH(t) is the same as the original action written by X(t) to the leading order

(i.e. O(N2) parts of the actions agree), as long as NBH/N is of order N0. As long as we

consider physics of the small black hole (the bunch of NBH D-branes), any gauge-equivalent

profiles give simply the same path-integral weight as the truncated theory, to the leading

order in 1/N .

Another way to fix the gauge is to introduce an ‘external field’. Let Pn be a projector

to the n × n block, Pn = diag(1, 1, · · · , 1, 0, 0, · · · , 0) with n 1’s and N − n 0’s. We can

introduce an ‘external field’ which pushes BH to the upper-left corner, for example as

Sext = c
∑
M

Tr (XM − PNBH
XMPNBH

)2 . (3.4)

– 9 –
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Note that this term manifestly breaks the full SU(N) symmetry. Then the BH is pushed

to the upper-left corner by minimizing Sext which occurs at positive value c which is small

but O(N0). After taking N →∞, we turn off c. This is nothing but the usual prescription

used for detecting spontaneous symmetry breaking.

3.3 10d Schwarzschild at 1/λ � NBH/N < 1 (λ � 1)

We will now make this scenario more precise. The AdS-Schwarzschild BH sitting at the

origin of AdS corresponds to a bound state of eigenvalues around XM = 0.

The energy is

Etotal = EBH + Egas, (3.5)

and roughly speaking,

EBH ∼ N2
BH = O(N2), Egas ∼ (N −NBH) = O(N). (3.6)

Hence we ignore Egas.

We have to determine NBH for given E ' EBH < Emin(N, g2YM). Let us firstly give

a heuristic gauge theory argument which does not rely on the gravity dual. Suppose the

action is dominated by the N
λ Tr[XM , XM ′ ]

2-term, which should be true at strong coupling.

Note that the coupling λ disappears in terms of X ′ ≡ λ−1/4X; hence the eigenvalues of

X ′ are of order 1, and the eigenvalues of X scale as λ1/4 when g2YM is varied. When

the bunch size decreases to NBH, the radius of the bunch scales as λ
1/4
BH, assuming the

interactions with the emitted branes do not affect the size of the bunch significantly. Here

λBH = g2YMNBH = NBH
N λ, and we assumed λBH � 1. It would be natural10 to expect that

the typical energy scale is set by the inverse of the eigenvalue distribution, λ
−1/4
BH . Then,

combined with the fact that the large BH should have Tmin(N, g2YM) ∼ 1, we obtain11

Tmin(NBH, g
2
YM) ∼ (λBH/λ)−1/4 ∼ α−1/4, α ≡ NBH

N
, (3.7)

and combined with the ’t Hooft counting and Emin(N, g2YM) ∼ N2,

Emin(NBH, g
2
YM) ∼ N2

BH(λBH/λ)−1/4 = N2α7/4, Smin(NBH, g
2
YM) ∼ N2

BH = N2α2.

(3.8)

A better argument inspired by string theory goes as follows. In the dual gravity picture,

the ‘smallest large black hole’ is a bunch of eigenvalues filling AdS5 almost completely. In

the D-brane picture, AdS5 is made of R1×S3 and R>0, where R>0 is the radial coordinate of

the transverse R6. Intuitively, the boundary S3 is almost touching the D-branes. When the

bunch shrinks, the radius becomes smaller by a factor of (λBH/λ)1/4. In order to measure

the energy of this bunch, we imagine a sphere right outside of the bunch, and consider

10The existence of another scale RS3 = 1 makes the situation subtle. When (λBH/λ)−1/4 � 1, the two

energy scales (λBH/λ)−1/4 and RS3 = 1 are clearly separated. Then energy scale should be dominated by

(λBH/λ)−1/4 which is the size of the eigenvalue distribution.
11We would like to thank Juan Maldacena and Kostas Skenderis for pointing out several miscalculations

in the first version of this paper, including this part. It helped us debug a few wrong points in the argument.
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only the interactions between D-branes and open strings inside this sphere. If we further

decrease the energy inside this restricted region, the bunch becomes smaller. If we pump

up the energy, the bunch becomes hotter. (Without this restriction, the temperature does

not have to go up because the bunch can become larger.) Hence, with this restriction, the

bunch is ‘the smallest possible large black hole’. Note that this restriction is natural from

the gauge theory, or ‘open string’, point of view, in which the gravitational back-reaction

is not included. From the dual gravity theory point of view (‘closed string picture’ in

the sense of usual open string/closed string duality), a naive truncation near the horizon

is very problematic. As we will see shortly, the counterpart of this restriction on the

gravity side is something different; the curvature radius changes as well on the gravity

side. Mapping back to the gauge theory, the energy of this bunch should be described by

the fully noncommutative phase of U(NBH) gauge theory with RS3 = (λBH/λ)1/4; here we

identified the S3 with the surface right outside the bunch.12 This scaling of RS3 naturally

suggests the scalings in (3.8). Note that the ’t Hooft coupling changes from λ = g2YMN to

λBH = g2YMNBH; this does not affect the result because the quantities of interest do not

explicitly depend on the ’t Hooft coupling.

In order to calculate the energy, entropy, and justify (3.8) more quantitatively, let us

appeal to the AdS/CFT duality for large BH from here on, and go to the gravity picture. If

we assume the dual gravity calculation of the large BH to be correct,13 when λ = g2YMN � 1,

the temperature of AdS5 black hole is given by

TAdS-BH =
2r2+ +R2

AdS

2πR2
AdSr+

, (3.9)

which is minimized at 2r2+ = R2
AdS = 1,

Tmin(N, g2YM) =

√
2

πRAdS
. (3.10)

The area of the horizon is 2π2r3+, and hence the entropy is SAdS-BH = π2r3+/(2G5,N).

Here G5,N is the 5d Newton constant, which is related to the 10d Newton constant14

G10,N ∼ 1/N2, by G10,N = G5,N · (π3R5
AdS), where the denominator π3R5

AdS is the area of

the S5. Hence

S =
r3+π

5R5
AdS

2G10,N
. (3.11)

By using dE = TdS, we obtain

E =
3π4R3

AdS

8G10,N
(r4+ +R2

AdSr
2
+). (3.12)

12As mentioned above, if this rescaling is not performed, then the number of D-branes in the bunch (i.e.

NBH) can change as the energy grows, and hence the identification with the ‘smallest large black hole’ fails.
13This is the only assumption which relies on the dual gravity description. Note that we assumed here

the validity of the dual gravity description for the large black hole in order to derive (3.9)–(3.13) and will

derive the energy of the small black hole in the following.
14This is different from usual value in the Einstein frame, G10,N ∼ λ2/N2, because we are using the dual

frame.
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Emin(N, g2YM) and Smin(N, g2YM) are given by using r2+ ∼ R2
AdS = 1 and we obtain

Emin(N, g2YM) ∼
R7

AdS

G10,N
, Smin(N, g2YM) ∼

R8
AdS

G10,N
. (3.13)

When the bunch shrinks, RAdS = 1 should be replaced by15 R′AdS = (NBH/N)1/4 associated

with the rescaling of RS3 . The Newton constant remains unchanged, because the rescaling

factors associated with RAdS → R′AdS and N → NBH cancel with each other. Hence we

should have (3.8) again.16

We identify the energy and entropy of the small black hole with these values:

EBH = Emin(NBH, g
2
YM), SBH = Smin(NBH, g

2
YM). (3.14)

Then,

TBH =
dEBH

dSBH
∼ α−1/4. (3.15)

Note that this might be different from Tmin(NBH, g
2
YM). By substituting (3.15) into (3.8),

we obtain

EBH ∼
N2

T 7
BH

∼ 1

G10,NT 7
BH

. (3.16)

Before closing this section, let us give a comment on a confusing point associated

with the evaluation of (3.8) via the U(NBH) theory. When NBH decreases, if one naively

‘truncated’ the theory to the U(NBH) theory without rescaling RS3 , one would not have an

NBH dependence. This treatment is wrong because the truncation and the variation of the

energy do not commute. When energy is added, in the original theory NBH increases and as

a result the temperature can go down, while in the truncated theory NBH cannot change

and the temperature has to go up. The argument on the scaling of eigenvalues, which

is provided at the beginning of this section, may seem to suffer from the same subtlety.

However, we do not find a problem there, because we did not change the energy, rather we

varied g2YM. The result (3.8) does not explicitly depend on g2YM; namely the bunch size is

determined solely by the energy.

3.3.1 The phase transition from the big black hole to the small black hole

According to the calculation in the gravity side [4], the transition from the large black hole

to the small black hole is of first order, and the small black hole is hotter than the large

black hole at the same energy. (More precisely speaking, the large BH becomes a lumpy

black hole [28], and then becomes unstable.)

In our gauge theory argument, the order of the transition is not clear. However, if we

assume the transition is of first order, then the small black hole must be hotter, due to the

Higgsing.

15Because the curvature radius changes, this is different from the ‘truncation’ of the geometry.
16This kind of matching has a flavor similar to the correspondence principle [18, 22].
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Figure 8. Phase diagram of the weakly coupled 4d SYM, λ � 1. The difference from the one at

λ� 1 (figure 1) is not just an overall factor.

3.4 The Hagedorn growth at NBH/N . 1/λ (λ � 1)

In the previous section, we have assumed λBH ≡ g2YMNBH � 1. When λBH . 1, we

can use perturbation theory. There, Tmin, which is of same order as the deconfining and

hagedorn temperatures, is of O(N0) and goes to a λBH-independent constant. The growth

of the temperature stops when NBH/N ∼ 1/λ, at TBH ∼ 1, E/N2 ∼ 1/λ2. The constant-

T behavior below this point looks like the Hagedorn behavior; actually, in the closed

string picture, the length of the long string N2
BH increases with E. This is exactly the

Hagedorn behavior! The energy E and the entropy S(E) are proportional to each other,

EBH ∼ SBH ∼ N2
BH. In other words, when energy is added, it is used for exciting more

matrix degrees of freedom, rather than increasing the energy per degree of freedom.

Note also that, at NBH/N ∼ 1/λ, the energy becomes E ∼ 1/(l7sG10,N), which is the

endpoint of the Hagedorn growth expected on the gravity side [3].

3.5 The case of weak coupling λ � 1

The same idea of emission of eigenvalues can be applied to the weakly coupled region of

4d SYM. In this region the Hagedorn growth continues until NBH reaches N , and hence a

negative specific heat is not expected; see figure 8. This region is rather different from the

strong coupling region (figure 1). The difference is not just a factor 3/4 rather the shape

is different.

This phase diagram figure 8 has been known for quite some time, see e.g. [29]. We

have just rephrased the known result, in order to show the consistency of our proposal.

3.6 SO(6) breaking

The 10d BH is localized on the S5. Hence the SO(6) rotational symmetry should be

broken. A natural possibility would be that the ‘smallest possible large BH’ is something

like a lumpy BH [28] which breaks SO(6) and the eigenvalue distribution in gauge theory

side also breaks SO(6). More analysis is desirable concerning this point.
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3.7 Other topologies

Let us consider other topologies such as S2×S1 and T3 = S1×S1×S1.17,18 The important

difference here is that S1 is not intrinsically curved. For this reason, the circumference of the

S1 does not necessarily introduce a ‘scale’ to the setup under consideration; indeed, as long

as the center symmetry along the S1 is unbroken, translational invariant quantities such as

the energy density is independent of the circumference of the S1, due to the Eguchi-Kawai

equivalence [30].

Let us consider 4d SYM on T3 first. The crucial difference from S3 and S2 × S1

compactifications is that D3-branes wrapping on three-torus have Ramond-Ramond charge.

Therefore, this theory does not describe a Schwarzschild black hole.19 There is a Z3
N

center symmetry, which can be broken at small volume. When ZpN ⊂ Z3
N is unbroken, the

theory is approximated by (p+ 1)-d SYM on R1,p, due to the dimensional reduction along

the directions where ZN is broken and the Eguchi-Kawai equivalence along the directions

where ZN is unbroken. The gravity side is described by the black p-brane in the T-

dual picture. In the gravity side, the center-breaking phase transitions are interpreted as

the black hole/black string phase transition [25] and its higher-dimensional analogues; for

details, see [31–34].

Next let us consider 4d SYM on S2 × S1. We take the radius of the two-sphere to

be 1. Let us fix the circumference of S1, which we denote by L, and increase the energy

E from zero. When E is sufficiently large, the center symmetry is unbroken. When the

energy density per length EBS is fixed and L is changed, the Eguchi-Kawai equivalence

guarantees the L-independence of the system. In gravity side, the topology of the small

black hole becomes S7 × R as the circumference of the S1 goes to infinity. Hence they

behave as a black string (BS), rather than a black hole.20 At larger L, EBS can be made

smaller without breaking the center symmetry. There EBS should behave in the same way

as a 9d black hole,

EBS ∼
1

G10,NT 6
BS

. (3.17)

This can be derived from gauge theory as follows. Firstly, the scaling of the eigenvalues do

not change, and hence α = NBS/N should be related to the temperature as

Tmin(NBS, g
2
YM) ∼ (λBS/λ)−1/4 ∼ α−1/4, α ≡ NBS

N
. (3.18)

Here, NBS is the same as NBH we used before; we just emphasized that this is related

to the black string. Combined with the ’t Hooft counting, the dimensional analysis and

17We thank our anonymous referee for suggesting to study these examples.
18We impose a periodic boundary condition along S1.
19Outside of the ’t Hooft limit, it is possible to take the limit describing the M-theory regime of the

Matrix Model of M-theory, where the 11d Schwarzschild black hole may emerge. We do not consider this

limit in this paper.
20In the T-dual picture, we find D2-branes smeared along the T-dual circle, which also can be interpreted

as a black string.
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Emin(N, g2YM) ∼ N2, Smin(N, g2YM) ∼ N2, it leads to

Emin(NBS, g
2
YM) ∼ N2

BS(λBS/λ)−2/4 = N2α6/4, (3.19)

Smin(NBS, g
2
YM) ∼ N2

BS(λBS/λ)−1/4 = N2α7/4. (3.20)

Hence (3.17) naturally follows.

When the energy is small, then the center symmetry breaks. On the gravity side,

in the T-dual picture, the center breaking can be interpreted as a topology change from

the smeared D2-branes (BS) to the localized D2-branes (BH). Note that this transition is

rather different from the localization along the S5 which we have discussed in the previous

sections; the topology change takes place only in the T-dual picture. When the energy is

sufficiently small, 4d SYM reduces to 3d SYM on S2. Then the argument of section 4.2 can

be applied. Near the transition point E = Ec, the analytic treatment is difficult; however,

previous studies in analogous situations (e.g. [35]) suggests that the expansion with respect

to E/Ec works well.

4 Other cases

4.1 ABJM theory and 11d black hole

The argument shown above can be applied to other quantum field theories as well. As an

example, let us consider the M-theory region of the ABJM theory [36] on R1×S2. Namely

we consider the Chern-Simons level k = 1, ’t Hooft coupling λ = N/k = N . The gravity

dual is M-theory on AdS4 × S7. In this case, the microscopic picture on the gravity side is

not clear, other than that N corresponds to the number of M2-branes. However it would

be natural to assume that the small BH is described in the same way as in 4d N = 4 SYM,

by a bunch of NBH M2-branes, and the calculation goes through in the same manner.

With this assumption, by using RAdS ∼ (kN)1/6lP = N1/6lP and G11,N ∼ l9P where

G11,N and l9P are the eleven-dimensional Newton constant and Planck scale, respectively,

the energy and entropy are estimated as21

Emin ∼
RAdS

G4,N
∼
R8

AdS

G11,N
∼ N4/3

lP
, EBH ∼

N
4/3
BH

lP
. (4.1)

and

Smin ∼
R2

AdS

G4,N
∼
R9

AdS

G11,N
∼ N3/2, SBH ∼ N3/2

BH . (4.2)

Therefore,

TBH =
dEBH

dSBH
∼ N−1/6BH /lP, (4.3)

21For 4d N = 4 SYM, we used the fact that the eigenvalues scales as λ1/4. The fact that this scales in

the same manner RAdS is important. Here, we need to use a similar relation: the bifundamental scalars φ,

which describes the moduli space of M2-branes, should scale as N1/6. In the ’t Hooft limit (N/k = O(N0)),

because φ has a potential of the form Nφ6/λ, the scaling should be λ1/6 = (N/k)1/6. The same behavior

is expected in the M-theory region, up to 1/N -suppressed corrections [37].
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yielding finally

EBH ∼
1

G11,NT 8
BH

. (4.4)

This correctly reproduces the property of the eleven-dimensional Schwarzschild black hole.

In this case (ABJM, k = 1) the system is strongly coupled even for small NBH, and hence

the Hagedorn behavior discussed in section 3.4 does not set in.

4.2 More generic theories

The same power counting will hold for other theories as well, including non-conformal

theories, if they possess a similar matrix description. We assume that the geometry consists

of d non-compact and D − d compact dimensions (where D = 10 and D = 11 for theories

with respectively string and M-theory duals). The space-time does not necessarily have to

be a product like AdS×X (where X is a compact manifold), as long as the notion of large

and small black holes still makes sense. Furthermore, suppose there is only one typical

length scale R in the dual geometry, like RAdS. Let us also assume that the eigenvalues

and R scale in the same manner as a function of the coupling constant. Then, it is natural

to expect that the minimum energy and temperature are obtained by the dimensional

analysis as

Emin ∼
RD−3

GD,N
, Smin ∼

RD−2

GD,N
. (4.5)

By going to the dual field theory description and applying the same argument for the small

black hole, we obtain

EBH ∼
(Rα)D−3

GD,N
, SBH ∼

(Rα)D−2

GD,N
, (4.6)

and

TBH ∼ 1/(Rα), (4.7)

where α = (NBH/N)p. The power p may depend on the theory. This gives the expected

scaling,

EBH ∼
1

GD,NT
D−3
BH

, SBH ∼
1

GD,NT
D−2
BH

. (4.8)

5 Discussions

A rather striking consequence of our proposal is that the small BH is essentially like a

large BH from the point of view of the gauge theory; it is the ‘smallest possible large

BH’, which is continuously connected to the high-T region. Seen from gauge theory, it is

simply a thermal state, but with different ‘matrix size’. Hence the study of the large BH

provides us with important lessons on the small BH. Another lesson is the importance of
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eigenvalue dynamics in the gauge/gravity duality a la Maldacena. Although the importance

of eigenvalue dynamics has been widely appreciated in the 20th century, for example in the

Matrix Theory conjecture [12], it has somehow almost been forgotten after the Maldacena

conjecture (AdS/CFT). It is, however, an important piece for understanding black hole

evaporation, even in the context of the Maldacena conjecture, as emphasized in this paper

and refs. [16, 17]. Due to this, a detailed study of eigenvalue dynamics should help lead us to

an understanding of the bulk geometry, including the horizon of the black hole. Note that

the large BH can be studied by using the canonical ensemble, which makes the numerical

simulation rather straightforward with the Matsubara formalism. It would provide us with

a first-principle study of the geometric structure of the Schwarzschild black hole based on

gauge theory. Such a study should be important for various problems associated with the

black hole information puzzle.

More tests would be desirable to establish the proposal more rigidly. One interesting

and doable direction would be a consistency check based on dual gravity calculations. If

our proposal is correct, the small black hole and the large black hole at ‘Emin’ describe es-

sentially the same dual gauge theory, up to the rescaling of the ’t Hooft coupling associated

with the emission of D-branes. Recently, dual gravity calculations for the small black hole

have been performed in [4, 26]. There is also an attempt for studying the small AdS5 black

hole, which is not localized along S5 which can be found in [38]. Since the agreement should

become better when 10d black hole is smaller, such tests might be doable without relying

on the very hard numerical calculations needed to include the finite-size effects [4, 26]. We

have not yet understood how the breakdown of SO(6) symmetry can be seen in terms of

eigenvalues. It would be nice if we could make progress in near future.

In this paper we truncated large matrices to small matrices. More refined treatments,

for example something like the matrix renormalization group [39] which integrates out the

emitted eigenvalues, would allow us to extract more information about black holes.
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