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Abstract Transcription factors organize gene expression profiles by regulating promoter

activity. However, the role of transcription factors after transcription initiation is poorly

understood. Here, we show that the homeoprotein Nkx2-5 and the 5’-3’ exonuclease Xrn2 are

involved in the regulation of alternative polyadenylation (APA) during mouse heart development.

Nkx2-5 occupied not only the transcription start sites (TSSs) but also the downstream regions of

genes, serving to connect these regions in primary embryonic cardiomyocytes (eCMs). Nkx2-5

deficiency affected Xrn2 binding to target loci and resulted in increases in RNA polymerase II

(RNAPII) occupancy and in the expression of mRNAs with long 3’untranslated regions (3’ UTRs)

from genes related to heart development. siRNA-mediated suppression of Nkx2-5 and Xrn2 led to

heart looping anomaly. Moreover, Nkx2-5 genetically interacts with Xrn2 because Nkx2-5
+/-

Xrn2
+/-,

but neither Nkx2-5
+/-nor Xrn2+/-, newborns exhibited a defect in ventricular septum formation,

suggesting that the association between Nkx2-5 and Xrn2 is essential for heart development. Our

results indicate that Nkx2-5 regulates not only the initiation but also the usage of poly(A) sites

during heart development. Our findings suggest that tissue-specific transcription factors is involved

in the regulation of APA.

DOI: 10.7554/eLife.16030.001

Introduction
Transcription factors and chromatin regulators orchestrate the processes of heart development by

positively and negatively regulating thousands of genes (Bruneau, 2010; Nimura et al., 2009;

Prall et al., 2007; Srivastava, 2006; Takeuchi and Bruneau, 2009; Takeuchi et al., 2011). Muta-

tions in transcription factors and chromatin regulators cause congenital heart disease (CHD) by dis-

rupting gene expression profiles that are tightly regulated by transcription factor networks

(Bruneau, 2008; Srivastava, 2006). However, the mechanisms by which transcription factor deficien-

cies cause CHD are not fully understood.
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Nkx2-5, Gata4, and Tbx5 are key cardiac transcription factors that coordinate transcription net-

works during heart development (Akazawa and Komuro, 2005; Stennard and Harvey, 2005). Hap-

loinsufficiency of these genes can cause CHD in humans, and mice lacking any of these transcription

factors exhibit severe defects in heart development (Akazawa and Komuro, 2005; Stennard and

Harvey, 2005). Recent genome-wide analyses of transcription factors, including Nkx2-5, Gata4, and

Tbx5, have revealed that these transcription factors assist in the formation of active enhancers in the

HL1 cardiomyocyte cell line and in murine adult hearts (He et al., 2011; Schlesinger et al., 2011;

van den Boogaard et al., 2012). He et al. demonstrated that multiple transcription factors activate

certain cardiac enhancers without p300 (He et al., 2011). In Drosophila, cardiac transcription factors

converge on heart enhancer regions; however, the collective binding of these transcription factors to

the enhancer regions does not require a conserved DNA motif (Junion et al., 2012). Although the

regulation of enhancer activity by cardiac transcription factors has been extensively studied, the

other roles of these transcription factors during heart development remain poorly understood.

Transcription factors require several chromatin regulators to precisely regulate gene expression.

Indeed, the results from several histone methyltransferase-knockout mouse studies and genetic stud-

ies of human CHD patients have revealed the importance of histone modifications during heart

development (Delgado-Olguı́n et al., 2012; Nimura et al., 2009). In particular, Nkx2-5 regulates

gene expression in conjunction with Whsc1 (Wolf-Hirschhorn Syndrome 1, also known as NSD2 or

MMSET), a histone H3 lysine 36 (H3K36) methyltransferase. H3K36 methylation is associated with

transcribed genomic regions and has several roles in transcription, including transcriptional repres-

sion, alternative RNA splicing, and DNA mismatch repair (Li et al., 2013; Luco et al., 2010). There-

fore, Nkx2-5 may be involved in both transcriptional activation and the subsequent events. However,

it is not clear whether particular transcription factors regulate events that occur after transcription

initiation during heart development.

eLife digest About one in every hundred babies is born with problems that either affect the

structure of the heart or how it works. These problems are known as congenital heart disease, and

result when the development of the heart is disrupted. How the heart develops is determined by

thousands of genes whose activity or “expression” must be precisely regulated. Proteins called

transcription factors can control gene expression; therefore, researchers may discover new ways of

treating congenital heart disease if they can understand how transcription factors work during

normal heart development.

To produce a protein, the information in a gene must first be “transcribed” to form a molecule of

messenger RNA (mRNA). Not all of the mRNA sequence is subsequently “translated” to form the

protein; this includes a stretch at the end of the mRNA called the 3’ untranslated region. The length

of the 3’ untranslated region for a particular mRNA may vary depending on the type of cell it has

been produced in, and this length can influence how efficiently the mRNA is translated to form a

protein. However, it was not clear what changes the length of the 3’ untranslated region.

Nimura et al. have now studied mice to investigate the role of a transcription factor called Nkx2-

5, which was known to be important for heart development. This revealed that in addition to its

expected role in starting the transcription of genes that are important for heart development, Nkx2-

5 also controls the length of 3’ untranslated regions of certain mRNAs. To do so, Nkx2-5 binds to a

protein called Xrn2 that stops transcription when the end of the gene is reached.

Mouse embryos that lacked Nkx2-5 produced mRNAs containing long 3’ untranslated regions

from genes related to the development of the heart. Furthermore, suppressing the activity of both

Nkx2-5 and Xrn2 resulted in the embryos developing heart defects.

The findings of Nimura et al. suggest that transcription factors found in specific tissues are

responsible for the different lengths of 3’ untranslated regions in mRNAs in different tissues.

Furthermore, incorrectly regulating the length of these regions appears to be linked to the

development of congenital heart disease. The next step is to understand exactly how the failure to

correctly regulate the length of 3’ untranslated regions contributes to congenital heart disease.

DOI: 10.7554/eLife.16030.002
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In this study, we determined the genome-wide occupancy of transcription factors that are critical

for heart development and the factors associated with these transcription factors as well as the his-

tone modification signatures in embryonic hearts. The results indicate a role for transcription factors

in alternative polyadenylation (APA). Furthermore, we discovered that Nkx2-5 is associated with

both transcription start sites (TSSs) and downstream regions of genes and that Nkx2-5 controls APA

in conjunction with the 5’-3’ exonuclease Xrn2. Simultaneously suppressing Nkx2-5 and Xrn2 caused

heart-looping abnormalities. Moreover, Nkx2-5 genetically interacted with Xrn2 during heart devel-

opment. Our findings suggest that Nkx2-5 is involved in the regulation of the length of the 3’ UTR

and may help to elucidate the mechanisms by which transcription factor deficiencies can cause dis-

eases such as CHD.

Results

Nkx2-5 deficiency increases transcription from regions downstream of
transcription termination sites
To elucidate how Nkx2-5, Gata4, and Tbx5 regulate transcription, we examined the genomic target

regions of these transcription factors and the transcription factor-associated factors as well as the

chromatin status in mouse E12.5 hearts using chromatin immunoprecipitation-sequencing (ChIP-seq)

(Figures 1A,B, Figure 1—figure supplement 1, Figure 1—figure supplement 2, Figure 1—figure

supplement 3, Figure 1—source data 1, and Figure 1—figure supplement 4) (Li et al., 2007;

Lickert et al., 2004; Nimura et al., 2009). Embryonic hearts at this stage are primarily (>90%) com-

posed of cardiomyocytes that do not express Thy1 (fibroblasts, T-lymphocytes, and neuronal

markers) (Ieda et al., 2009). Defects in the ventricular septum and atrial septum, which are most fre-

quently found in CHDs (Feng et al., 2002), form during this stage (Henderson and Copp, 1998).

Nkx2-5 and Tbx5 co-occupied the same global genomic regions as RNA polymerase II (RNAPII) and

the heterogeneous nuclear ribonucleoprotein Raver1 (Figure 1A). Nkx2-5 and Tbx5 were found to

associate with the poised serine 5-phosphorylated form of RNAPII (RNAPII-S5P) (Kuehner et al.,

2011), although a physical association between Nkx2-5 and Tbx5 was not detected (Figure 1B). In

contrast, Gata4 was found in a different cluster (Figure 1A). We next examined whether the occu-

pancy of Nkx2-5 and Tbx5 is correlated with gene expression levels because these two transcription

factors are associated with RNAPII. Nkx2-5 and Tbx5 were significantly enriched around the TSSs

and downstream regions of genes that were highly expressed (Figures 1C, Figure 1—figure supple-

ment 5, Figure 1—figure supplement 6, and Figure 1—figure supplement 7). These results sug-

gest the possibility that Nkx2-5 and Tbx5 may be involved not only in enhancer activity regulation

(He et al., 2011; Schlesinger et al., 2011; van den Boogaard et al., 2012) but also in post-tran-

scriptional mRNA processing. To elucidate whether Nkx2-5 and Tbx5 play a role in regulating 3’-end

processing, we examined changes in poly(A)-tailed mRNA in transcription factor-knockdown embry-

onic cardiomyocytes (eCMs) using mRNA-seq. Nkx2-5 knockdown increased the expression of long

3’ UTRs in Tnnt2 (Troponin T2, cardiac) and Atp2a2 (ATPase, Ca++ transporting, cardiac muscle,

slow twitch 2) transcripts (Figures 1D, Figure 1—figure supplement 5, and Figure 1—figure sup-

plement 8). We also detected increased expression of long 3’ UTRs in Nkx2-5-knockout E9.5 hearts

(Figures 1E and Figure 1—figure supplement 9). These results suggest a role for Nkx2-5 in the reg-

ulation of APA.

A link between Nkx2-5-dependent chromatin looping and termination
of RNA polymerase II activity
Recent studies have revealed that enhancer-promoter looping mediated by transcription factors is

important for gene regulation (Kagey et al., 2010; Wang et al., 2011). As shown in Figure 1, Nkx2-

5 is located at the TSSs and downstream regions of highly expressed genes and is involved in regu-

lating 3’-end processing, which implies that Nkx2-5 may organize chromatin conformations between

TSSs and downstream regions of genes and that this Nkx2-5-mediated chromatin conformation may

be related to 3’-end processing. A chromatin conformation capture (3C) assay demonstrated that

TSSs interact with the downstream regions of two genes, Tnnt2 and Atp2a2, which are highly

expressed in eCMs. The looping between the TSSs and downstream regions of the genes (TSS-

downstream looping) was dependent on Nkx2-5 but not on Gata4 or Tbx5 (Figure 2A and
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Figure 1. Nkx2-5 deficiency increases transcription from regions downstream of transcription termination sites. (A) Co-occupancies of each pair of

factors and histone modifications are shown. White indicates a high correlation, and red indicates a low correlation. (B) Nkx2-5, Tbx5, and Gata4 were

Figure 1 continued on next page
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Figure 2—figure supplement 1). However, Nkx2-5 knockdown did not affect the TSS-downstream

looping of Tnni1 and did not increase the expression of long 3’ UTRs (Figure 2—figure supplement

2). Furthermore, the binding of Nkx2-5 to the TSSs and downstream regions of Tnnt2 and Atp2a2 in

eCMs was also confirmed using ChIP-qPCR at the Nkx2-5-bound downstream regions (Figure 2B).

This finding suggests that the loss of TSS-downstream looping is related to the increased expression

of long 3’ UTRs.

To investigate whether TSS-downstream looping is involved in transcription regulation, we exam-

ined whether the occupancy of the elongating serine 2-phosphorylated form of RNAPII (RNAPII-S2P)

(Kuehner et al., 2011) was increased at these downstream regions in accordance with the increased

expression of long 3’ UTRs. RNAPII-S2P binding downstream of Tnnt2 and Atp2a2 was increased in

Nkx2-5-knockdown eCMs (Figures 2C and D). Consistent with the increase in RNAPII at downstream

regions, Nkx2-5 knockdown increased the expression of long 3’ UTRs; however, the mRNA expres-

sion of the coding regions was not substantially increased (Figures 2E,F, and Figure 2—figure sup-

plement 3). Although Gata4 knockdown may affect the regulation of APA, we could not detect a

significant difference in the APA of Tnnt2 and Atp2a2 (Figure 2F). These findings further support

the possibility that Nkx2-5-mediated TSS-downstream looping is associated with RNAPII

termination.

To investigate whether mRNAs with long 3’ UTRs in Nkx2-5-knockdown eCMs are enriched for

specific functional annotations, we performed Gene Ontology (GO) analysis (Huang et al., 2009a;

2009b). We observed that the mRNAs with long 3’ UTRs that were increased by the knockdown and

knockout of Nkx2-5 were enriched for GO terms related to heart development (Figure 2—figure

supplement 4), whereas in mRNAs with long 3’ UTRs that were increased by the knockdown of

Tbx5 and Gata4, none of GO terms were linked to heart development (Figure 2—figure supple-

ment 4). These results suggest that Nkx2-5 plays essential roles in regulating the APA of genes

related to heart development.

Figure 1 continued

immunoprecipitated from nuclear extracts of E12.5 hearts with the indicated antibodies. Co-immunoprecipitates and aliquots (6%) of the input proteins

were analyzed by Western blotting with the indicated antibodies. (C) Average ChIP-seq signal profiles over a 3-kb meta-gene, including 3 kb upstream

and 3 kb downstream. The lines correspond to genes with High, Middle, Low, and No expression and all RefSeq genes. (D and E) Genome browser

representation of strand-specific RNA-seq tag counts from eCMs transfected with the indicated siRNAs (D) and E9.5 Nkx2-5-/- hearts (E). The red boxes

indicate read-through RNAs. neg., negative strand; pos., positive strand. The arrow heads show polyadenylation sites.

DOI: 10.7554/eLife.16030.003

The following source data and figure supplements are available for figure 1:

Source data 1. Overlap of peaks between transcription factors and between the results from this study and those from previousely published studies.

DOI: 10.7554/eLife.16030.004

Figure supplement 1. Transcription factors-associated proteins in E12.5 hearts.

DOI: 10.7554/eLife.16030.005

Figure supplement 2. ChIPseq replicate correlations.

DOI: 10.7554/eLife.16030.006

Figure supplement 3. In vivo transcription factor binding motif by native ChIPseq.

DOI: 10.7554/eLife.16030.007

Figure supplement 4. Validation of the antibodies used for ChIP-seq.

DOI: 10.7554/eLife.16030.008

Figure supplement 5. Genome browser representation at Tnnt2 and Atps2a2 loci.

DOI: 10.7554/eLife.16030.009

Figure supplement 6. Heatmap of factor occupancy and histone modification enrichment for 8 kb regions centred on TSSs (left panel) and TTSs

(middle panel) are shown with reference to the RefSeq gene expression level (right panel).

DOI: 10.7554/eLife.16030.010

Figure supplement 7. Average signal profiles over a 3 kb meta-gene including 3 kb upstream and 3 kb downstream.

DOI: 10.7554/eLife.16030.011

Figure supplement 8. Genome browser representation of strand-specific RNA-seq tag counts from eCMs transfected with the indicated siRNAs.

DOI: 10.7554/eLife.16030.012

Figure supplement 9. mRNA with long 3’UTR in Nkx2-5-knockout embryonic hearts.

DOI: 10.7554/eLife.16030.013
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Nkx2-5 associates with the 5’-3’ exonuclease Xrn2
To elucidate the molecular mechanisms by which Nkx2-5 regulates APA, we examined the transcrip-

tion termination factors associated with Nkx2-5 in the embryonic heart. We could detect an associa-

tion between Nkx2-5 and the transcription termination factor Xrn2, which has 5’-3’ exonuclease

activity (Kuehner et al., 2011) (Figure 3A). However, no association was detected between Nkx2-5

and the RNA helicases, Senataxin, Ddx5, and Dhx9 (Figure 3A), although it has been reported that
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Figure 2. A link between Nkx2-5-dependent chromatin conformation and RNAPII. (A) Chromatin conformation capture (3C) analysis of the TSSs and

downstream regions of Tnnt2 and Atp2a2 in the indicated siRNA-treated eCMs. The corresponding BACs for the regions were used as controls.

Undigested regions at Tnnt2 and Atp2a2 were used as Controls. Red arrow, direction of transcription; blue arrow, anchoring primer; black arrow,

primer; red line, restriction enzyme site. The arrow heads show polyadenylation sites. (B–D), Relative Nkx2-5 (B) and RNAPII-S2P occupancy (C and D) at

the TSSs (-TSS) and downstream regions (-3) of Tnnt2 (18.4 kb), Atp2a2 (47.2 kb), and the silent histone H1foo gene, which served as a negative control,

was analyzed by ChIP. (E and F) qRT-PCR analysis of mRNA expression from the coding region (E) and expression of long 3’ UTRs (F) of Tnnt2 and

Atp2a2, normalized to Rplp2. Error bars indicate the mean ± s.e.m. (n = 3). *, p < 0.05.

DOI: 10.7554/eLife.16030.014

The following source data and figure supplements are available for figure 2:

Source data 1. Source data for Figure 2 and Figure 2—figure supplement 1 and 3.

DOI: 10.7554/eLife.16030.015

Figure supplement 1. Quantification of 3C and western blotting data.

DOI: 10.7554/eLife.16030.016

Figure supplement 2. The chromatin conformation of Tnni1 is independent of Nkx2-5.

DOI: 10.7554/eLife.16030.017

Figure supplement 3. siRNA knockdown efficiencies of three different siRNAs for each gene.

DOI: 10.7554/eLife.16030.018

Figure supplement 4. Functional annotations of genes with increased and decreased mRNA with long 3’UTR.

DOI: 10.7554/eLife.16030.019
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these RNA helicases play an essential role in processing the ends of transcripts and that this process

is regulated by the circadian clock PERIOD complex (Padmanabhan et al., 2012). To confirm the

association between Nkx2-5 and Xrn2, we examined regions that may be important for their associa-

tion. We found that the C-terminus of Xrn2 was important due to its association with Nkx2-5

(Figure 3B). The N- and C-termini of Nkx2-5 were crucial due to their association with Xrn2, whereas

the Nkx2-5 homeodomain (HD) was not required (Figure 3C). Next, we examined whether the asso-

ciation between Nkx2-5 and Xrn2 is dependent on DNA or RNA. Xrn2 co-immunoprecipitated with

Nkx2-5 from eCM nuclear extracts that were treated with ethidium bromide (EtBr) to release DNA

from proteins (Heale et al., 2006) (Figure 3D). Although this concentration of EtBr (20 mg/ml)

reduced the association of Whsc1 with histone (Nimura et al., 2009), the association of Nkx2-5 with
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Xrn2 was resistant to EtBr treatment. Furthermore, the association between these factors was also

resistant to RNase A (50 mg/ml) treatment (Calvo and Manley, 2001). These data suggest that

Nkx2-5 may be associated with Xrn2 in a DNA- or RNA-independent manner and that Nkx2-5 could

recruit Xrn2 to target regions of the genome based on its ability to recognize these target regions

with its HD (Figure 3E).

Nkx2-5 functions together with Xrn2 to regulate APA
To determine whether Xrn2 regulates the APA of Tnnt2 and Atp2a2, Xrn2 was repressed by transfec-

tion with a sequence-specific siRNA in eCMs (Figures 4A,B, and C). Xrn2 knockdown increased the

expression of Tnnt2 and Atp2a2 transcripts with long 3’UTRs but did not alter transcription of the

coding sequence of these genes (Figures 4B and C). The increase in expression of long 3’UTR of

Tnnt2 and Atp2a2 was also detected in chromatin-fractioned RNA (Figure 4—figure supplement 1).

Furthermore, Xrn2 expression was not affected by the knockdown of Nkx2-5, Gata4, or Tbx5

(Figure 4D). Thus, these results suggest that Nkx2-5 functions together with Xrn2 to regulate APA.

Xrn2 was recently reported to be recruited to TSSs and the downstream regions of genes

(Brannan et al., 2012). Because Nkx2-5 was also localized at both regions, we next investigated

whether Nkx2-5 recruited Xrn2 to genes for which the 3’ UTR length was found to be regulated by

Nkx2-5. Nkx2-5 knockdown reduced Xrn2 binding at the TSSs and downstream regions of genes but

not at 3’ UTR regions (Figure 4E and Figure 4—figure supplement 2). This result indicates a role

for Nkx2-5 in Xrn2 binding to the TSSs and downstream regions of genes.

Next, we examined whether the knockdown of Nkx2-5 and Xrn2 generated extended poly(A)-

tailed mRNAs. Northern blot analysis of Tnnt2 and Atp2a2 using poly(A)-tailed mRNA showed that

the knockdown of Nkx2-5 and Xrn2 significantly increased the expression of extended poly(A)-tailed

mRNAs (Figures 4F,G, and Figure 4—figure supplement 3). Long 3’UTRs have been reported to

be related to decrease translation efficiency (Mayr and Bartel, 2009). Consistent with this, the

amounts of Tnnt2 and Atp2a2 protein were slightly decreased in Nkx2-5- and Xrn2- knockdown

eCMs (Figure 4H and Figure 2—figure supplement 1B). Next, we analyzed the increase in

extended poly(A)-tailed mRNAs transcribed within 3 kb of the end of the 3’ UTR of a reference

sequence in Nkx2-5- and Xrn2-knockdown eCMs. Xrn2 knockdown also increased the expression of

long 3’ UTRs of genes for which the expression of long 3’ UTRs was increased in Nkx2-5, but not

Tbx5 nor Gata4, -knockdown eCMs (Figure 4I and Figure 4—figure supplement 4). Furthermore,

Xrn2 knockdown strongly increased the expression of mRNAs at the transcription termination sites

(TTSs), suggesting a role for Xrn2 in processing the ends of mRNAs. These results suggest that Xrn2

is involved in Nkx2-5-dependent regulation of APA.

Interaction between Nkx2-5 and Xrn2 during heart development
To demonstrate the coordinated functions of Nkx2-5 and Xrn2 in heart development, we introduced

siRNAs directed against Nkx2-5 and Xrn2 along with GFP expression plasmids into early-head-fold-

stage embryos (E7.5, before the formation of the linear heart tube) (Figures 5A and B). These

embryos were divided into three categories according to their heart looping morphologies

(Figure 5C). The knockdown of both genes together significantly increased the number of abnormal

hearts that remained in an essentially linear conformation compared with the knockdown of each

gene alone (Figure 5D). We next examined whether the expression of genes related to Left-Right

signaling pathway are affected by the injection of siRNAs against Nkx2-5 and Xrn2 (Figures 5E

and F), since heart looping is known to be regulated by genes related to Left-Right signaling path-

way (Hamada et al., 2002). Knockdown of Nkx2-5 and Xrn2 did not significantly change the expres-

sion of these genes including Pitx2, Nodal, Cryptic, and Lefty (Figure 5E). Moreover, Pitx2

expression profile was not affected by knockdown of Nkx2-5 and Xrn2 (Figure 5F). These results

suggest that the coordinated functions of Nkx2-5 and Xrn2 are essential for heart formation.

Finally, we generated Xrn2-deleted mice by disrupting exons1 and 2 using the CRISPR/Cas9 sys-

tem (Figure 6 and Figure 6—figure supplement 1) (Wang et al., 2013). We deleted 11.6 kb from

Xrn2, including exons1 and 2, which encode a part of the domain with enzymatic activity (Figure 6—

figure supplement 1). To examine the genetic interaction between Nkx2-5 and Xrn2, we obtained

Nkx2-5+/-Xrn2+/- newborns by intercrossing Nkx2-5+/- mice with two Xrn2+/- mice (#2 and #3).

Although neither Nkx2-5+/-nor Xrn2+/- hearts showed a muscular ventricular septal defect (VSD) at
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Figure 4. Nkx2-5 functions together with Xrn2 to regulate APA. (A) Xrn2 knockdown was analyzed by Western blotting. (B and C) qRT-PCR analysis of

mRNAs expression of the long 3’ UTRs (B) and gene bodies (C) of Tnnt2 and Atp2a2 in Xrn2-knockdown eCMs, normalized to Rplp2. (D) Xrn2

expression levels were measured by qRT-PCR and normalized to Rplp2. (E) Xrn2 binding in eCMs transfected with the indicated siRNAs was analyzed

by ChIP-qPCR. The control values were set to 1.0. (F) Long 3’ UTRs in eCMs transfected with the indicated siRNA were analyzed by Northern blotting

using probes against Tnnt2 and Atp2a2 mRNA. Red brackets indicate mRNAs with long 3’ UTRs. (G) The original lengths of the Tnnt2 and Atp2a2

mRNAs and the lengths of the Tnnt2 and Atp2a2 mRNAs with long 3’ UTRs that were used in the Northern blot analysis were measured by BAS5000.

The ratio of the siControl was set to 1.0. (H) Tnnt2 and Atp2a2 proteins in Nkx2-5 and Xrn2 knockdown eCMs were analyzed by western blotting. (I) The

average profiles of the mRNAs with long 3’ UTRs that were increased in Nkx2-5-knockdown eCMs are shown in eCMs transfected with the indicated

siRNAs. The gray area indicates the coding region. Significance was assessed using the two-sample Kolmogorov-Smirnov test. For B, C, D, E, and G,

error bars indicate the mean ± s.e.m. (n = 3). *, p < 0.05.

DOI: 10.7554/eLife.16030.021

The following source data and figure supplements are available for figure 4:

Figure 4 continued on next page
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postnatal day 0 (P0), we found a VSD in Nkx2-5+/-Xrn2+/- newborn hearts (n = 3 of 7) (Figure 6). An

atrial septal defect was observed in both Xrn2+/- and Nkx2-5+/-Xrn2+/- mice, suggesting that Xrn2

contributes to atrial septum formation (Figure 6). These results indicate a genetic interaction

between Nkx2-5 and Xrn2.

Discussion
One of the critical roles of transcription factors is to regulate the expression level of target genes by

recruiting transcription factor-associated factors such as chromatin remodeling factors, histone modi-

fiers, and RNAPII to the promoter and enhancer regions of these genes (Graf and Enver, 2009).

During heart development, the importance of cardiac transcription factors had been shown in many

reports; for example, mutations in transcription factors, such as Nkx2-5, caused defects in heart

development (Bruneau, 2008; Srivastava, 2006). However, the molecular mechanisms underlying

the functions of cardiac transcription factors have remained unclear. Our results suggest that Nkx2–5

is involved in the 3’-end processing of target genes in conjunction with Xrn2; furthermore, Nkx2–5

and Xrn2 deficiency caused abnormalities in heart development. We identified the genome-wide

occupancies of transcription factors and transcription factor-associated proteins and determined the

histone modification signatures in E12.5 hearts. Active histone modifications, including H3K4me1/3,

H3K36me3, and H3K27ac, were enriched in actively transcribed genomic regions, and repressive his-

tone modifications, including H3K9me3 and H3K27me3, were enriched in silenced genes (Figure 1

and Figure 1—figure supplement 6), which agrees with previous reports (Barski et al., 2007;

Wang et al., 2008). While RNAPII-S5P has been reported to be associated with promoters

(Rahl et al., 2010), we found enrichment of RNAPII-S5P at promoters and downstream regions of

highly expressed genes in eCMs. This difference of RNAPII-S5P binding profile may be caused by

differences of ChIP protocol and cell type. The transcription factor binding regions were different

from those of exogenously tagged transcription factors in the murine adult cardiomyocyte cell line

HL�1 (He et al., 2011). This difference may be caused by differences in gene expression during dis-

tinct developmental stages of cardiomyocytes. Metagene analysis revealed that Nkx2-5 is localized

at both the TSSs and downstream regions of highly expressed genes in E12.5 hearts (Figure 1 , Fig-

ure 1—figure supplement 5, and Figure 1—figure supplement 6). We compared ChIP and input

data for obtaining peaks. Moreover, active histone modification ChIP-seq data including H3Keme1,

H3K4me3, and H3K27ac showed the enrichment only around TSS regions (Figure 1—figure supple-

ment 7). These indicate the enrichment of Nkx2–5 at the downstream regions is not bias in native

ChIPseq experiment. Based on these data, Nkx2-5 plays unique roles in regulating the APA of highly

expressed genes, including Tnnt2 and Atp2a2, during heart development. The regulation of APA

has been reported as one of the mechanisms for determining the length of the 3’ UTR (Elkon et al.,

2013). Long 3’ UTRs are likely to decrease translation efficiency because they are recognized by

miRNAs (Elkon et al., 2013). One function of Nkx2-5 may be to regulate the lengths of the 3’ UTRs

of genes involved in heart development through the regulation of APA, although there is a possibil-

ity that Nkx2-5 is also involved in the regulation of splicing. This process allows the production of

necessary quantities of muscle proteins, such as cardiac troponin T (cTnT), a component of troponin

that is essential for sarcomere assembly and is encoded by Tnnt2 (Nishii et al., 2008), and Atp2a2

(also known as SERCA2), a cardiac sarcoplasmic reticulum Ca2+ pump that is essential for normal

Figure 4 continued

Source data 1. Source data for Figure 4 and Figure 4-figure supplement 1 and 2.

DOI: 10.7554/eLife.16030.022

Figure supplement 1. Knockdowns of Nkx2-5 or Xrn2 affect the expression of the long 3’UTR regions in chromatin-fractioned RNA.

DOI: 10.7554/eLife.16030.023

Figure supplement 2. Knockdown of Nkx2-5 affects Xrn2-binding to Myl7.

DOI: 10.7554/eLife.16030.024

Figure supplement 3. Nkx2-5 functions together with Xrn2 to regulate APA.

DOI: 10.7554/eLife.16030.025

Figure supplement 4. Correlation analysis of Nkx2-5 binding and long 3’UTR expression.

DOI: 10.7554/eLife.16030.026
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Figure 5. Knockdown of both Nkx2-5 and Xrn2 perturbs heart looping. (A) Transfection of siRNA into embryonic hearts. GFP was used to detect

transfected fields. (B) We discarded the embryos with low transfection efficiency. (C) Representative morphologies of heart looping. D-Loop, the normal

Figure 5 continued on next page
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cardiac performance (Periasamy et al., 1999). Moreover, Nkx2–5 has been reported to regulate the

expression of miRNAs such as miR-1, which recognizes the 3’ UTR of Cdc42 and decreases the

Cdc42 protein level during heart development (Qian et al., 2011; Zhao et al., 2007). In addition,

miRNAs might be involved in the regulation of translation efficiency by recognizing long 3’ UTRs.

Thus, APA dysregulation in Nkx2–5- and Xrn2-depleted hearts might cause abnormalities in heart

development by decreasing the level of heart-related proteins such as Tnnt2 and Atp2a2. Our results

suggest that in addition to the regulation of gene expression by Nkx2–5, the regulation of APA by

Nkx2-5 and Xrn2 is an important mechanism for the precise progression of heart development.

Recent studies have reported significant interactions between chromatin regions in the nucleus

and have shown the importance of interactions between promoters and enhancers for the activation

of gene expression (Kagey et al., 2010; Li et al., 2012; Wang et al., 2011). Although the function

of enhancer-promoter DNA looping mediated by transcription factors and mediators has previously

been demonstrated (Kagey et al., 2010; Wang et al., 2011), genome-wide chromatin conforma-

tional analyses have revealed that (1) several chromatin regions form DNA loops between the

enhancer and promoter and between the promoter and downstream regions of the gene (promoter-

downstream looping) and (2) these interactions are associated with RNAPII (Li et al., 2012). Pro-

moter-downstream looping has been shown to enhance RNAPII recycling from the TTS to the pro-

moter (Cavalli and Misteli, 2013) and to determine the direction of transcription (Tan-Wong et al.,

2012). In this study, we showed that Nkx2-5 deficiency increased the expression of long 3’ UTRs

beyond the TTS of the studied genes, which occurred concomitantly with changes in the stability of

promoter-downstream looping and the amount of RNAPII localized downstream of the genes

Figure 5 continued

rightward loop; L-Loop, situs inversus; abnormal, hearts remained in an essentially linear conformation. (D) Knockdown of Nkx2–5 and Xrn2 in

embryonic hearts. Graph bars indicate the% morphologies of heart looping. Significance was examined with Fisher’s exact test. *, p < 0.05. (E) Looping-

related genes expression level in siRNA-transfected embryonic hearts (n = 3), normalized to Rplp2 expression level. n.s., not significant. (F) In situ

hybridization of Pitx2. The numbers indicate Pitx2 expression pattern among the right side, the left side, and the both sides. White arrows indicate

lateral plate mesoderm.
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The following figure supplement is available for figure 6:

Figure supplement 1. Nkx2-5 genetically interacts with Xrn2.

DOI: 10.7554/eLife.16030.029

Nimura et al. eLife 2016;5:e16030. DOI: 10.7554/eLife.16030 12 of 20

Research article Genes and Chromosomes

http://dx.doi.org/10.7554/eLife.16030.027
http://dx.doi.org/10.7554/eLife.16030.028
http://dx.doi.org/10.7554/eLife.16030.029
http://dx.doi.org/10.7554/eLife.16030


(Figure 2). Thus, promoter-downstream looping is likely to be involved not only in recycling RNAPII

(Cavalli and Misteli, 2013) but also in regulating APA.

Xrn2 is known to have 5’-3’ exonuclease activity and to contribute to transcription termination at

the ends of genes (Kim et al., 2004; West et al., 2004). Recently, it was reported that Xrn2 along

with mRNA decapping factors bound to TSSs and other downstream regions and was involved in

the regulation of RNAPII elongation (Brannan et al., 2012). Our results suggest that Nkx2-5 is

involved in the regulation of Xrn2 binding to both TSSs and the downstream regions of target genes

during heart development and that promoter-downstream looping support the function of Xrn2 at

these regions (Figures 2 and 4). The association of Nkx2–5 with Xrn2 was EtBr- and RNaseA-resis-

tant (Figure 3), and the Nkx2–5 HD was not required for the association of Nkx2�5 with Xrn2 (Fig-

ure 3). These findings suggest that Nkx2–5 may be able to recruit Xrn2 to target genomic regions

that Nkx2-5 recognized via its HD. Although Xrn2 is a 5’-3’ exonuclease and is believed to eliminate

3’ cleavage products that remain associated with RNAPII after mRNA cleavage (Kuehner et al.,

2011; Richard and Manley, 2009), Xrn2 knockdown increased the expression of mRNAs with long

3’ UTRs, suggesting that Xrn2 is also critical for regulating APA and promotes the usage of proximal

poly(A) sites. Nkx2–5 functions together with Xrn2 but not with RNA helicases, which are also tran-

scription termination factors; therefore, both Xrn2 and transcription factors might be involved in

determining the usage of poly(A) sites.

Recent deep-sequencing analyses have revealed that over 70% of human genes are estimated to

have 3’ UTRs of variable lengths and that these differences are dependent on cell type and are regu-

lated by APA (Elkon et al., 2013). APA is modulated by the processing of mRNA at proximal or dis-

tal poly(A) sites. mRNAs with short 3’ UTRs are generated in highly proliferative cells including

cancer cells (Mayr and Bartel, 2009), and these mRNAs lack miRNA recognition regions; thus, their

translation efficiency can be increased by avoiding miRNA (Mayr and Bartel, 2009). Nerve cells are

known to generate mRNAs with long 3’ UTRs by utilizing distal poly(A) sites (Miura et al., 2013).

The termination of transcription by RNAPII requires RNA 3’-end processing and termination factors

(Kuehner et al., 2011), and defects in these factors increase the level of RNA with long 3’UTR due

to the dysregulation of RNAPII termination (Liu et al., 2012; Padmanabhan et al., 2012). Although

cleavage and polyadenylation factors including cleavage and polyadenylation specificity factor

(CPSF), cleavage-stimulating factor (CSTF), and cleavage factor Im (CFIm), regulate APA

(Elkon et al., 2013; Masamha et al., 2014), the mechanisms that regulate 3’ UTR length remain

undefined. Our findings suggest that Nkx2–5, an essential cardiac transcription factor, regulates

APA through the recruitment of 5’-3’ exonuclease Xrn2 during heart development (Figure 4) and

that tissue-specific transcription factors play an important role in tissue-specific 3’ UTR length.

Although knockdown of Nkx2-5 and Xrn2 showed the defect of heart looping (Figure 5), Nkx2-5

and Xrn2 double heterozygotes have ASD and VSD (Figure 6). This difference may be caused by the

remaining amount of protein expression and / or acute decrease of expression by gene knockdowns

or stable decrease of expression by gene knockout, which is supported by the recent study report-

ing the difference of phenotypes caused by gene knockdowns or gene knockouts (Rossi et al.,

2015). Consistent with our results, Nkx2-5 heterozygotes do not display defective heart looping,

although Nkx2-5 homozygotes show this defect (Biben et al., 2000).

In summary, our findings suggest that Nkx2–5 regulates APA by recruiting Xrn2 to targeted geno-

mic regions. Deficiencies in Nkx2–5 and Xrn2 disrupted the regulation of 3’ UTR length and resulted

in abnormalities in heart formation. Although we cannot exclude the possibility of other defects in

addition to the dysregulation of APA, the data suggest that APA dysregulation could be one of the

mechanisms that cause CHD in patients with mutated Nkx2-5, nevertheless, it is still unclear whether

long 3’UTR per se is related to the pathogenesis of cardiac abnormality. Although further studies

are required to elucidate the molecular role of Nkx2-5 in the regulation of APA, our findings provide

a conceptual framework for understanding how transcription factors regulate 3’ UTR length.
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Materials and methods

Mice
Embryonic hearts were obtained from C57BL/6 wild-type and Nkx2-5-deficient mice (Moses et al.,

2001) in accordance with protocols 3422–1 and 24-084-012 approved by the Ethics Committee for

Animal Experiments of the Osaka University Graduate School of Medicine.

Generation of Xrn2-deficient mice using CRISPR/Cas9
Cas9 RNA and gRNA were generated by in vitro transcription with the SP6 mMessage mMachine kit

(Ambion, Foster City, CA) as previously described, with minor modifications (Wang et al., 2013).

Cas9 RNA and two gRNAs were injected into fertilized eggs obtained from C57BL/6 mice to delete

exon 1 and 2 of Xrn2. Deletion of these exons was confirmed by sequencing. Xrn2 heterozygous

mice were obtained by intercrossing Xrn2 F0 with C57BL/6 mice.

Native ChIP-seq
Nuclear extracts from four E12.5 embryonic hearts were used in each native ChIP experiment follow-

ing a previously described protocol with minor modifications (Nimura et al., 2006; 2009). Isolated

nuclei from embryonic hearts were treated at 25˚C for 30 min with 4.8 U ml�1 micrococcal nuclease

in 250 ml of a nuclear isolation buffer containing 400 mM NaCl, which was then diluted to 200 mM

NaCl. The digested chromatin was immunoprecipitated with 15–50 mg of antibody. Only mono- and

di-nucleosomes size DNA was used for construction of sequencing libraries. Sequencing libraries

were prepared from two or more biological-replicate ChIP samples and from an input according to

the instructions provided with the SOLiD Fragment Library Barcoding Kit (Life

Technologies, Carlsbad, CA). The libraries were sequenced with SOLiD 4. The resulting reads were

mapped using BioScope software (Life Technologies) with the default configuration, combined bio-

logical replicates, and analyzed using Homer (Heinz et al., 2010), CEAS (Shin et al., 2009) and R

software programs. The mapping results are shown in Supplementary file 1A and were generated

using IGV software (Robinson et al., 2011). The heatmap was generated using Java TreeView

(http://jtreeview.sourceforge.net/).

RNA-seq
RNA was extracted from primary embryonic cardiomyocytes (from E12.5 hearts) and E9.5 hearts

from Nkx2-5-deficient/wild-type littermates using the TRIzol reagent (Invitrogen, Carlsbad, CA)

according to the manufacturer’s instructions. Strand-specific sequencing libraries from two biological

replicate RNA samples were prepared according to the Life Technologies protocol as previously

described (Mori et al., 2012). Briefly, digested poly(A)-tailed mRNA was ligated to the SOLiD Adap-

tor Mix and then reverse-transcribed using the SOLiD Total RNA-Seq Kit (Life Technologies). Size-

selected first-strand cDNA was amplified by using SOLiD 5’ PCR primers and barcoded SOLiD 3’

PCR primers (Life Technologies). RNA-seq libraries were sequenced with SOLiD 4. The resulting

reads were mapped using BioScope software (Life Technologies) and analyzed using BioScope and

Cufflinks (Trapnell et al., 2010; 2012). The mapping results are shown in Supplementary file 1B.

RefSeq genes were divided into three categories (High, Middle, and Low) according to the FPKM

(fragments per kilobase of exon per million fragments mapped) of each gene in wild-type eCMs:

High: FPKM > 500; Middle: FPKM 100–500; and Low: FPKM 10–100. The genes identified for analy-

sis were either upregulated to more than a ln (fold change) of 0.2 or downregulated to less than a ln

(fold change) of 0.2 compared with control siRNA-treated eCMs. The High, Middle, and Low catego-

ries included 90, 717, and 5516 genes, respectively.

The expression of read-through RNA (FPKM > 0.5) was measured within 5 kb in eCMs and in

Nkx2-5-deficient embryonic hearts using BioScope (Life Technologies). Genes with an average

change in read-through RNA expression of more than a 1.4-fold compared with control siRNA-

treated eCMs or wild-type littermate hearts were analyzed using DAVID. Genes for which the read-

through RNA was expressed at less than 0.5-fold compared with controls were considered to have

downregulated read-through RNA. Genes with expression within regions of a read-through RNA

were removed from the analysis. The normalized read-through RNA tags were counted in 50-bp bins
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using CEAS, and the obtained values were then used to calculate the average expression in each

bin.

The polyadenylation sites were obtained from APADB (http://tools.genxpro.net/apadb/).

Purification of chromatin-fractioned RNA from eCMs
Chromatin-fractioned RNA was purified from 2~5 X 106 cells of eCMs as previously described

(Nojima et al., 2015). rRNA was depleted using Ribominus Eukaryote kit ver2 (Life technologies)

from 3.5~4.0 mg chromatin RNA.

Antibodies
The antibodies used in this study are shown in Supplementary file 1D. All the antibodies used for

ChIP-seq have been previously reported as suitable or were verified to be suitable for the immuno-

precipitation of target proteins (Figure 1—figure supplement 4).

Knockdown in cardiomyocytes
Primary eCMs were obtained from E12.5 hearts by overnight digestion with trypsin-EDTA at 4˚C and

separation from cardiac fibroblasts by pre-plating on collagen type I-coated dishes for 1 hr, as previ-

ously described (Springhorn and Claycomb, 1989) with some modifications. The cardiomyocytes

were transfected with Nkx2-5 (Mm_Nkx2-5_8958, SIGMA), Tb x 5 (Mm_Tb x 5_9160, SIGMA), Gata4

(Mm_Gata4_5094, SIGMA), Xrn2 (Mm_Xrn2_3520 and Mm_Xrn2_3522, SIGMA), or control (SIC-001,

SIGMA) siRNAs using RNAiMAX (Invitrogen) and cultured for 48 hr in Dulbecco’s modified Eagle

medium supplemented with 10% fetal bovine serum. The siRNAs directed against Nkx2-5, Tbx5,

and Gata4 were chosen from three different siRNAs after determining the knockdown efficiency and

specificity of each candidate using quantitative RT-PCR and Western blotting.

Quantitative RT-PCR
Total RNA was extracted with the TRIzol reagent (Invitrogen). Reverse transcription was performed

with SuperScript III (Invitrogen) as previously described (Nimura et al., 2009) and analyzed using the

CFX384 Real-Time System (BIO-RAD, Hercules, CA). Genomic DNA contamination was evaluated by

examining reverse transcription reaction samples lacking reverse transcriptase. The values were nor-

malized to Rplp2 (ribosomal protein, large, P2) and expressed relative to the values obtained with

control siRNA-treated eCMs.

Native 3C
Nuclei isolated from 106 siRNA-transfected E12.5 primary cardiomyocytes were digested overnight

at 37˚C with EcoRI, BglII, or HindIII (100 units per 106 cells, TOYOBO, JAPAN) in 100 ml of buffer

with 0.4% NP-40 and complete EDTA-free protease inhibitors (Roche, Indianapolis, IN). The nuclei

were ligated overnight with Ligation High (TOYOBO) and then extracted using phenol-chloroform.

The primers were designed using the 3C Primer (http://dostielab.biochem.mcgill.ca/index.php) and

Primer3 programs (http://frodo.wi.mit.edu/). BAC plasmids RP23-2E23 for Tnnt2 and RP23-128I8 for

Atp2a2 were used as controls. PCR was performed using the THUNDERBIRD SYBR qPCR mix

(TOYOBO) and a CFX384 thermocycler (BIO-RAD). The amplicons were separated on 2% agarose

gels stained with ethidium bromide for visualization.

Northern blotting
Poly A-tailed mRNA was purified from total RNA that was extracted using TRIzol (Invitrogen) and

the Ambion MicroPoly(A) Purist Kit (Ambion). The poly(A)-tailed mRNA (360 ng) was separated by

1% agarose gel electrophoresis and transferred to a Hybond-N+ nylon transfer membrane (Amer-

sham Biosciences, Pittsburgh, PA). Tnnt2 and Atp2a2 mRNA were detected with 32P-labeled cDNA

that contained a portion of the gene-body regions of Tnnt2 and Atp2a2. The intensities of the bands

were quantitatively measured using a BAS5000 (GE Healthcare, Pittsburgh, PA).

Immunoprecipitation in C3H10T1/2 cells
Expression constructs containing HA-Nkx2-5, Flag-Xrn2, and their deletion mutants were cotrans-

fected into C3H10T1/2 cells, purchased from ATCC, in 10 cm dishes as previously described
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(Nimura et al., 2009). This cell was neither authenticated nor tested for mycoplasma contamination.

HA-Nkx2-5, Flag-Xrn2, and their respective deletion mutants were immunoprecipitated from nuclear

extracts that were prepared as previously described (Nimura et al., 2009). Co-immunoprecipitated

proteins were analyzed by Western blotting.

Introduction of siRNA into embryonic hearts
E7.5 embryos were dissected from the uterus, and embryos at the early-head-fold stage were care-

fully selected. Liposomes were created by mixing 3.33 mM siRNAs directed against Nkx2-5, Xrn2, or

control together with 53 ng/ml EGFP expression vector in 15 ml of OPTI-MEM with 3 ml of RNAiMAX

(Invitrogen) diluted in 15 ml of OPTI-MEM. Liposomes were injected into heart fields as previously

described (Yamamoto et al., 2004). The embryos were rotationally cultured for 48 hr in Dulbecco’s

modified Eagle’s medium supplemented with 75% rat serum. GFP signals and heart morphology

were examined with a Leica M165FC microscope, and the embryos with weak GFP signals were dis-

carded (Figure 5).

In situ hybridization
Whole-mount in situ hybridization was performed according to standard procedures (Wilkin-

son, 1992) and probe specific for Pitx2 mRNA (Yoshioka et al., 1998).

Statistical analysis
The data are presented as the mean ± s.e.m. P values were calculated using the two-tailed t-test and

the Tukey-Kramer HSD test using JMP, Fisher’s exact test was performed using http://aoki2.si.

gunma-u.ac.jp/exact/fisher/getpar.html, and the two-sample Kolmogorov-Smirnov test was per-

formed using R. p < 0.05 was considered statistically significant. The number of n shows biological

replication.
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