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ecosystems, with an annual turnover of approximately 6% 
through photosynthesis [1]. Lignin, which accounts for 
20–35% of wood (by weight), is an important renewable 
aromatic feedstock along with cellulose and hemicellulose, 
the polysaccharide components. Thus, it is important to 
establish efficient lignin utilization technologies.

Pyrolysis is defined as thermal degradation under a lim-
ited amount of oxygen and pyrolysis-based technologies 
show great promise for converting lignin and other wood 
components into biochemicals, biomaterials, and biofuels. 
For example, fast pyrolysis of wood, with a short residence 
time for volatile intermediates in the heating zone, pro-
duces good yields of an organic liquid that contains useful 
lignin-derived aromatic chemicals, which may then be sep-
arated [2, 3]. However, due to the low product selectivity, 
the necessary separation processes are tedious and costly, 
which limits the practical use of pyrolysis methods. Gasi-
fication provides an option to produce synthetic petroleum 
from wood via the conversion of syngas (CO and  H2) on 
Fischer–Tropsch catalysts. However, problems arising from 
the formation of tar and coke (solid carbonized substances 
converted from tar) are major drawbacks for establish-
ing reliable wood gasification systems [4–6]. These sub-
stances cause pipeline clogging, catalyst deactivation and 
other issues. Lignin is considered to produce aromatic tar 
and coke during gasification. A better understanding of 
the molecular mechanisms involved in wood pyrolysis and 
gasification may guide the development of more efficient 
and reliable systems by addressing the aforementioned 
drawbacks.

Although it is not easy to define classes of pyrolysis 
and gasification reactions, such reactions may be gener-
ally divided into two stages, i.e., primary pyrolysis and 
secondary pyrolysis reactions [7]. Wood constituent poly-
mers decompose into volatile and char (solid carbonized 
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Introduction

Many renewable energy options are available including 
photovoltaic, wind, and geothermal electricity generation. 
However, biomass resources are the only renewable source 
of carbon for use in chemicals and materials. Large amounts 
of the earth’s biomass resources are accumulated in forest 
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material) intermediates in the primary pyrolysis stage, 
which are then degraded further in the secondary pyrolysis 
reaction stage. Accordingly, this review article also follows 
this classification.

Effect of temperature on pyrolysis products

Lignin is a polymer of phenylpropane units containing three 
different aromatic ring substitution patterns: p-hydroxy-
phenyl (H), guaiacyl (4-hydroxy-3-methoxyphenyl, G) and 
syringyl (3,5-dimethoxy-4-hydroxyphenyl, S) depending on 
the wood species [8]. Softwoods contain a greater propor-
tion of G units and smaller amounts of the H units, whereas 
hardwoods consist of mainly G and S units. These mono-
mers are linked together through various kinds of ether 
linkages (C−O) and condensed (C−C) bonds, which leads 
to a heterogeneous chemical structure for lignins. Owing to 
these heterogeneous features, the behavior of lignins during 
pyrolysis reactions depends on the pyrolysis temperature. 
As illustrated in Fig. 1 [9], thermogravimetric (TG) analy-
sis of lignin shows several derivative TG (DTG) peaks at 
350 °C from primary pyrolysis reactions and at 400–450 °C 
(methoxyl group-related reactions) and at 550–600 °C (gas-
ification of catechols (1,2-dihydroxybenzenes)) from sec-
ondary pyrolysis reactions. This is in contrast to the pyroly-
sis of cellulose, a homogeneous polymer of D-glucose units 
connected via β-1→4 linkages, which exhibits only one 
sharp DTG peak around 350 °C.

The chemical structures of the pyrolysis products of 
lignins have been evaluated by gas chromatography/mass 
spectrometry (GC/MS) [10–12], nuclear magnetic reso-
nance (NMR) [12–18] and infrared (IR) spectroscopic [15, 
19–21] analyses, along with pyrolysis directly coupled with 
GC/MS [22–35] and IR [19, 36–39] (Py-GC/MS, Py-IR). 
Aromatic methoxy groups are stable during the primary 
pyrolysis stage and become very reactive in the temperature 

range of 400–450 °C. Thus, the aromatic compounds pro-
duced during the primary pyrolysis stage are predominantly 
4-substituted guaiacols (2-methoxyphenols) from G-lignins 
(Fig.  2) and 4-substituted syringols (2,6-dimethoxyphe-
nols) from S-lignins. The majority of side-chains are unsat-
urated alkyl groups (i.e., alkyl groups containing >C=C<, 
>C=O and conjugated >C=O bonds) along with a smaller 
amount of saturated alkyls groups. The major volatile 
products from G-lignins in this stage include coniferyl 
alcohol (R: −CH=CH−CH2OH), coniferyl aldehyde 
(R: −CH=CH−CHO), isoeugenol (R: −CH=CH−CH3), 
4-vinylguaiacol (R: −CH=CH2), vanillin (R: −CHO), ace-
tovanillone (R: −CO−CH3), and dihydroconiferyl alcohol 
(R: −CH2−CH2−CH2OH).

When the pyrolysis temperature is increased to 
400–450 °C, secondary pyrolysis reactions take place 
and guaiacols/syringols rapidly transition to catechols 
(2-hydroxyphenols)/pyrogallols (2,3-dihydroxyphenols) 
and o-cresols (2-methylphenols)/xylenols (dimethyl-
phenols) along with phenols (Fig.  2). In this temperature 
range, cracking of side-chain C−C bonds occurs, which 
increases the yields of monomers. The reaction products 
transition from unsaturated to saturated alkyls side chains 
(methyl, ethyl, propyl, 3-hydroxypropyl and others) and 
non-substituted (−H) types. Coke and polycyclic aromatic 
hydrocarbons (PAHs) formation also starts. Around 550 °C, 
catechols and pyrogallols disappear and non-condensa-
ble gas yields (particularly CO) significantly increase. At 
temperatures >700 °C the formation of PAHs is enhanced. 
Phenols and o-cresols are relatively stable at such high tem-
peratures; hence, these compounds are observed along with 
PAHs even during high-temperature pyrolysis.

Primary pyrolysis reactions (200–400 °C)

Primary pyrolysis reactions of lignins occur over a wide 
temperature range of 200–400 °C with a DTG peak around 
350 °C. As noted, lignins are heterogeneous polymers 
that arise from the inclusion of various types of linkages 
between phenylpropane units. As an example, spruce 
(a softwood) milled wood lignin (MWL) is reported to 
include 63–67% ether linkages (including 48% β-ether and 
11.5–15% α-ether linkages) and 30–35% condensed link-
ages (including 9.5–11% 5–5ʹ (biphenyl) and 9–12% β-aryl] 
[8]. The proportions of ether linkages in hardwood lignins 
are normally higher than those of the softwood lignins, as 
can be seen from the 60% β-ether linkage proportion in 
birch (a hardwood) MWL [8]. Accordingly, the roles of 
these linkages during pyrolysis are important for under-
standing the primary pyrolysis reactions of lignins.

The use of model dimers that represent lignin ether 
and condensed type linkages is an effective means for 
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Fig. 1  Thermogravimetric analysis of milled wood lignin isolated 
from Japanese cedar (Cryptmeria japonica) [9]
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understanding the pyrolytic reactions of lignins. Hence, 
various model dimers including β-ether [20, 27, 28, 34, 
40–53], α-ether [20, 30, 34, 45, 47, 49, 51, 54], β-aryl [20, 
31, 32, 47, 54], β-β [33], and biphenyl [20, 47, 54] types, 
trimers [34, 49, 51] and oligomers/polymers such as dehy-
drogenative polymerization products of cinnamyl alcohols 
[35] and β-ether type polymers [55–57] have been used in 
pyrolysis studies. Phenolic (Ph) and non-phenolic (Non-Ph) 
model compounds are commonly used to represent the ends 
and repeating units of lignin macromolecules, respectively.

Early studies conducted by the Domburg group [54, 58] 
reported the thermal stability of various model compounds, 
which were representative of the linkages between phenyl-
propane-units and side-chains. Analyses of the pyrolysis 
products of dimers along with NMR analysis of the pyro-
lyzed lignins revealed that α- and β-ether bonds are readily 
cleaved during the primary pyrolysis stage; however, con-
densed (C−C) type linkages are stable during depolymeri-
zation of lignin macromolecules [13, 20, 47]. The Ph β-aryl 
type dimers give stilbenes selectively, but this reaction does 
not lead to depolymerization of lignins [20, 47]. Normally, 
Ph dimers are more reactive than corresponding Non-Ph 
ones [20, 40, 41, 47, 49, 53]. Compared with hardwood 
lignins, softwood lignins contain a greater proportion of 
condensed type linkages. Thus, the differences in reactivity 
of these components can explain the observation that pyrol-
ysis of softwood lignins tend to generate larger amounts of 
residue than hardwood lignins [59, 60].

Bond dissociation energy

Homolysis of C−C and C−O bonds to form a pair of 
radicals is one possible reaction that can explain pyro-
lytic lignin depolymerization. Recently, many papers have 
reported theoretical calculations of the bond dissociation 
energies (BDEs) for linkages in lignin related compounds 
[61–70]. These include calculations of α-O-4, β-O-4, 4-O-
5, β-aryl, phenylcoumaran, pinoresinol, dibenzodioxocin 
type dimers. As summarized in Fig.  3 [63–66, 68, 71], 
α-O-4 type linkages had the weakest bond energies, with 
BDEs in the range of 40–60  kcal  mol−1, while the other 
bond types exhibited BDEs higher than 60 kcal  mol−1. The 
activation energy (Ea) for homolysis is considered to be 
slightly greater than the BDE; thus, the Ea for homolysis 
of these bonds can be expected to be greater than 60 kcal 
 mol−1, except for the α-O-4 type linkages.

Homolysis of the O−CH3 bonds in lignin aromatic 
rings can occur by increasing the temperature to around 
450 °C (i.e., the secondary pyrolysis reaction stage). This 
indicates that O−CH3 bonds are stable during the primary 
pyrolysis stage (200–400 °C), which is also supported by 
results that show the primary pyrolysis products continue 
to bear their original aromatic methoxy groups. However, 
the BDE of the O−CH3 bond in guaiacol has been meas-
ured as 56.3 kcal  mol−1 [71], which is lower than the above 
mentioned BDEs (>60  kcal  mol−1). These considerations 
indicate that direct homolysis of the C−O and C−C bonds 

Fig. 2  Effect of pyrolysis 
temperature on aromatic sub-
stitution pattern and side-chain 
structure of the products from 
G-type lignin
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in lignin would not occur during the primary lignin pyroly-
sis stage except for α-O-4 type linkages. Thus, some effects 
that reduce the cleavage temperatures must be involved in 
these reactions. Many attempts have been made to model 
the weight-loss behaviors of lignin during pyrolysis; how-
ever, the measured Ea values arise from various pyrolysis 
reactions, including re-polymerization of the primary prod-
ucts, which reduce the weight-loss rate.

Homolysis and heterolysis mechanisms

Pyrolytic cleavage of C−O and C−C bonds can be con-
sidered in terms of both homolytic and heterolytic mecha-
nisms, because these mechanisms give the same products 
as illustrated in Fig.  4 [an example of phenethyl phenyl 
ether]. The lack of reliable mechanistic evidence has given 
rise to a long standing controversy concerning which of the 
homolytic and heterolytic mechanisms take place. Experi-
mental and theoretical investigations have recently been 
conducted to address this issue.

The theoretical approach provides useful information 
including Ea for the modelled reactions. Although these Ea 
values are a useful guide for understanding lignin pyrolysis 
reactions, a calculated reaction may not occur in reality if 
other competing reaction pathways with lower energy-bar-
riers are available.

The effects of substituents on the cleavage reactivity 
provide more direct experimental evidence for a particular 

reaction pathway [49]. For example, substituents in the 
para positions of an aromatic ring have opposing effects 
on the heterolytic and homolytic cleavage of ether bonds 
(Fig.  5). Thus, the associated mechanisms are clearly 
indicated by plots of the cleavage reactivities against a 
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Hammett’s substituent constant (σp) and against the ΔBDE 
(the reduction in the BDE induced by the substituent).

For the heterolytic reaction pathway, the ether linkage is 
cleaved to form a para substituted phenolate anion. Thus, 
the reactivity of this pathway should increase as the elec-
tron-withdrawing ability of the substituent group increases, 
stabilizing the anion which results from bond cleavage. 
This property is quantified as σp. Conversely, homolysis 
of the ether bond forms a phenoxy radical and the reac-
tivity depends on the stability of this species. When a sta-
ble radical is formed, cleavage of the ether linkages tends 
to proceed efficiently, because the increased stability of 
the radical reduces the BDE of the aromatic O−C bond. 
The stabilization obtained from substituents is, therefore, 
reflected in the ΔBDE value. When the phenoxy radical is 
stabilized by electron donating substituents, σp and ΔBDE 
values tend to increase in the opposite order to that of a het-
erolytic reaction.

Ether cleavage mechanisms

As discussed above, cleavage of α- and β-ether bonds plays 
an important role in lignin depolymerization during the 
primary pyrolysis stage. Hence, many studies have focused 
on the pyrolytic cleavage of the β-ether bond, which is the 
most abundant linkage type in lignin macromolecules.

Several concerted (heterolytic) mechanisms have been 
proposed for β-ether bond cleavage [42, 72–76]. Klein and 
Virk [42] proposed a six membered retro-ene mechanism 
based on an analysis of the kinetics for the formation of sty-
rene and phenol from phenethyl phenyl ether. This system 
is representative of the simplest model compound without 
any aromatic ring substituents or side chains. In recent the-
oretical studies Elder and Beste [76] calculated Ea values 
for retro-ene and Maccoll elimination type concerted mech-
anisms (Fig.  4), with values of 62–68  kcal mol  l− 1 and 
56–58 kcal  mol− 1, respectively. A similar range of values 

have been reported by other researchers [73–75]. The Nim-
los’s research group [72] reported the formation of degra-
dation products from the gas-phase pyrolysis of phenethyl 
phenyl ether and they concluded that the C−O homolysis 
occurred at high temperatures (>1000 °C), whereas the 
concerted retro-ene and Maccoll mechanisms were signifi-
cant at lower temperatures (<600 °C).

On the basis of the substituent effects at the para posi-
tions of the  Cα-phenoxyl group (Fig. 5), the α-ether bonds 
in Ph and Non-Ph (methylated) dimers were confirmed to 
undergo heterolytic and homolytic cleavage, respectively 
(Fig.  6A) [49]. These results are consistent with the tem-
peratures required for cleavage of this bond, which vary 
depending on the presence of Ph (200 °C) and Non-Ph 
(350 °C) type dimers [20]. These results suggested that a 
push and pull reaction to generate a quinone methide inter-
mediate led to efficient heterolysis of the  Cα−O bond in the 
Ph dimer. The low-temperature homolysis of the α-ether 
bond is consistent with the relatively low calculated BDE 
40–60 kcal  mol−1, as described above.

Direct homolysis of the β-ether bond has been clearly 
indicated from substituent effects on the cleavage reac-
tivities of Ph and Non-Ph  Cγ-deoxy type dimers with para 
substituents for the  Cβ-phenoxy group (−H, −OCH3, −Cl) 
as studied in a sealed reactor with tetralin that acts as a 
hydrogen donor [50]. However, the temperature (400 °C) 
required to cleave β-ether bonds in  Cγ-deoxy type dimers 
could not explain the greater reactivity of guaiacylglycerol-
β-guaiacyl ether, a Ph β-ether dimer bearing OH at  Cγ 
which has an onset temperature of 250 °C [20].

The pyrolytic reactivities of Ph and Non-Ph α,β-
diether type trimers that include various substituents at 
the para position of the  Cα-phenoxy group have provided 
some insight into the cleavage mechanisms of β-ether 
bonds (Fig.  6b, c) [49]. The reactivities of the β-ether 
bonds depend solely on those of the α-ether bonds, dem-
onstrating that cleavage of the α-ether bond acts as the 

Fig. 5  Aromatic substituent 
effect as a tool for studying 
homolytic and heterolytic 
reactions of lignin ether bonds, 
based on parameters including 
Hammett σp and ΔBDE (bond 
dissociation energy)
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rate-determining step. A β-scission type reaction involv-
ing a  Cα-radical, formed by the homolytic cleavage of the 
 Cα−O bond, simultaneously cleaves the  Cβ−O bond homo-
lytically (Fig. 6b). As noted, heterolysis of the α-ether bond 
in Ph compounds forms a quinone methide intermediate at 
200 °C, which results in simultaneous homolytic cleavage 
of the β-ether bond in the same temperature range. This 
result is supported by the observation that the cleavage 
reactivity is unaffected by the addition of tetralin as a radi-
cal scavenger [50], along with the reduced reactivity of the 
 Cα-deoxy dimer [45]. Low temperature homolysis of the 
 Cβ–O bond, via a quinone methide intermediate, has also 
been postulated under solvolysis delignification [77–79] 
and steam-explosion [80] conditions. Ponomarev [81] 

calculated the BDE of the  Cβ–O bond in the quinone meth-
ide form to be 44.1 kcal  mol−1, a value that is much lower 
than that of the phenolic form (57.0 kcal  mol− 1).

The reactivity of guaiacylglycerol-β-guaiacyl ether is 
lowered to the level of a Non-Ph dimer by elimination of 
the hydroxyl group from the  Cγ, [45, 48]. This unexpected 
result is explained by the missing stabilization effect on the 
transition state of the quinone methide formation through 
hydrogen bonding between the  Cα and  Cγ hydroxyl groups. 
If the quinone methide mechanism occurred effectively 
during lignin pyrolysis, β-ether bonds would cleave simul-
taneously via the newly formed phenolic end groups. How-
ever, a careful comparison of the pyrolytic reactivities for 
model dimers, MWL, and methylated MWLs indicates that 

Fig. 6  Cleavage mechanisms of 
lignin ether bonds as suggested 
by the substituent effects on the 
reactivities of para substituted 
model compounds
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cleavage of the β-ether linkages via the quinone methide 
mechanism does not proceed very efficiently in lignins, 
likely because of polymeric effects [20].

Radical chain mechanisms have been postulated for the 
cleavage of lignin β-ether linkages. The Brit and Beste 
research group have extensively studied hydrogen abstrac-
tion reactions from the  Cα − H bond and subsequent cleav-
age of the β-ether bond using phenethyl phenyl ether and its 
derivatives [43, 44, 46].

The role of radical chain reactions is clear from the 
reactivities of the Ph and Non-Ph  Cγ-deoxy β-ether 
dimers, which vary substantially depending on the reactor 
type, (i.e., open-top and sealed reactors [50]. Although 
the dimers are recovered without undergoing pyroly-
sis reactions in open-top reactors, which allows volatile 
products to exit the heating zone, the reactivities of these 
compounds are dramatically increased in sealed reac-
tors. Furthermore, the addition of tetralin effectively sup-
presses the reactivities in sealed reactors. From analysis 
of the products, two radical chain pathways (Fig. 7) have 
been suggested, which start from the  Cα and phenoxy 
radicals formed via hydrogen abstraction of  Cα–H and 
phenolic OH, respectively [51]. These reactions cleave 
β-ether bonds to form  Cα=O and  Cα = Cβ type monomers 
via the β-scission type reaction of the  Cα-radical and 
homolytic cleavage of the β-ether bond in the quinone 

methide intermediate, respectively. These pathways have 
been confirmed by the studies of kinetic deuterium iso-
tope effects on product formation from regiospecifically 
deuterated dimers [53].

Pathway B occurs more effectively than pathway A, 
with onset temperatures of 260 and 360 °C, respectively 
[51]. This is explained by the number of radicals formed; 
three radicals are formed from the phenoxy radical inter-
mediate in pathway B, which increases the radical con-
centration, whereas the number of radical species does 
not change in pathway A. Thus, this suggests an impor-
tant role of the phenolic end groups as radical sensitiz-
ers. This proposal is supported by experimental results 
which have shown that the reactivity of pathway A of 
Non-Ph dimers significantly increases when Ph dimer 
is mixed into the system [53]. An α,β-diether trimer 
[1-(4-(3,4-dimethoxybenzoyloxy)-3-methoxyphenyl)-2-
(2-methoxyphenoxy)-1-propanol], can be used to repre-
sent the benzyl ether derivative of the model dimer, and 
has an onset temperature of 320 °C. The reactivity of this 
species can be reasonably explained by the formation 
of a phenoxy radical intermediate of the dimer through 
homolysis of the benzyl ether (model α-ether bond) [51]. 
These cleavage temperatures coincide well with the DTG 
peak (350 °C), which corresponds to the primary pyroly-
sis of lignins.

Fig. 7  Proposed radical chain mechanisms for the cleavage of lignin ether bonds
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Re‑polymerization and side‑chain conversion

The Ph β-ether dimer (guaiacylglycerol-β-guaiacyl ether) 
gives coniferyl alcohol in a 30.4  mol% yield, represent-
ing 60 mol% of the decomposition products of this dimer 
[47]. Cinnamyl alcohols, such as coniferyl alcohol, are the 
most important primary products in lignin pyrolysis. How-
ever, the contributions of cinnamyl alcohols in the pyrolyz-
ates from wood and isolated lignins are much lower than 
expected from studies using model compounds. Coniferyl 
aldehyde, isoeugenol, dihydroconiferyl alcohol, 4-vinyl-
guaiacol and vanillin are more important products (in the 
case of G-lignin pyrolysis). Only direct mass spectromet-
ric analysis of the pyrolyzates from wood and lignin sam-
ples, without cooling, indicate significant contributions of 
coniferyl alcohol (MW: 180) and sinapyl alcohol (MW: 
210) [7]. These apparently contradictory observations can 
be explained by the propensity of coniferyl alcohol and 
sinapyl alcohol to undergo secondary pyrolysis reactions, 
particularly polymerization reactions [82–85].

The relative evaporation/polymerization/side-chain con-
version efficiency of trans-coniferyl alcohol has been stud-
ied by pyrolysis in an open-top reactor system (200–350 °C 
under nitrogen, heating period: 5 min) [85]. Evaporation of 
coniferyl alcohol started around 200–250 °C, and competed 
with secondary pyrolysis reactions, such as polymerization 
and side-chain conversion reactions. All these processes 
were enhanced at higher pyrolysis temperatures and com-
pleted at 300 °C, where approximately 70% of the polym-
erization products were formed along with evaporated 
coniferyl alcohol (15%) and side-chain conversion products 
(15%). Thus, at the DTG peak of 350 °C for lignin, second-
ary pyrolysis reactions, particularly re-polymerization reac-
tions, reduce the coniferyl alcohol yield after it is formed, 
during the pyrolysis of G-type lignin.

Coniferyl aldehyde (an oxidation product), dihydroco-
niferyl alcohol (R: –CH2–CH2–CH2OH) and isoeugenol 
(reduction products) are all formed as side chain conversion 
products, together with cis-coniferyl alcohol and 4-vinyl-
guaiacol [85]. Thus, some redox reactions evidently take 
place during the pyrolysis of coniferyl alcohol to form 
products that are quite similar to the pyrolyzates obtained 
from the pyrolysis of natural lignins [86]. Radical and qui-
none methide mechanisms have been postulated to explain 
the formation of the side-chain conversion products [85]. 
Notably, large amounts of hydrogen radicals exist in the 
pyrolysis environment, which reduce side-chain double 
bonds. β-Scission type reactions, such as the conversion of 
·Cγ−OH to  Cγ=O (coniferyl aldehyde), act as a source of 
hydrogen radicals.

It has been suggested that a quinone methide mechanism 
operates in the polymerization of coniferyl alcohol, based 
on the chemical structures of the dimers isolated from the 

pyrolysis of coniferyl alcohol in the presence of creosol 
(4-methylguaiacol) at 250 °C [84]. Hence, the polymeri-
zation reactivity of coniferyl alcohol is reduced by meth-
ylation of the phenolic hydroxyl group of the coniferyl 
alcohol. The stable methylated coniferyl alcohol is co-
polymerized with coniferyl alcohol during pyrolysis [85], 
which shows that coniferyl alcohol structures can add to 
the repeating phenylpropane units. The guaiacol derivatives 
with conjugated  Cα = Cβ side-chains are much more reac-
tive than those with  Cα–OR groups, which are the struc-
tures typically observed in natural lignins [84]. A radical 
chain vinyl condensation mechanism has been proposed 
to explain the polymerization of 4-vinylguaiacol and its 
methyl ether derivatives [84]. Thus, primary pyrolysis 
reactions that form side-chain double bonds promote con-
densation of natural lignins. Methylation of the phenolic 
hydroxyl groups of MWL prevents pyrolysis reactions that 
arise from the reactive phenolic end groups and consider-
ably inhibits condensation reactions [20].

Competitive processes during primary pyrolysis

Lignin primary pyrolysis pathways (Fig.  8, shows G-type 
lignin pyrolysis) have been proposed based on the inves-
tigation of the influences of 1,2,3,10b-tetrahydrofluoran-
thene, a hydrogen donor, and diphenoxybenzene (DPB), 
an aprotic solvent [86, 87]. In DPB, the polymerization of 
coniferyl alcohol and sinapyl alcohol were effectively sup-
pressed. Both DPB and H-donors were required for the 
effective formation of monomers from wood and MWLs, 
suggesting that lignin ether bonds undergo homolysis. The 
expected primary product of this reaction was a coniferyl 
alcohol radical that is stabilized by the H-donor. The 
H-donor also promotes side-chain reduction of the result-
ing coniferyl alcohol to form dihydroconiferyl alcohol and 
isoeugenol as the major monomers [86]. Under normal 
pyrolysis conditions, without the addition of any H-donors, 
the amount of H-donors is not sufficient to stabilize all the 
radical species formed through cleavage of ether linkages. 
Hence, primary radicals tend to undergo radical coupling 
reactions to form polymerization products.

The relative oxidation/reduction efficiency of side-
chains of coniferyl alcohol varies depending on the pyroly-
sis temperature. At relatively low temperatures (for exam-
ple 250 °C), coniferyl aldehyde, an oxidation product, is the 
major monomer from lignin pyrolysis [24, 86]. In this case, 
the pyrolysis environment is expected to be radical condi-
tions, which enhance hydrogen abstraction reactions [86]. 
The  Cγ-hydrogen atom of coniferyl alcohol, which is at 
the conjugated allyl position, is the main site of H-abstrac-
tion; the abstraction of hydrogen then leads to production 
of coniferyl aldehyde. However, by increasing the pyroly-
sis temperature to >350 °C, the pyrolysis environment 
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becomes richer in H-donor species (H-radicals), which 
results in increased monomer yields and the formation of 
side-chain reduction products such as dihydroconiferyl 
alcohol and isoeugenol.

Polymerization of the primary products by radical and 
quinone methide mechanisms can compete with side-chain 
conversion and evaporation processes [86]. Evaporation 
is the key step to recovering monomeric products. Oth-
erwise, products polymerize and are finally converted to 
solid carbonized products. During the polymerization pro-
cess, condensed (C–C) linkages are formed more prefer-
ably than ether (C–O) linkages based on the hard/soft, acid/
base rule. The resulting polymerization products contain 
more C–C linkages, which are more resistant to further 
depolymerization.

The polymer effect also promotes polymerization and 
side-chain conversion of lignin primary pyrolysis interme-
diates [86]. Cleavage of ether linkages at the terminal end-
groups of lignin macromolecules leads to direct formation 
of monomers, whereas the cleavage of ether linkages within 
the polymer, does not lead to immediate formation of mon-
omers because of the polymeric nature of the intermediates 
formed. In these circumstances, pyrolyzates remain in the 

heating zone and undergo polymerization and side-chain 
conversions. Thus, the monomer yield is reduced and the 
yield of char and side-chain conversion products increases.

Sinapyl alcohol, the corresponding primary prod-
uct from S-type lignins, exhibits similar reactivity to that 
observed for the pyrolysis of coniferyl alcohol. However, 
sinapyl alcohol shows greater radical sensitivity at a rela-
tively high pyrolysis temperature of 350 °C [87].

Secondary pyrolysis reactions (>400 °C)

Change in aromatic substitution pattern

As shown in Fig.  9, homolytic cleavage of the O–CH3 
bonds attached to the lignin aromatic rings occurs effec-
tively at ~450 °C, associated with an ipso rearrangement 
starting from the phenoxy radical of guaiacol [88]. Intra-
molecular H-abstraction at the methyl group, by a phe-
noxy radical (reaction c) and subsequent 1,2-aryl migra-
tion (reaction e) have been proposed to account for this 
transformation [88, 89]. The 1,2-aryl migration product 
is further converted into o-quinone methide (reaction g), 
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Fig. 8  Competitive pathways from coniferyl alcohol radical, a primary pyrolysis product, as proposed for the production of monomers and char 
during pyrolysis of G-type lignin at the primary pyrolysis stage (200–400 °C)
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a key intermediate [90, 91], which is subsequently hydro-
genated to o-cresol (reaction h). Demethoxylation occurs 
by α-scission of the formyl radical (reaction l) formed by 
H-abstraction from o-hydroxybenzaldehyde (reaction k) 
[88, 92]. Thus, syringols formed as primary pyrolysis prod-
ucts from S-type lignins are gradually converted into guai-
acols and phenols [92]. Owing to these reactions, the aro-
matic substituents change from –OCH3 to –OH, –CH3, and 
–H groups. These reactions may proceed in both gas- and 
liquid/solid-phase reactions [9].

Concentrations of H-acceptors (radicals) and H-donors 
play important roles in these pathways. Catechol and 
methyl radicals formed by the homolysis reaction b are 
stabilized by the formation of catechol and methane, 

respectively, where two H-donors can donate hydrogen 
atoms to these radicals. Otherwise, these radicals are con-
sumed by radical coupling reactions including methyla-
tion of aromatic rings by addition of the methyl radical to 
C-centered radicals that form as resonance structures of 
phenoxy radicals [92]. Methanol is also produced by cou-
pling of methyl and hydroxyl radicals.

However, the formation of products via the  OCH3 
rearrangement pathway requires both H-acceptors and 
H-donors. The numbers of H-acceptors/H-donors required 
for the formation of o-quinone methide and o-cresol from 
guaiacol are 1/1 and 1/3, respectively [93]. Accordingly, 
the selectivity for the homolysis and rearrangement path-
ways can be controlled by changing the concentrations of 
H-acceptors/H-donors in the pyrolysis environment [93, 
94]. Asmadi et  al. [93] observed that these reactions are 
promoted in the presence of coking reactions. On the basis 
of these results it was suggested that polyaromatization 
during charring reactions produces H-radicals, which act 
as H-acceptors and H-donors to promote the  OCH3 rear-
rangement pathway. Smaller H-radicals are preferable for 
these reactions, because all the intermediates involved favor 
a linear transition state, which maximizes the interaction 
between the radical orbital and the vacant σ* orbital of the 
bond to be cleaved.

Coking and PAH formation

Coking of lignin-derived volatile intermediates occurs 
in several stages depending on the pyrolysis temperature. 
First, low-temperature coke formation (first stage coking) 
is observed along with the  OCH3 rearrangement pathway. 
It has been suggested that this coking reaction is closely 
related to the o-quinone methide intermediate (Fig.  9). 
Only guaiacols with methoxyl groups produced a signifi-
cant amount of coke in the reactions of various compounds 
bearing guaiacol-, cresol-, catechol- and phenol-type aro-
matic nuclei (in a closed ampoule/N2/ 600 °C/ 80 s, with a 
final temperature of 569 °C) and 2-ethoxyphenol produced 
2,3-benzofuran instead of coke [95]. The 2,3-benzofuran 
formation can be reasonably explained by the reactivity of 
the o-quinone methide bearing an allyl moiety, which can 
be converted to 2,3-benzofuran by cyclization of the allyl 
radical intermediate formed by H-abstraction.

When catechol-type aromatic rings decompose into gas 
and other products at high temperatures (>550 °C), cat-
echols/pyrogallols and cresols/xylenols tend to produce 
coke (second stage coking) [96]. The same o-quinone 
methide type intermediates can be considered for coking 
from o-cresols/xylenols, which can form by abstraction 
of phenolic and benzylic hydrogen atoms. The coke yield 
increases as the number of methyl groups in the molecules 
increase: o-cresol (6.1  wt%) <2,4-xylenol (12.8  wt%), 
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Fig. 9  Pathways for the conversion of guaiacols, the primary pyroly-
sis products from G-type lignin, into catechols, o-cresols, phenols and 
coke at the secondary pyrolysis stage (>400 °C)
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2,6-xylenol (9.2  wt%) <2,4,6-trimethylphenol (23.5  wt%) 
(in a closed ampoule/N2/600 °C) [96]. Therefore, meth-
oxyl and methyl groups are important structural elements 
for coke formation. Coking from catechols/pyrogallols may 
arise from reactive fragments, such as acetylene and propa-
gyl radical, as will be described later.

Regarding the reactivities of G- and S-type lignins, the 
coking reactivity is greater for syringol than for guaiacol, 
as model lignin primary pyrolyzates. The additional  OCH3 
group in syringol, effectively doubles the opportunity for 
coke formation [92]. Alternatively, the yields of GC/MS-
detectable monomers from syringol are lower than those 
from guaiacol.

PAHs start to form at 600 °C and their production is 
accelerated at high temperatures >700 °C [97–99]. Wornat 
et  al. [100] reported 59 PAHs from pyrolysis of catechol 
at 1000 °C ranging in size up to eight aromatic rings (resi-
dence time 0.4 s). In these studies it was also pointed out 
that the PAH compositions of catechol pyrolysis resembled 
those of coal pyrolysis. PAH and soot formation during the 
combustion of hydrocarbon fuels is well understood, and 
acetylene, propagyl and cyclopentadienyl radicals are con-
sidered to be key precursors for the formation of the first 
aromatic ring [101, 102]. For example, addition of gase-
ous acetylene to radical sites followed by cyclization, com-
bination of propagyl radicals, and coupling reactions of 
cyclopentadienyl radicals have been proposed to account 
for the construction of benzene rings. Ledesma et al. [103] 
reported propyne, propanediene and cyclopentadiene as 
stable forms of propagyl and cyclopentadienyl radicals 
along with acetylene (in maximum yields of ~1.6, 0.5, ~7, 
and ~20%, respectively) from the gas phase pyrolysis of 
catechol in the temperature range 600–1000 °C (residence 
time 0.4  s). These compounds are key intermediates for 
ring-growth reactions that produce PAHs. Ledesma et  al. 
[104] measured Ea values for the formation of PAHs from 
catechol in the range of 50–110  kcal  mol− 1. The values 
increased for structures with different numbers of rings in 
the order, 2-rings <3-rings <4-rings <5-rings <6-rings.

Elimination of aromatic substituents by replacement 
with hydrogen

Hydrogen-transfer reactions in aromatic rings during 
coal liquefaction in H-donor solvents, such as tetralin 
are reported to cleave the strong bonds between aro-
matic rings and aliphatic side-chains [105, 106]. Aro-
matic methyl substituents in lignin pyrolyzates, which are 
formed by  OCH3 rearrangements, methylation by methyl 
radicals, and homolysis of C–C bonds in ethyl and pro-
pyl side-chains, are also known to cleave in the second-
ary pyrolysis reaction stage [96, 107, 108]. For example, 
demethylation was reported to be the main reaction of 

o-cresol and 2,6-xylenol at 600 °C (in an ampoule, 600 s), 
which produced 18.0 wt% and 18.2 wt% of the demeth-
ylation products, respectively, along with coke [96].

Demethylation reactions occur more selectively at the 
ortho and para positions to the phenolic hydroxyl group, 
as can be seen for pyrolysis of 2,3-xylenol, which gives 
m-cresol (32.6 wt%) rather than o-cresol (1.4 wt%) [96]. 
Demethylation is believed to proceed by replacement 
with hydrogen radicals (Fig. 10A). Thus, the higher reac-
tivities of the o- and p-methyl groups should be explained 
by this mechanism. A radical coupling mechanism 
(Fig.  10b) [96] can explain the selectivity of this reac-
tion, although further study is necessary to confirm this 
proposition. Coupling of phenoxy and hydrogen radicals 
proceeds only at the o- and p-positions, owing to the res-
onance structures of the intermediates, and the resulting 
cyclohexanedienone has a weak C–CH3 bond. The calcu-
lated BDE is reduced from 110.5 to 60.3 kcal  mol−1. This 
is a similar reaction type to that observed for low-temper-
ature homolysis of β-ether linkages of quinone methide 
intermediates. The strong electron-withdrawing ability of 
the conjugated carbonyl moiety decreases the BDE of the 
C–CH3 bond.

Degradation of aromatic rings into gas

When the pyrolysis temperature is further increased 
to 550–600 °C, decomposition of catechols and pyro-
garolls into non-condensable gases (mainly CO) occurs. 
Ledesma et  al. [103] reported that gas-phase pyrolysis 
of catechol gives CO (approximately 50  wt%) and acet-
ylene (20  wt%) at 800 °C (with residence time 0.4  s). 
The gas formation mechanism has also been explained 
as illustrated in Fig.  11. The mechanism is based on 
reports that suggest the phenoxy radical undergoes uni-
molecular decomposition into CO and a cyclopentadienyl 

Fig. 10  Replacement of aromatic substituents by hydrogen radicals
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radical. The catechol radical decomposes into CO and a 
cycrolentadienol-lyl radical, which then further decom-
poses to cyclopentadienone. The cyclopentadienone frag-
ments decompose into CO and two acetylene molecules. 
Although the exact details of the formation mechanism 
are unknown, pyrogallols that are formed from the S-type 
lignins typically produce large amounts of  CO2 along 
with CO [96].

The gas formation reactivities of cresols/xylenols are 
lower than those of catechols/pyrogallols and the com-
positions of the gaseous products are very different for 
these two types of products [96]. Cresols/xylenols tend to 
produce  CH4 and  H2 rather than CO and  CO2, along with 
demethylation products and coke at 600 °C in an ampoule. 
Methane is formed by H-donation to methyl radicals 
formed during demethylation and the coking process pro-
duces H-radicals during polyaromatization, which leads to 
the formation of  H2. The  CH4 yield is related to the num-
ber of methyl groups in cresols/xylenols, and the yield 
increases in the order, o-cresol (2.8  wt%) <2,4-xylenol 
(5.9  wt%) and 2,6-xylenol (6.0  wt%) <1,3,5-trimethylphe-
nol (9.5 wt%). The  H2 yield also increases in this order fol-
lowing the same order as the coke yield.

Lignin pyrolysis in cell walls

Wood cell walls, which have thicknesses of 1–10 µm, are a 
heterogeneous layered material, in which cellulose micro-
fibrils are filled with a matrix consisting of hemicellulose 
and lignin [109]. Accordingly, the heterogeneous nature 
of wood cell wall structures should be considered when 
assessing the pyrolysis reactions of wood constituent poly-
mers. Lignins in the matrix will undergo pyrolysis along-
side the pyrolysis of hemicellulose. The different chemical 
compositions of lignin and hemicellulose in softwoods and 
hardwoods may also affect the pyrolysis of these compo-
nents in wood cell walls.

As discussed above, the majority of ether linkages 
between phenylpropane units are cleaved homolytically to 
form radical species, except for α-ether bonds at phenolic 

end groups. Conversely, the primary pyrolysis of cellu-
lose and hemicellulose gives non-radical species, because 
heterolytic cleavage of glycosidic C–O bonds is the main 
primary pyrolysis reaction [110–112]. These different 
types of the primary pyrolysis products may interact with 
each other.

The radical chain reactivity of lignin in wood has been 
addressed by an in situ dimer probe method, which is 
based on changes in the reactivity of dimers in the pres-
ence of wood and its constituent polymers [113]. Strong 
interactions between lignin and wood polysaccharides 
have been indicated by this method, which also depend 
on the type of polysaccharide and the pyrolysis tempera-
ture [113]. Xylan activates the radical chain reactions of 
dimers, whereas glucomannan strongly inhibits non-phe-
nolic dimers. Cellulose inhibits the radical chain reac-
tions of lignins at temperatures below 300 °C, although 
these effects are minimal at temperatures above 350 °C, 
when cellulose rapidly decomposes.

Hydrogen donors may play important roles during 
primary pyrolysis of lignins in wood, because lignin pri-
mary pyrolysis occurs by homolysis mechanisms. Wood 
polysaccharides and their pyrolysis products may act as 
the H-donors to stabilize lignin-derived radicals, which 
results in an increase of the monomer yield. This effi-
ciency is reported to be greater for pyrolysis of Japanese 
beech wood (a hardwood) than that of Japanese cedar 
wood (a softwood), probably due to the different roles of 
xylan and glucomannan pyrolysis [87].

Significant interactions have also been suggested in 
the secondary pyrolysis reaction stage. Levoglucosan, 
an important primary product from cellulose, efficiently 
polymerizes into polysaccharides by conversion of vapor 
into a molten substance under cooling [114, 115]. This 
polymerization reaction is suppressed in the presence 
of lignin-derived products [116, 117]. A stabilization 
mechanism has been proposed; proton donation to levo-
glucosan through intermolecular hydrogen bonding acts 
as an acid catalyst to promote the polymerization, which 
is effectively inhibited by the lignin-derived products 
through hydrogen bonding between aromatic π-electrons 
and OH groups of levoglucosan [112].

During the gas-phase secondary pyrolysis reaction 
stage, the monomer yields from Japanese cedar MWL 
increased from 5.3 to 20.2  wt% under the influence of 
cellulose pyrolysis, and the selectivity for catechol over 
cresols/xylenol products increased from 0.9 to 5.5 [94]. 
This can be reasonably explained by the action of cellu-
lose-derived products as H-donors that stabilize the cat-
echol radicals and suppress the concentration of guaiacol 
radicals, which start the  OCH3 rearrangement pathway 
(Fig. 9).Fig. 11  Mechanism of the reaction of catechol radicals during pyrol-

ysis of catechol
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Conclusions and future prospects

A better understanding of lignin pyrolysis reactions is 
important for developing improved thermochemical con-
version technologies to effectively utilize lignin for the 
production of biochemicals, biomaterials, and biofuels. 
This review article summarizes the current understanding 
of lignin pyrolysis reaction pathways and mechanisms. 
However, there remains much work still to be done to 
understand lignin pyrolysis and gasification behaviors. 
Recently, many theoretical studies have been conducted 
to estimate the BDEs of linkages in lignin and to help 
propose reaction mechanisms. However, there is a par-
ticular need to accumulate more experimental data to 
effectively support these calculation results.
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