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We propose a technique to compute the deformation parameter of the generalized uncertainty principle 
by using the leading quantum corrections to the Newtonian potential. We just assume General Relativity 
as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum. With 
these minimal assumptions our calculation gives, to first order, a specific numerical result. The physical 
meaning of this value is discussed, and compared with the previously obtained bounds on the generalized 
uncertainty principle deformation parameter.
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1. Introduction

Research on generalizations of the uncertainty principle (GUP) 
of quantum mechanics has nowadays a long history [1]. One of 
the main lines of investigation focuses on understanding how the 
Heisenberg Uncertainty Principle (HUP) should be modified once 
gravity is taken into account. Given the pivotal role played by 
gravitation in these arguments, it is not surprising that the most 
relevant modifications to the HUP have been proposed in string 
theory, loop quantum gravity, deformed special relativity, and stud-
ies of black hole physics [2–7].

As it is well know, the dimensionless deforming parameter of 
the GUP, henceforth denoted by β , is not (in principle) fixed by 
the theory, although it is generally assumed to be of order one 
(this happens, in particular, in some models of string theory, see 
for instance Ref. [2]).

There have been many studies that aim at setting bounds on β , 
for instance Refs. [8–10]. In these works, a specific (in general, 
non-linear) representation of the operators in the deformed fun-
damental commutator is utilized1

* Corresponding author.
E-mail addresses: fabio@phys.ntu.edu.tw (F. Scardigli), lambiase@sa.infn.it

(G. Lambiase), elias.vagenas@ku.edu.kw (E.C. Vagenas).
1 We shall work with c = kB = 1, but explicitly show the Newton constant GN and 

Planck constant h̄. We also recall that the Planck length is defined as �2
p = GN h̄/c3, 

the Planck energy as Ep �p = h̄ c/2, and the Planck mass as mp = Ep/c2, so that 
GN = �p/2 mp and h̄ = 2 �p mp.
http://dx.doi.org/10.1016/j.physletb.2017.01.054
0370-2693/© 2017 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
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X̂, P̂

]
= i h̄

(
1 + β

P̂ 2

m2
p

)
(1)

in order to compute corrections to quantum mechanical quantities, 
such as energy shifts in the spectrum of the hydrogen atom, or to 
the Lamb shift, the Landau levels, Scanning Tunneling Microscope, 
charmonium levels, etc. The bounds so obtained on β are quite 
stringent, ranging from β < 1021 to β < 1050.

A further group of bounds can be found in Refs. [11] and [12], 
where a deformation of classical Newtonian mechanics is intro-
duced by modifying the standard Poisson brackets in a way that 
resembles the quantum commutator[
x̂, p̂

] = i h̄
(

1 + β0 p̂2
)

⇒ {X, P } =
(

1 + β0 P 2
)

(2)

where β0 = β/m2
p. However, in the limit β → 0, Ref. [11] recov-

ers only the Newtonian mechanics but not GR, and GR corrections 
must be added as an extra structure. Clearly, the physical relevance 
of this approach and the bound that follows for β remains there-
fore questionable.

Finally, in Refs. [13] and [14], the authors consider the gravi-
tational interaction when evaluating bounds on β . They use a co-
variant formalism which firstly is defined in Minkowski space, with 
the metric ημν = diag(1, −1, −1, −1), which can be easily general-
ized to curved space–times via the standard procedure ημν → gμν . 
In addition, these papers, as the previous ones, start from a defor-
mation of classical Poisson brackets, although posited in covariant 
form. From the deformed covariant Poisson brackets, they obtain 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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interesting consequences, like a β-deformed geodesic equation, 
which leads to a violation of the Equivalence Principle. This formal-
ism remains covariant when β → 0 and it reproduces the standard 
GR results in the limit β → 0 (unlike papers as Ref. [11]).

Among the papers which consider the gravitational interaction 
when evaluating bounds on β , it is Ref. [15]. This approach dif-
fers from the previous ones because Poisson brackets and classi-
cal Newtonian mechanics remain untouched. Additionally, GR and 
standard quantum mechanics are recovered, when β → 0. There-
fore, the Equivalence Principle is preserved, and the equation of 
motion of a test particle is still given by the standard geodesic 
equation. The bounds on β proposed by papers which take into 
account gravity range from β < 1019, for those papers admitting a 
violation of equivalence principle, to β < 1069 for the papers pre-
serving the aforesaid principle.

In the present paper, we exhibit a computation of the value 
of β obtained by comparing two different low energy (first order 
in h̄) corrections for the expression of the Hawking temperature. 
The first is due to the GUP, and therefore involves β . The sec-
ond correction, instead, is obtained by including the deformation 
of the metric due to quantum corrections to the Newtonian poten-
tial. Then we demand the two corrections to be equal (at the first 
order), and this yields a specific numerical value for β . It results to 
be of order of unity, in agreement with the general belief and with 
some particular models of string theory.

2. GUP-deformed Hawking temperature

One of the most common forms of deformation of the HUP (as 
well as the form of GUP that we are going to study in this paper) 
is

�x�p ≥ h̄

2

(
1 + β

4�2
p

h̄2
�p 2

)

= h̄

2

[
1 + β

(
�p

mp

)2
]

(3)

which, for mirror-symmetric states (with 〈p̂〉2 = 0), can be equiva-
lently written in terms of commutators as

[x̂, p̂] = ih̄

[
1 + β

(
p̂

mp

)2
]

(4)

since �x �p ≥ (1/2)|〈[x̂, p̂]〉|.
As is well known from the argument of the Heisenberg micro-

scope [16], the size δx of the smallest detail of an object, theoret-
ically detectable with a beam of photons of energy E , is roughly 
given by

δx � h̄

2 E
(5)

since larger and larger energies are required to explore smaller and 
smaller details. From the uncertainty relation (3), we see that the 
GUP version of the standard Heisenberg formula (5) is

δx � h̄

2 E
+ 2β �2

p
E

h̄
(6)

which relates the (average) wavelength of a photon to its en-
ergy E .2 Conversely, using relation (6), one can compute the energy 
E of a photon with a given (average) wavelength λ � δx. To com-
pute the thermal GUP corrections to the Hawking spectrum, we 

2 Here, the standard dispersion relation E = p c is assumed.
follow the arguments of Refs. [17–23], and we consider an en-
semble of unpolarized photons of Hawking radiation just outside 
the event horizon of a Schwarzschild black hole. From a geomet-
rical point of view, it is easy to see that the position uncertainty 
of such photons is of the order of the unmodified Schwarzschild 
radius, i.e., rH = 2 G M . An equivalent argument comes from con-
sidering the average wavelength of the Hawking radiation, which 
is of the order of the geometrical size of the hole. We can estimate 
the uncertainty in photon position to be δx � 2 μ rH, where the 
proportionality constant μ is of order unity and will be fixed soon. 
According to the equipartition principle, the average energy E of 
unpolarized photons of the Hawking radiation is simply related 
with their temperature by E = T . Inserting the aforesaid expres-
sions for the uncertainty in the photon position and for the average 
energy into formula (6), we obtain

4μ G M � h̄

2 T
+ 2β G T . (7)

In order to fix μ, we consider the semiclassical limit β → 0, and 
require formula (7) to predict the standard semiclassical Hawking 
temperature, namely T (β → 0) = TH,

TH = h̄

8π G M
. (8)

This fixes μ = π , thus we have

M = h̄

8π G T
+ β

T

2π
. (9)

This is the mass-temperature relation predicted by the GUP for a 
Schwarzschild black hole. Of course this relation can be easily in-
verted, to get

T = π

β

(
M −

√
M2 − β

π2
m2

p

)
. (10)

However, since the term proportional to β is small, especially for 
solar mass black holes with M 	 mp, we can expand in powers 
of β , namely

T = h̄

8πGM

(
1 + β m2

p

4π2 M2
+ . . .

)
, (11)

and it is evident that to zero order in β , we recover the usual 
Hawking formula (8).

Once again we stress that we are assuming that the correc-
tion induced by the GUP has a thermal character, and, therefore, it 
can be cast in the form of a shift of the Hawking temperature. Of 
course, there are also different approaches, where the corrections 
do not respect the exact thermality of the spectrum, and thus need 
not be reducible to a simple shift of the temperature. An example 
is the corpuscular model of a black hole of Ref. [24]. In this model, 
the emission is expected to gain a correction of order 1/N , where 
N ∼ (M/mp)2 is the number of constituents, and it becomes im-
portant when the mass M approaches the Planck mass.

3. Temperature from a deformed Schwarzschild metric

3.1. Leading quantum correction to the Newtonian potential

After early results by Duff [25], the leading quantum correction 
to the Newtonian potential has been computed by Donoghue, by 
assuming General Relativity as fundamental theory of Gravity. In 
a series of beautiful papers (see for instance Ref. [26]) he refor-
mulated General Relativity as an effective field theory, and, in par-
ticular, he considered two heavy bodies close to rest. The leading 
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quantum correction derived from this model shows a long-distance 
quantum effect. More recently, Donoghue and other authors found 
that the gravitational interaction between the two objects can be 
described by the potential energy [27]

U (r) = − GMm

r

(
1 + 3G(M + m)

rc2
+ 41

10π

�2
P

r2

)
. (12)

The first correction term does not contain any power of h̄, so it is 
a classical effect, due to the non-linear nature of General Relativity. 
However, the second correction term, i.e., the last term of (12), is 
a true quantum effect, linear in h̄. The potential generated by the 
mass M reads

V (r) = − GM

r

(
1 + 3GM

r
(1 + m

M
) + 41

10π

�2
P

r2

)
. (13)

3.2. Effective potential from the metric

Now we consider the effective potential produced by a metric 
of the very general class

ds2 = F (r)dt2 − gik(x1, x2, x3)dxidxk (14)

where r = |x| = (x2
1 + x2

2 + x2
3)

1/2, and x1, x2, x3 are the standard 
Cartesian coordinates. Particular cases of the metric (14) is the 
Schwarzschild metric, in the standard form

ds2 =
(

1 − 2GM

r

)
dt2 −

(
1 − 2GM

r

)−1

dr2 − r2d
2

as well as in harmonic coordinates

ds2 =
(

R − GM

R + GM

)
dt2 −

(
R + GM

R − GM

)
dR2 − (R + GM)2d
2 .

with R = r − GM .
It can be easily seen3 that any general metric of the form

ds2 = F (r)dt2 − F (r)−1dr2 − C(r)d
2 (15)

can be put in the form (14). In fact, Eq. (15) is equivalent to

ds2 = F (r)dt2 −
(

F (r)−1 − C(r)

r2

)
1

r2
(x · dx)2 − C(r)

r2
dx2 .

Once the metric is in the form of (14), in Cartesian coordinates, 
then, with well known procedures [28], it is easy to show that the 
effective Newtonian potential4 is of the form

V (r) � 1

2
(F (r) − 1) (16)

or, equivalently,

F (r) � 1 + 2 V (r) . (17)

3.3. Metric mimicking the quantum corrected Newtonian potential

At this point, we can write down the metric which is able to 
mimic the quantum corrected Newtonian potential proposed by 
Donoghue. Recalling (13), we have

3 More details can be found in Ref. [28].
4 The effective Newtonian potential is produced by the metric given in (14) for a 

point particle which moves slowly, in a stationary and weak gravitational field, i.e., 
quasi-Minkowskian far from the source, r → ∞.
F (r) � 1 + 2V (r) =
1 − 2GM

r
− 6 G2M2

r2

(
1 + m

M

)
− 41

5π

G3M3

r3

(
�P

GM

)2

.

Let us now define

ε(r) = −6 G2M2

r2

(
1 + m

M

)
− 41

5π

G3M3

r3

(
�P

GM

)2

. (18)

Therefore, F (r) will now be of the form

F (r) = 1 − 2GM

r
+ ε(r) (19)

and it is evident that when r is large, then |ε(r)| � 2GM/r.

3.4. Computing β

We can legitimately wonder what kind of (deformed) metric 
would predict a Hawking temperature like the one inferred from 
the GUP in relation (11), for a given β . Since we are interested 
only in small corrections to the Hawking formula, we can consider 
a deformation of the Schwarzschild metric of the following kind5

F (r) = 1 − 2 G M

r
+ ε(r) (20)

where ε(r) is an arbitrary, small, smooth function of r. We note 
that the deformation (20) makes sense when |ε(r)| � GM/r. We 
can also introduce a regulatory small parameter ε and, thus, we 
can write ε(r) ≡ εφ(r). At the end of the calculation, ε can go to 
unity. Of course, we look for the lowest order correction in the 
dimensionless parameter ε. The horizon’s equation, i.e., F (r) = 0, 
now reads

r − 2 G M + ε r φ(r) = 0 . (21)

Such equations can be solved, in a first approximation in ε, as fol-
lows. First, we formulate (21) in a general form

x = a + ε f (x) . (22)

It is obvious that if ε is set equal to zero, then the solution will 
be x0 = a. If ε is slightly different from zero, then we can try a 
test solution of the form x0 = a + η(ε) where η(ε) → 0 for ε → 0. 
Substituting the aforesaid test solution in (22), we get x0 = a +
ε f (x0) which means η = ε f (a + η). To first order in η, we have 
η = ε[ f (a) + f ′(a)η] from which we obtain η = ε f (a)

1−ε f ′(a)
. Therefore, 

to first order in ε, the general solution of (22) reads x0 = a +
ε f (a)

1−ε f ′(a)
. Applying this formula to (21), we get the solution

rH = a − ε a φ(a)

1 + ε [φ(a) + a φ′(a)] (23)

where a = 2GM .
The Hawking temperature is given by

T = h̄

4π
F ′(rH ) . (24)

From Eq. (20), one gets

F ′(r) = a

r2
+ ε φ′(r) . (25)

5 Recently, it was argued that in the special case in which ε(r) ∼ 1/r2, the spe-
cific metric (20) could have some drawbacks in the context of GUP formalism [29]. 
However, none of those drawbacks appear here and, thus, there is no problem to 
employ (20) in our present study.
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It is useful to write the solution (23) in the compact form 
rH = a(1 − λ) where λ = ε φ(a)

1 + ε [φ(a) + a φ′(a)] and, therefore, λ ∼ ε, 
|λ| � 1. Then

F ′(rH ) = 1

a(1 − λ)2
+ εφ′[a(1 − λ)] . (26)

Therefore, the deformed Hawking temperature reads

T = h̄
F ′(rH )

4π
= h̄

4πa

{
1 + ε

[
2φ(a) + aφ′(a)

]
+ ε2φ(a)

[
φ(a) − 2aφ′(a) − a2φ′′(a)

]
+ . . .

}
. (27)

It is noteworthy that the only function φ(r) that annihilates the 
first-order in ε temperature correction term is the solution of the 
differential equation 2φ(r) + rφ′(r) = 0, namely φ(r) = A/r2, 
where A is an arbitrary constant. In particular, for the function 
φ(r) = G2M2/r2, the coefficient of ε in (27) is zero, and the co-
efficient of ε2 is −1/16. It is also interesting to investigate what 
kind of function will eliminate the second-order in ε correction 
term. This function will be the solution of the differential equa-
tion r2φ′′(r) + 2rφ′(r) − φ(r) = 0 which is an Euler equation. Its 
characteristic equation is of the form λ2 + λ − 1 = 0 with roots 
λ1 = −1−√

5
2 and λ2 = −1+√

5
2 . So, the functions which remove the 

ε2-correction term are φ1(r) = r−|λ1| and φ2(r) = rλ2 .
We are now in the position to compute the temperature gener-

ated by the metric (19), by simply employing (27). Therefore, the 
metric-deformed Hawking temperature is of the form6

T = h̄

4πa

{
1 + [

2ε(a) + aε′(a)
] + . . .

}
(28)

while the GUP-deformed Hawking temperature reads

T = h̄

8πGM

(
1 + β m2

p

4π2 M2
+ . . .

)
. (29)

By comparing the two respective first-order correction terms in the 
two aforesaid expansions, we obtain

β = 4π2M2

m2
p

[
2ε(a) + aε′(a)

]
. (30)

Using now expression (18) for ε(r), we get

2ε(r) + rε′(r) = B

r3
(31)

with B = 41 G3 M3

5π

(
�P

GM

)2
. Therefore,

2ε(a) + aε′(a) = B

8G3M3
(32)

and using (30), the parameter β will get the value

β = 4π2M2

m2
p

41

40π

(
�P

GM

)2

= 82π

5
. (33)

6 Notice that from (18) we have ε(r) ∼ 1 for r ∼ a, so this would seem to spoil the 
expansion (28) when r ∼ a. On the contrary, we can always imagine to first expand 
the temperature T (r) = h̄F ′(r)/4π for r 	 a, when ε(r) is small. Then, the term 
in 1/r2 disappears from the expansion of T (r) because of the condition 2φ(r) +
rφ′(r) = 0. Finally, we take the limit r → a, and this yields (28).
4. Conclusions

In this work we have computed the value of the deformation 
parameter β of the GUP. We obtain this result by computing in 
two different ways the Hawking temperature for a Schwarzschild 
black hole.

The first way consists in using the GUP (in place of the stan-
dard HUP) to compute the Hawking formula. In this way we get 
an expression of the temperature containing a correction term de-
pending on β , i.e., the GUP-deformed Hawking temperature (11).

The second way involves the consideration of the quantum 
correction to the Newtonian potential, computed years ago by 
Donoghue and others. The corrections to the Newtonian potential 
imply naturally a quantum correction to the Schwarzschild met-
ric. Therefore, the Hawking temperature computed through this 
quantum corrected Schwarzschild metric result to get corrections 
in respect to the standard Hawking expression, i.e., the metric-
deformed Hawking temperature (28).

The request that the first-order corrections of the two different 
expressions of Hawking temperature must coincide, fixes unam-
biguously the numerical value of β to be 82π/5.

Finally, a couple of comments are in order here. First, this nu-
merical value is of order one, as expected from several string the-
ory models, and from versions of GUP derived through gedanken 
experiments. In particular, this is the first time, to our knowledge, 
that a specific value is obtained for β by starting from the mini-
mal assumptions we made. Second, as we know, in the last years 
much research has focused on the experimental bounds of the size
of β , and several experiments have been proposed to test GUPs in 
the laboratory. In fact, it has been shown that one does not need 
to reach the Planck energy scale to test GUP corrections. Among 
the more elaborated proposals, where conditions can be created in 
a lab, are those of the groups of Refs. [30–32]. However, it is also 
worth of note that the best bounds on β presented in the litera-
ture are still by far much larger than the value computed here. This 
could require, presumably, a big leap in the experimental designs 
and techniques in order to search this region for the parameter β .
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