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1 Introduction

In the real world, it is difficult to precisely know what will happen in the future

since we have insufficient information about the state of the world. Consequently,

the insufficient information about the true state of the world affects decision making

about whether an agent chooses to become an entrepreneur or not. By incorporating

such information imperfection into Matsuyama’s (2007) and Asano et al.’s (2012)

frameworks, in which, under perfect observation, each agent can choose to become

either an entrepreneur or a lender with borrowing constraints due to financial im-

perfection, we propose a model of endogenous business cycles and analyze how such

information imperfection affects the dynamic nature of the model. Furthermore, we

provide a mechanism by which not only transient chaos but also observable chaos

emerges, both of which are different from the definition of chaos found in Asano et

al. (2012).

The significance of analyses of chaotic dynamics in economics has been recog-

nized in literature over the past three decades.1 In a recent study, Gardini et al.

(2008) investigate the piecewise-smooth growth cycle model of Matsuyama (1999)2

by employing the theory of border-collision bifurcations.3 Moreover, by applying the

microeconomic theory of banking to the macroeconomics of business cycles, Myer-

son (2012) analyzes moral hazard in financial intermediation and shows that boom

and bust can be sustained in such economies.4

Matsuyama (2007) proposes a model with endogenous technology switch caused

by financial imperfection, and shows that the model can generate several growth pat-

terns. In Matsuyama’s (2007) model, agents are faced with borrowing constraints

due to financial imperfection, and each agent can choose to be either an entrepreneur

or a lender. Furthermore, multiple investment technologies are assumed to be avail-

able. The market interest rate affects entrepreneurs’ choice of technology and the

market rate varies over time depending on the level of capital. This implies that the

entrepreneurs’ choice of technology changes endogenously, which gives rise to richer

1In his seminal studies, Day (1982, 1983) show that in simple economic structures (traditional
growth models), chaotic fluctuations can be found if nonlinearities are sufficiently large.

2Matsuyama (1999) analyzes the interaction of two sources of economic growth, the Solow and
the Romer regimes, and shows that the economy attains sustainable growth through cycles and it
will not stay within one regime, that is, it oscillates alternatively between the two regimes. Note
that the Solow regime is characterized by high output growth, high investment, no innovation, and
a competitive market structure, and that the Romer regime is characterized by low output growth,
low investment, high innovation, and a monopolistic market structure.

3See also Matsuyama et al. (2016).
4See also Myerson (2014).
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dynamics compared to other models in the literature on endogenous business cycles.

Although the model proposed by Matsuyama (2007) is simple, it leads to various

phenomena, such as credit traps, credit collapses, leapfrogging, credit cycles, and

growth miracles. As such, Asano et al. (2012) analyze the dynamic property of the

macroeconomic model proposed by Matsuyama (2007) in depth, and show that the

model can be analyzed within the framework of the neuron model of Hata (1982,

1989).5

Furthermore, Asano et al. (2012) show that the model can exhibit either periodic

fluctuations or fluctuations which are chaotic in some sense.6 Note that chaos in

Asano et al. (2012) occurs only on the set of values of measure zero. In this sense,

chaos is not observable in the models of Asano et al. (2012) and, consequently,

Matsuyama (2007). Observability of chaos is important because it can capture the

“recurrent but not periodic” nature of business cycles in the deterministic frame-

work. Therefore, for analyzing the observability of chaos in the long run, we consider

the notion of observable chaos (or ergodic chaos).7

Some extant studies are worth being mentioned in this respect. For instance,

Ishida and Yokoo (2004) develop a macroeconomic model, in which firms face a

binary choice problem in investment and show that, due to piecewise linearity, the

model exhibits periodic cycles. Yokoo and Ishida (2008) modify the model by in-

troducing imperfect observability,8 and provide a mechanism by which observation

errors lead to chaotic fluctuations. That is, Yokoo and Ishida (2008) show that

observation errors (or misperception) can be a source of transient chaos as well as

observable chaos in economic systems.

The model proposed in this paper can be thought of as an extension of the model

in Asano et al. (2012), which is a special case of Matsuyama’s (2007), along the

line of Yokoo and Ishida (2008). As a result, Matsuyama’s (2007) original model is

modified as to be tractable enough to investigate the dynamics in depth by using

5See also Hata (2014).
6Asano et al. (2012) show the existence of chaos in the sense of Hata (1982, 1989). For the

definition of chaos by Hata (1982, 1989), see Section 2 for further details.
7As economic applications of observable chaos, for example, Matsuyama (1991) analyzes endoge-

nous fluctuations within the framework of Brock’s (1975) model of money-in-the-utility-function.
Nishimura and Yano (1995) investigate the possibility of ergodically chaotic optimal capital ac-
cumulation. While Matsuyama (1991) and Nishimura and Yano (1995) analyze one-dimensional
models, Yokoo (2000) analyzes a two-dimensional one, and investigates the global dynamics of a
two-dimensional Diamond-type overlapping generations model.

8By imperfect observability, we mean that the state variables are observed with some noise, e.g.,
x̂t = xt +σεt, where xt is a state variable at time t, σ > 0 is a constant, and εt is a random variable
at time t. Therefore, perfect observability corresponds to the case in which relevant macroeconomic
state variables are observed without any noise, that is, σ = 0.
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the techniques of the Frobenius-Perron operators to find invariant measures (i.e.,

observable chaos) as in Yokoo and Ishida (2008).9 Indeed, by specifying the set

of parameters for some kind of Markov properties,10 we can easily establish and

characterize chaotic dynamics with observability in more detail. Imposing Markov

properties on models seems rather restrictive, however, this will be relaxed later to

a certain extent.

The organization of this paper is as follows. Based on Matsuyama (2007) and

Asano et al. (2012), Section 2 provides a benchmark model, in which the produc-

tivity of agents is perfectly observable. Section 3 provides the main model of this

paper, in which the productivity of agents is imperfectly observable. Section 4 con-

siders further specifications of our model discussed in Section 3. Section 5 analyzes

chaotic dynamics in detail. Section 6 concludes this paper. Some derivations are

relegated to the Appendix.

2 The Model under Perfect Observation

In this section, based on Asano et al. (2012), directly following Matsuyama (2007),

we consider the situation in which the returns generated by entrepreneurs’ projects

are perfectly observable. In the following sections, we extend the perfectly observ-

able framework to an imperfectly observable one in which the returns generated by

entrepreneurs’ projects are observed with some noise.

A final good is produced by the following constant returns to scale technology:

Yt = AF (Kt, Lt),

where Kt and Lt denote physical capital and labor at time t, respectively. Let

yt = Yt/Lt, kt = Kt/Lt, and f(kt) = F (kt, 1). Then,

yt = Af(kt).

We also suppose that f ′ > 0 and f ′′ < 0. For simplicity, similar to Asano et al.

(2012), we specify f(kt) as

f(kt) = Akα
t , 0 < α < 1.

9For example, see Boyarsky and Góra (1997, Chapter 4) or subsection 5.2 in this paper for
further details. For applications of the Frobenius-Perron operator to piecewise linear economic
models in different contexts, see e.g. Matsumoto (2001, 2005) and Huang (2005).

10To this end, we adopt some theory from dynamical systems theory related to ergodic theory.
For example, see Boyarsky and Góra (1997).
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Since we assume that the labor market is competitive, the real wage, wt, is as follows:

wt = w(kt) = (1 − α)Akα
t .

It is also assumed that physical capital fully depreciates in one period.

Similar to Matsuyama (2007) and Asano et al. (2012), we consider the Diamond

overlapping generations model, in which agents live two periods. In each period, a

new generation of potential entrepreneurs, which is a unit measure of homogeneous

agents, is born with one unit of labor and lives two periods. In the young period, they

supply labor and earn wt = w(kt). They only consume in the old period. We assume

that, in the young period, each agent born at time t can choose to become either

a lender or an entrepreneur. On one hand, if she chooses to become a lender, then

she lends all of her earnings and obtains rt+1wt in the old period in the competitive

credit market, where rt+1 denotes the real interest rate. On the other hand, if she

chooses to become an entrepreneur, then she can choose from two types of projects,

a type 1 project and a type 2 project. A type i (i = 1, 2) project transforms mi units

of the final good in period t into miRi units of physical capital in period t+1. When

mi > wt, she must borrow mi − wt at rate rt+1. When mi ≤ wt, the project can be

entirely self-financed and wt−mi is lent. By the existence of credit constraints, each

agent can pledge only up to a constant fraction of the project revenue for repayment,

λimiRif
′(kt+1), where 0 ≤ λi ≤ 1. The parameter, λi, captures the credit market

friction.11 Since the lender is assumed to know this, the lender would lend only up

to λimiRif
′(kt+1)/rt+1. The agent must satisfy the following borrowing constraint:

λimiRif
′(kt+1) ≥ rt+1(mi − wt) ⇔ rt+1 ≤ λimiRif

′(kt+1)

mi − wt
=

Rif
′(kt+1)

(1 − (wt/mi))/λi

for i = 1, 2. A larger λi implies a weaker credit constraint. If λi = 1, then

the agent can borrow up to the present discounted value of the project revenue,

miRif
′(kt+1)/rt+1. If λi = 0, then the agent cannot borrow the money she needs

and must self-finance the project entirely.

Since the agents can be lenders, the following profitability condition must be

satisfied:

f ′(kt+1)miRi − rt+1(mi − wt) ≥ rt+1wt ⇔ f ′(kt+1)Ri ≥ rt+1.

This condition states that the agents borrow and run a type i project if and only if

earnings from investment are greater than those from lending.

11For this formulation of the credit market imperfection, see also Matsuyama (2004).
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The equilibrium interest rate satisfies the following:

rt+1 = max

{
R1f

′(kt+1)

max{1, (1 − (wt/m1))/λ1} ,
R2f

′(kt+1)

max{1, (1 − (wt/m2))/λ2}
}
.

For credit cycles to appear in Matsuyama’s (2007) model without noise, we as-

sume the following inequalities as in Asano et al. (2012):

R2 > R1 > λ2R2 > λ1R1 and
m1

m2
<

1 − (λ2R2/R1)

1 − λ1
< 1. (1)

The first assumption implies that there exist trade-offs between productivity and

pledgeability.12 Under the first and second assumptions, the two graphs intersect

twice as in Figure 4 in Matsuyama (2007, p.512).

Remember that project 1 is adopted if

R2

max{1, (1 − (wt/m2))/λ2} ≤ R1

max{1, (1 − (wt/m1))/λ1} , (2)

and that project 2 is adopted otherwise. Thus, by solving

R2

(1 − (w(k)/m2))/λ2
=

R1

(1 − (w(k)/m1))/λ1

for k = kC , where

w = w(k) = (1 − α)Akα,

we obtain

kC =

[
m1m2(λ2R2 − λ1R1)

(1 − α)A(m2λ2R2 −m1λ1R1)

]1/α

.

Similarly, by solving

R2

(1 − (w(kCC)/m2))/λ2

= R1,

we have

kCC =

[
m2(1 − λ2R2/R1)

(1 − α)A

]1/α

.

For the later use, we define

kD =

[
m1(1 − λ1)

(1 − α)A

]1/α

,

12See Matsuyama (2007) for details.
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which is obtained by equalizing the components in the denominator of the right-hand

side of (2), i.e.,

1 = (1 − (w(kD)/m1))/λ1.

Similarly, we also define

kN =

[
m2(1 − λ2)

(1 − α)A

]1/α

by doing the same for the left-hand side of (2). Under assumptions (1), we have

kC < kD < kCC < kN (see Fig.1).

+++ insert Fig.1 around here +++

Under these assumptions, the model turns out to be given by

kt+1 =

⎧⎨
⎩

R2(1 − α)Akα
t if 0 < kt < kC ,

R1(1 − α)Akα
t if kC ≤ kt ≤ kCC ,

R2(1 − α)Akα
t if kCC < kt

(3)

and can be verified to have credit cycles. As is also verified that every trajectory

generated by (3) is eventually trapped in the interval [R1(1−α)Akα
C, R2(1−α)Akα

C] ⊂
[0, kCC ], called a trapping interval, we find a variable change that transforms the

trapping interval into the unit interval [0, 1]. To provide a qualitative analysis of

the model in the long run, Asano et al. (2012) transform (3), dropping off the third

equation, into a tractable form by taking the logarithms of both the sides of (3),

which gives

log kt+1 =

{
log(R2(1 − α)A) + α log kt, if 0 < kt < kC ,
log(R1(1 − α)A) + α log kt, if kC ≤ kt ≤ kCC .

(4)

By defining a new variable xt by

xt =
1

log(R2/R1)
[log kt − log(R1(1 − α)Akα

C)] , (5)

(4) can be transformed into the following piecewise linear difference equation:13

xt+1 =

{
1 + α(xt − γ), if xt < γ,
α(xt − γ), if xt ≥ xt,

(6)

13Based on a similar form to (4), Ishida and Yokoo (2004) develop a business cycle model, and
show that it can generate asymmetric periodic cycles for arbitrary periods.
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where

γ =
log
(
k1−α

C /R1(1 − α)A
)

log(R2/R1)
.

Asano et al. (2012) show that γ can take any value within the range (0, 1). As

pointed out by Asano et al. (2012), (6) is the same as the Caianiello equation

analyzed by Hata (1982, 1989). Based on Hata’s (1982, 1989) results, Asano et al.

(2012) show that the macroeconomic model by Matsuyama (2007) mentioned above

can exhibit periodic or “chaotic” fluctuations. As such, we restate the results by

Asano et al. (2012) for comparison and the reader’s convenience in the following

proposition.

Proposition 1. (Asano et al. (2012) with some modifications14) For any rational

number p/q ∈ (0, 1), where integers p and q are mutually prime, there exists a closed

interval Δ(p/q) such that for any γ ∈ Δ(p/q), (6) exhibits a globally attracting

period-q cycle. Moreover, let E0 = [0, 1] \ ⋃0<p/q<1 Δ(p/q), which is of measure

zero. Then, for any γ ∈ L0, (6) exhibits chaos in the sense of Hata (1982, 1989).

Note that, unlike any other definitions of chaos in the present paper, chaos in

the sense of Hata (1982, 1989) lacks the condition of the density of periodic points.

Instead, Hata’s chaos exhibits (i) expansivity (which implies sensitive dependence

on initial conditions) and (ii) topological transitivity (see also Asano et al. (2012)).

However, for the purpose of analyzing the observability of chaos in the long run, we

consider the notion of observable chaos (or ergodic chaos), as defined in Section 5.

3 The Model under Imperfect Observation

The main model in this paper builds on that with no uncertainty described in the

previous section. To do this, we suppose that a project with a higher rate of return

is riskier. To capture this idea in an easier way, we suppose, à la Yokoo and Ishida

(2008), that entrepreneurs perceive the rate of return from project 2, which earns

higher returns than project 1, with some “noise.” For simplicity, we assume that

entrepreneur i perceives R2 to be R̂2,i, which we formulate as15

R̂2,i = (1 + σεi)R2, σ ≥ 0, (7)

14Also see Hata (1982, 1989).
15Here we introduce multiplicative noise. Additive noise formulated such as R̂2,i = R2 + σεi can

be a possible alternative, which, however, makes no essential difference for the outcomes.
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where ε = εi is a stochastic variable, whose support is the interval [−1, 1], inde-

pendently drawn by entrepreneur i from an identical distribution. The distribution

function will be specified later for our purpose. On one hand, the disturbance term,

εi, represents the observational uncertainty by which entrepreneur i is affected. On

the other hand, the constant, σ, is related to the variance of the disturbance term:

the larger σ is, the riskier the project. When σ = 0, that is, when there is no

uncertainty16 involved, the model becomes as that analyzed in Asano et al. (2012).

We assume that the variance of the disturbance term εi is normalized to one, which

enables us to measure the degree of uncertainty by σ.

By the similar arguments of Matsuyama (2007) and Asano et al. (2012), project

1 is adopted by entrepreneur i if and only if

R̂2,i

max{1, (1 − (wt/m2))/λ2} ≤ R1

max{1, (1 − (wt/m1))/λ1} . (8)

Then, by (7), Inequality (8) is rewritten as

εi ≤ 1

σ

[
R1 max{1, (1 − w(kt)/m2)/λ2}
R2 max{1, (1 − w(kt)/m1)/λ1} − 1

]
≡ ρ(kt).

Since kC < kD < kCC < kN , the function ρ(kt) restricted to the interval [0, kCC] has

one and only one kink at kt = kD. Let ρL denote the restriction of ρ to the interval

[0, kD] and ρR that to [kD, kCC]. Then, we have

ρL(kt) =
1

σ

[
R1(1 − w(kt)/m2)/λ2

R2(1 − w(kt)/m1)/λ1
− 1

]
and (9)

ρR(kt) =
1

σ

[
R1

R2λ2

(1 − w(kt)/m2) − 1

]
. (10)

Since sign ρ′L(kt) = sign (m2 − m1) > 0 and sign ρ′R(kt) = sign (−w′(kt)) < 0,

wherever the derivatives exist, the graph of ρL is upward-sloping and that of ρR

is downward-sloping. Also note that by (1),

ρL(0) =
1

σ

[
λ1R1

λ2R2

− 1

]
< 0 and

16Interpretations of ε and σ are open to dispute. Given ε, σ may be regarded as the level of noise
or the level of rationality of the agent. In any case, such formulations of “noise” often appear when
agents face a discrete choice problem. For a comprehensive textbook on discrete choice theory,
see Anderson et al. (1992). This theory is intensively used in stochastic evolution in games. See
e.g. Sandholm (2010) for the use of noise in evolutionary game theory. For another application
of discrete choice theory in relation of chaotic dynamics, see e.g. Brock and Hommes (1997) for
adaptively rational equilibrium.
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ρL(kD) = ρR(kD) =
1

σ

[
1 − λ2R2

R1
− (1 − λ1)

m1

m2

]
> 0

for any σ > 0.

Let G be the cumulative distribution function for the stochastic variable ε, that

is, G(x) = Prob(ε ≤ x). Therefore, introducing uncertainty into original model (3)

gives a generalized dynamic equation:

kt+1 = [R1G(ρ(kt)) +R2(1 −G(ρ(kt)))]w(kt). (11)

4 Piecewise-Linearization of the Model

As the form of (11) is still too general to characterize its dynamics in detail, we need

to further specify its functional form. First, for σ > 0 small enough, we can define

kL and kR by solving

ρL(kL) = −1 and ρL(kR) = 1,

where ρL(kt) is given by (9) for kt ∈ [0, kD]. Further computations show that

kL = kL(σ) =

[
m1m2((1 − σ)λ2R2 − λ1R1)

A(1 − α)((1 − σ)m2λ2R2 −m1λ1R1)

]1/α

and (12)

kR = kR(σ) =

[
m1m2((1 + σ)λ2R2 − λ1R1)

A(1 − α)((1 + σ)m2λ2R2 −m1λ1R1)

]1/α

(13)

for

0 < σ <
λ2R2 − λ1R1

λ2R2
. (14)

It is easy to check that k′L(σ) < 0 and k′R(σ) > 0. Note that kL < kC < kR and that

limσ→0 kL(σ) = limσ→0 kR(σ) = kC . Since ρL is defined on [0, kD], it must also hold

that

kR ≤ kD

or

σ ≤ m1λ1R1 + (m2 −m1)R1 −m2λ2R2

m2λ2R2
. (15)

Next, we consider the case in which the function ρ(kt) is “well-behaved” in that

once ρ(kt) exceeds 1 as kt increases, it never falls below 1 until kt reaches the right

endpoint of the trapping interval. As we show below, we can take the interval

T = [k, k] ≡ [R1(1 − α)Akα
L, R2(1 − α)Akα

R] (16)
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as the trapping interval for (11) if G is appropriately specified. Let k̃R be defined

as the solution of

ρR(k̃R) = 1,

where ρR is given by (10). Therefore, for ρ to be well-behaved in the above sense,

it suffices to require that

k < k̃R,

which can be rewritten as

A < Â ≡ m2(1 − (1 + σ)λ2R2/R1)

1 − α

[
(1 − σ)m2λ2R2 −m1λ1R1

R2m1m2((1 − σ)λ2R2 − λ1R1)

]α

. (17)

Note that the fraction within the parentheses in the last expression is well defined

if (14) is assumed and that Â is positive if

σ <
R1 − λ2R2

λ2R2
. (18)

This situation is depicted in Fig.2.

+++ insert Fig.2 of the graph of ρ including k̄ and k̃R around here +++

Assuming (17) and (18) for now, we introduce, analogously to (5), the following

variable transformation, which maps the interval T given by (16) to the unit interval

[0, 1]:

xt = h(kt) =
1 + α (γR − γL)

log(R2/R1)
[log kt − log(R1(1 − α)Akα

R)] , (19)

where

γL = γL(σ) =
log

kLk−α
R

R1(1−α)A

log R2

R1

(
kR

kL

)−α and γR = γR(σ) =
log

k1−α
R

R1(1−α)A

log R2

R1

(
kR

kL

)−α .

For the later use, note that

γ′L(σ) < 0, γ′R(σ) > 0, and

lim
σ→0

γL(σ) = lim
σ→0

γR(σ) =
log(k1−α

C /R1(1 − α)A)

log(R2/R1)
≡ γ.
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Using the variable change given by (19), the model defined in (3) is transformed,

in the long run, into

xt+1 =

⎧⎨
⎩

1 + α(xt − γL) if xt < γL,
ψ(xt) if γL ≤ xt ≤ γR,
α(xt − γR) if γR < xt,

(20)

where the shape of ψ(xt) depends on the distribution function, G, of the stochastic

variable, ε. If (17) would fail to be satisfied, then the value of G would be less than

1 on some interval of [kR, k], so that the third equation of (20) would be distorted.

As our model, compared to Matsuyama’s (2007) original model, is intended to

be as tractable and have, at the same time, as rich dynamic properties as possible,

we set the dynamic equation given by (20) to be continuous and piecewise linear.

This requires that ψ be of the following linear form:

ψ(x) =
γR − x

γR − γL
,

which in turn implies that the cumulative distribution function, G(y), for y ∈ [−1, 1],

must satisfy the following equation:

[R1G(ρ(k)) +R2(1 −G(ρ(k)))]w(k) = h−1(ψ(h(k))). (21)

Letting y = ρ(k) and solving (21) for G(y), we obtain

G(y) =

⎧⎨
⎩

0 if y < −1,
1

R2−R1

[
R2 − h−1(ψ(h(ρ−1

L (y))))/w(ρ−1
L (y))

]
if − 1 ≤ y < 1,

1 if 1 ≤ y.

The graph of G(y) is plotted in Fig.3.

+++ insert Fig.3 of a graph of G +++

In summary, we obtain the following proposition.

Proposition 2. Suppose that the variance of the disturbance term, σ, satisfies (14)

and (18), and that (17) is satisfied. Then, the cumulative distribution function,

G(y), for y ∈ [−1, 1], is as follows.

G(y) =

⎧⎨
⎩

0 if y < −1,
1

R2−R1

[
R2 − h−1(ψ(h(ρ−1

L (y))))/w(ρ−1
L (y))

]
if − 1 ≤ y < 1,

1 if 1 ≤ y.
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Notice that the cumulative distribution function, G, varies with parameters, espe-

cially when including σ, to keep the model piecewise linear. Using this distribution

function, the long-run model we analyze in this paper turns out to be the map:

ϕ : I = [0, 1] → I defined by

xt+1 = ϕ(xt) =

⎧⎨
⎩

1 + α(xt − γL) ≡ ϕL(xt) if 0 ≤ xt < γL,
(γR − xt)/(γR − γL) ≡ ϕM(xt) if γL ≤ xt < γR,
α(xt − γR) ≡ ϕR(xt) if γR ≤ xt ≤ 1.

(22)

Since γL and γR in (22) depend on the variance parameter, σ, so does ϕ. To stress

this dependence, we sometimes write ϕσ. As uncertainty vanishes, that is, as σ

tends to 0, map ϕσ becomes in the limit as follows:

xt+1 = ϕ0(xt) =

{
1 + α(xt − γ) if 0 ≤ xt < γ,
α(xt − γ) if γ ≤ xt ≤ 1,

(23)

which is essentially the same model as studied by Asano et al. (2012).

5 Chaotic Dynamics

In the following, we show that the model given by (22) is capable of generating

chaotic behaviors in some sense. First, note that the study of Asano et al. (2012)

shows that for any integer q > 1, there is a γ ∈ (0, 1) such that the limiting map,

ϕ0, given by (23) exhibits a periodic attractor of period q. On the other hand, by

a variation of the Li-Yorke Theorem (Li and Yorke (1975)), it is known that if a

continuous map on the interval has a periodic point whose period is not 2 to the

power of n for any integer n > 0, then it is chaotic in the sense of Li-Yorke (Li

and Yorke (1975)). To avoid confusion, we call this type of chaos topological chaos

hereafter. Therefore, it is not surprising that the continuous map, ϕσ, given by (22),

is topologically chaotic when ϕ0, which has a discontinuity, has a non-2n periodic

point and when σ is positive but small enough.

However, it is well recognized that the existence of topological chaos does not

assure the observability of complexity in the long run. Therefore, if we want to

reproduce recurrent but not periodic fluctuations observed in business cycles using

a model in the deterministic framework, we can establish the observability of chaos.

As such, we show below that our model exhibits observable chaos or ergodic chaos

under specific parametric conditions and that chaos of this type is not rare but

rather abundant in some sense.
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5.1 Markov Property

We first present some mathematical definitions related to the Markov property. For

more details, see e.g. Boyarsky and Góra (1997, Chapters 6 and 9).

Let I = [0, 1] and let τ : I → I be a transformation of I onto itself with τn

denoting the n-fold composition of τ with itself. Let P be a finite partition of I

given by the points 0 = a0 < a1 < · · · < an = 1. For i = 1, 2, · · · , n, let Ii = (ai−1, ai)

and denote the restriction of τ to Ii by τi. If τi is a homeomorphism from Ii onto

some connected union of intervals of P, then τ is said to be Markov. The partition

P = {Ii}n
i=1 is referred to as a Markov partition with respect to τ . If each τi is linear

on Ii, then we say that τ is a piecewise linear Markov map. We also say that a

piecewise differentiable map (not necessarily Markov) τ is (piecewise) expanding if

inf |τ ′(x)| > 1 on each Ii wherever the derivative exists. If there is an integer n ≥ 1

such that inf |(τn)′(x)| > 1 on each Ii wherever the derivative exists, then τ is said

to be eventually expanding.

Since the piecewise linear map ϕ given by (22) has an N -shaped graph and, hence,

two kinks excluding the endpoints of interval [0, 1], a simple consideration reveals

that the number of endpoints of the Markov partition needs to be strictly larger

than 4. Therefore, we first show that ϕ : I → I is Markov with a partition given by

a period-5 cycle {0, c, γL, γR, 1} such that17

0 = ϕ5(0) < ϕ3(0) = c < ϕ(0) = γL < ϕ4(0) = γR < ϕ2(0) = 1. (24)

For later use, let I1 = (0, c), I2 = (c, γL), I3 = (γL, γR), and I4 = (γR, 1) be the

elements of the Markov partition of ϕ, which are numbered from left to right.

To calculate the period-5 cycle given by (4), γL and γR must solve the following

equations:

ϕL(0) = γL and ϕL(ϕR(1)) = γR,

yielding

γ∗L = γ∗5,L =
1

1 + α
and γ∗R = γ∗5,R =

1 + α2 + α3

1 + α + α2 + α3
. (25)

Note also that c∗ = ϕR(1) = α2/(1+α+α2+α3) and γ∗5,R−γ∗5,L = α3/(1+α)(1+α2).

Direct but tedious computations show that γL = γ∗L and γR = γ∗R are attained by

choosing σ and A suitably. In fact, using (12) and (13) to solve

γL(σ) = γ∗L and γR(σ) = γ∗R
17There is another possible period-5 Markov cycle such that 0 < γL < γR < c < 1. However,

since exhausting possible cycles is out of our scope, we do not consider such a case.



14

for A and σ, we obtain special values, A∗ and σ∗, for which (25) is realized. See the

Appendix for the actual representations of A∗ and σ∗.
For σ∗ given by (30) to satisfy constraints (14), (15), and (18), it suffices to

require that√
(m2λ2R2 −m1λ1R1)(λ2R2 − λ1R1)

m2λ2R2

<

min

{
m1

m2
λ1R1 +

(
1 − m1

m2

)
R1 − λ2R2, λ2R2 − λ1R1, R1 − λ2R2

}
. (26)

Note that the above inequality is independent of A and α. We can verify that the

set of parameter values satisfying (1) and (26) contains a non-trivial open set in the

parameter space. In fact, by considering, for instance,

m1 = 0.2, m2 = 1.0, λ1 = 0.1, λ2 = 0.2, R1 = 4, and R2 = 10,

we can check that the inequality given by (26) is satisfied.

Furthermore, it can be verified that (26) implies A∗ < Â for given σ∗ (see the

Appendix for a verification of the inequality). This fact implies that only if (26)

together with (1) are satisfied, then the piecewise-linearization given by (20) is

justified.

Now we show that model (22) exhibits chaotic dynamics with observability. To

characterize the chaotic behavior here, we employ some theory from dynamical sys-

tems theory related to ergodic theory. For mathematical notions which are not or

only roughly explained here, see Boyarsky and Góra (1997) for more details.

We now present some notions related to observable chaos used here. Let I =

[0, 1] and let B be the Borel σ-algebra of [0, 1].18 Given a measurable function

τ : I = [0, 1] → I, a measure μ is said to be invariant under τ (or τ preserves μ)

if μ(τ−1(E)) = μ(E) for all measurable sets E ∈ B.19 We say that a measure μ is

absolutely continuous with respect to a measure ν if ν(E) = 0 implies μ(E) = 0.
18Let X be a set and let 2X denote the power set of X . A non-empty class of subsets of 2X is

a σ-algebra if (a) X ∈ M, (b) A ∈ M implies Ac ∈ M, and (c) 〈Ai〉∞i=1 ⊂ M and Ai ∩ Aj = ∅
for i �= j implies ∪∞

i=1Ai ∈ M, where Ac and ∅ denote the complement of A and the empty set,
respectively. If X is any metric space, or more generally any topological space, then the σ-algebra
generated by the family of all open sets in X is called the Borel σ-algebra on X . A function
μ : M → [0,∞] is a measure if (a) μ(∅) = 0 and (b) μ(∪∞

i=1Ai) =
∑∞

i=1 μ(Ai) for any sequence
〈Ai〉∞i=1 of disjoint sets in M. In addition, if a measure μ satisfies (c) μ(X) = 1, then μ is called a
probability measure.

19If X is a set and M ⊂ 2X is a σ-algebra, then (X,M) is called a measurable space and the sets
in M are called measurable sets. If μ is a measure on (X,M), then (X,M, μ) is called a measure
space. If μ is a probability measure on (X,M), then (X,M, μ) is called a probability space or a
normalized measure space. Let (X,M) and (Y,N ) be measurable spaces. A function τ : X → Y is
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The existence of an absolutely continuous invariant measure is important from an

economic point of view, since it assures, unlike topological chaos, the observability of

recurrent but not periodic fluctuations in the long run and describes the asymptotic

distribution of economic states over the course of a business cycle. By the existence

of an absolutely continuous invariant measure, we define observable chaos. An ab-

solutely continuous invariant measure corresponds to the notion of (non-periodic)

attractor in topological dynamical systems theory. We say that a measurable func-

tion τ : I → I preserving the measure μ is ergodic if τ−1(E) = E implies μ(E) = 0

or μ(I \ E) = 0. This implies that an invariant set is a zero-measure set such as a

periodic orbit or is of full measure, that is, the measure can no longer be decom-

posed.20

Proposition 3. (observable chaos on a period-5 Markov partition) Let γ∗L = γ∗5,L

and γ∗R = γ∗5,R as in (25). Let σ = σ∗ = σ(γ∗L, γ
∗
R) as in (30) and let A = A∗ = A(σ∗)

as in (31). Then, ϕ : I → I defined by (22) exhibits observable chaos in the following

(stronger) sense: it admits a unique (hence ergodic) invariant probability measure μ

which is absolutely continuous with respect to the Lebesgue measure.

Proof. By the Folklore Theorem (see e.g. Boyarsky and Góra (1997, Theorem

6.1.1.)), we need to check aperiodicity and eventual expandingness of ϕ. For aperi-

odicity, we need to check that for each Ii there is ni such that ϕni(Īi) = Ī, where Īi

denotes the closure of Ii. It is easy to see by construction of ϕ that

ϕ2(Ī1) = ϕ4(Ī2) = ϕ(Ī3) = ϕ3(Ī4) = Ī .

For eventual expandingness, notice that every point ϕn(x) ∈ I, which is not on an

endpoint of Ii, will visit I3 at least once for every fourth iterate. Therefore, for x ∈ I

and for j = L or R,

∣∣(ϕ4)′(x)
∣∣ ≥ |ϕ′

j|3|ϕ′
M | =

α3

γ∗R − γ∗L
= 1 + α+ α2 + α3 > 1,

whenever the derivatives exist. Therefore, ϕ4 is piecewise expanding or ϕ is eventu-

ally expanding.

called (M,N )-measurable or just measurable if f−1(E) = {x ∈ X |f(x) ∈ E} ∈ M for all E ∈ N .
Let (X,M, μ) be a normalized measure space and let τ : X → X preserve μ. Then, (X,M, μ, τ)
is called a dynamical system.

20Let (X,M, μ, τ) be a dynamical system. A set E ∈ M is called τ-invariant or just invariant
if τ−1(E) = E.
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By the same argument, we can construct another Markov partition on a period-7

cycle such that

0 = ϕ7(0) < ϕ4(0) < ϕ(0) < ϕ5(0) < ϕ2(0) = γL < ϕ6(0) = γR < ϕ3(0) = 1.

Thus, solving

ϕ2(0) = ϕ2
L(0) = γL and ϕ3(1) = ϕ2

L(ϕR(1)) = γR

for γL and γR, we obtain

γ∗7,L =
1 + α

1 + α + α2
and (27)

γ∗7,R =
1 + α + α3 − α(1 + α)γ∗7,L

1 + α3
=

1 + α + α3 + α4 + α5

1 + α+ α2 + α3 + α4 + α5
.

Note also that γ∗7,R − γ∗7,L = α5/
∑5

i=0 α
i > 0. As such, we have the following

proposition.

Proposition 4. (observable chaos on a period-7 Markov partition) The same asser-

tion as in Proposition 3 holds if γL and γR are replaced by γ∗7,L and γ∗7,R, respectively,

as defined by (27).

Fig.4 and Fig.5 depict the situations where the map ϕ is Markov with a period-5

cycle and a period-7 cycle, as described in Propositions 1 and 2.

+++ insert Fig.4 and Fig.5 of period-5 and period-7 Markov ++++

We can readily extend Propositions 3 and 4 to a more general case of a period-

(2n+ 3) Markov partition for n ≥ 1. By solving

ϕn(0) = ϕn
L(0) = γL and ϕn+1(1) = ϕn

L(ϕR(1)) = γR,

we can derive

γ∗2n+3,L =
1 − αn

1 − αn+1
and (28)

γ∗2n+3,R =

[
n+1∑
i=0

αi − αn − αγ∗2n+3,L

n−1∑
i=0

αi

]/ [
1 + αn+1

]

=

[
2n+1∑
i=0

αi − αn

]/[2n+1∑
i=0

αi

]
= 1 − αn(1 − α)

1 − α2(n+1)
,
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with

γ∗2n+3,R − γ∗2n+3,L =
(1 − α)α2n+1

1 − α2(n+1)
.

Analogously to Propositions 3 and 4, we can summarize our results in this sub-

section as follows.

Proposition 5. (observable chaos on a period-(2n+3) Markov partition) The same

assertion as in Proposition 3 holds, if for n ≥ 1, γL and γR are replaced by γ∗2n+3,L

and γ∗2n+3,R, respectively, as defined by (28).

5.2 Matrix Representation of Chaotic Behavior

When the piecewise linear map given by (22) is Markov, the dynamics can be ana-

lyzed in more detail.

Let m be the normalized Lebesgue measure on I = [0, 1]. Let L1 be a space of all

integrable functions defined on the interval I = [0, 1]. Let τ : I → I be a nonsingular

map, where τ is said to be nonsingular if m(τ−1(E)) = 0 whenever m(E) = 0 for

a measurable set E. The Frobenius-Perron operator Pτ : L1 → L1 is defined as a

unique (up to almost everywhere equivalence) function such that for f ∈ L1,∫
E

Pτfdm =

∫
τ−1(E)

fdm

for any measurable E ⊂ I. The existence and the uniqueness of Pτf follow from

the Radon-Nikodym Theorem.21 The Frobenius-Perron operator Pτf is shown to

be a linear operator. That is, for any α, β ∈ R and any f, g ∈ L1, Pτ (αf + βg) =

Pτf + Pτg almost everywhere. Notice that f is invariant if and only if Pτf = f

almost everywhere.

Let P= {Ii}n
i=1 be a fixed partition of I and let S denote the class of all functions

that are piecewise constant on partition P. That is, f ∈ S if and only if

f =
n∑

i=1

πiχIi
≡ πf = (π1, . . . , πn)T ,

21Let τ be nonsingular and define μ(E) =
∫

τ−1(E)
fdm, where f ∈ L1 and E is an arbitrary

measurable set. The nonsingularity of τ means that m(τ−1(E)) = 0 whenever m(E) = 0 for a
measurable set E, which implies μ(E) = 0. Thus, m is absolute continuous with respect to μ.
Therefore, by the Radon-Nikodym Theorem, there exists a unique function φ ∈ L1 such that, for
any measurable set E, μ(E) =

∫
E φdm. By setting Pτf = φ, the existence and the uniqueness of

Pτf follow. See Boyarsky and Góra (1997, pp.74-78).
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where χ is the indicator function, π1, · · · , πn are some constants, T denotes trans-

pose, and f is identified with a column vector πf .

By the theorems of Boyarsky and Scarowsky (1979) and Boyarsky and Góra

(1997, Theorem 9.2.1.), if τ is piecewise linear Markov on partition P= {Ii}n
i=1,

then there is an n× n matrix Mτ such that Pτf = MT
τ π

f for every f ∈ S and πf is

the column vector obtained from f . Here, the matrix Mτ = (mij)1≤i,j≤n is given by

mij =
bij
|τ ′i |

with

bij =

{
1 if Ij ⊂ τ(Ii),
0 otherwise.

Furthermore, by Boyarsky and Góra (1997, Theorem 9.4.1.), if a piecewise linear

Markov map τ is eventually expanding, then τ is known to admit an invariant

density function that is piecewise constant on the Markov partition P. The τ -

invariant density f can be obtained as a fixed point of Pτf = f . Using the matrix

representation, the density f = πf is obtained by solving

MT
τ π

f = πf ,

which corresponds to the eigenvector associated with the eigenvalue of modulus 1

of matrix Mτ .

Now, let us apply the above results to our model. We first examine the simplest

case of the period-5 Markov partition described in Proposition 3. We observe that

on the partition P= {Ii}4
i=1, the following holds:

I3 ⊂ ϕ(I1), I4 ⊂ ϕ(I2), ∪4
i=1Ii ⊂ ϕ(I3), and I1 ⊂ ϕ(I4).

For simplicity of numbering partitioning intervals, we set P̃= {Ji}4
i=1 by the

following permutation: J = ΠI or⎛
⎜⎜⎝
J1

J2

J3

J4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
I1
I2
I3
I4

⎞
⎟⎟⎠ , (29)

where J = (J1, J2, J3, J4)
T , I = (I1, I2, I3, I4)

T , and Π is represented as above.

Under the re-numbered partition P̃= {Ji}4
i=1 defined by (29), we see that

J2 ⊂ ϕ(J1), J3 ⊂ ϕ(J2), J4 ⊂ ϕ(J3), and ∪4
i=1 Ji ⊂ ϕ(J4).
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Noting that |ϕ′
i| ≡ |ϕ′

|Ji
| = α ∈ (0, 1) for i �= 4 and that |ϕ′

4| = (γ∗5,R − γ∗5,L)−1 =

(1 + α + α2 + α3)/α3 ≡ β−1 > 1, we obtain

Mϕ =

⎛
⎜⎜⎝

0 α−1 0 0
0 0 α−1 0
0 0 0 α−1

β β β β

⎞
⎟⎟⎠ .

Solving MT
ϕ π = π for π, where π = (π1, π2, π3, π4)

T are the constants of the piecewise

constant function on P̃= {Ji}4
i=1, we can define the unique (up to constant multiples)

ϕ-invariant density:

π = (α3, α2 + α3, α + α2 + α3, 1 + α + α2 + α3)T .

We summarize the result in the following proposition.

Proposition 6. Let μ be the invariant measure given in Proposition 3. Then, its

probability density ψ, i.e., the function such that

μ(E) =

∫
E

ψdm,

for any measurable set E ⊂ I is represented by

ψ(x) = Δ−1
4∑

i=1

πiχJi
(x)

with πi =
∑3

j=4−i α
j and Δ =

∑4
i=1 πi|Ji| = (

∑4
i=1 α

4−i
∑4

j=i α
j−1)/

∑4
i=1 α

i−1.

See the Appendix for a computation of Δ.

Note that we can easily obtain the invariant density on the original partition P,

denoted π̂, by π̂ = Π−1π = ΠTπ. In this case, we have

π̂ = (α + α2 + α3, α3, 1 + α + α2 + α3, α2 + α3)T .

It is straightforward to extend the above proposition to the case of higher-period.

Proposition 7. Let μ be the invariant measure given in Proposition 5. Moreover,

P = {Ii}2(n+1)
i=1 is the corresponding Markov partition. Then, its probability density

ψ is represented by

ψ(x) = Δ−1

2(n+1)∑
i=1

πiχJi
(x)
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with πi =
∑2n+1

j=2(n+1)−i α
j and

Δ =

2(n+1)∑
i=1

πi|Ji| =

⎛
⎝2(n+1)∑

i=1

α2(n+1)−i

2(n+1)∑
j=i

αj−1

⎞
⎠/ 2(n+1)∑

i=1

αi−1,

Here, J = (J1, J2, . . . , J2(n+1))
T is a permutation of I = (I1, I2, . . . , I2(n+1))

T via

J = ΠI, where Π is a permutation matrix given by

Π = (pi,j) =

⎧⎨
⎩

1 if 1 ≤ i ≤ n + 1 and j = 2i,
1 if n+ 1 < i ≤ 2(n+ 1) and j = 2(i− n− 1) − 1,
0 otherwise.

Fig.6 draws the histograms generated by computer-simulated trajectories of the

period-5 piecewise linear Markov map described in Proposition 6. It can be seen

that as the number of iterations increases, the histogram approaches the theoretically

obtained invariant density. Fig.7 gives their counterparts for the period-7 Markov

case.

+++ insert Fig.6 of the invariant density of period-5 Markov and its

computer-simulated version +++

+++ insert Fig.7 of the invariant density of period-7 Markov and its

computer-simulated version +++

It is worth noticing that the establishment of the Markov property for a given

economic system not only serves as a tool of detecting observable chaos but also

enables us to study the nature of business (or credit) cycles in more depth. For

instance, the invariant density tells us how often the economy visits a certain range

of the state over the course of a business cycle or what probability the economy

moves with from a state to another. However, it can be argued that the parameters

for which the Markov property is established would be so pathological that it would

not be worth investigating. One refutation to this is presented in the next section,

where observable chaos detected through the Markov property is not necessarily

isolated in the parameter space, but rather abundant at least in our framework.

5.3 Abundance and Sudden Disappearance of Observable

Chaos

Hitherto, we have investigated the dynamics of the model, in which the correspond-

ing map exhibits the Markov property. However, it seems to restrict the set of
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parameter values too much. We thus want to check some kind of robustness or

fragility of the dynamic features obtained above by characterizing the dynamics

near the parameter values for which the map is Markov.

We first consider the period-5 Markov case and its perturbations with respect to

σ. We show that the qualitative dynamic patterns change drastically when σ passes

through the Markov value, σ∗.

Proposition 8. (bifurcation from an attracting period-5 cycle to observable chaos)

Let A = A∗, where A∗ = A(σ∗) and σ∗ are given as in Proposition 3. Then, for σ ∈
(0, σ∗), the map ϕσ given by (22) exhibits an attracting period-5 cycle coexisting with

topological chaos. Moreover, there exists ε > 0 such that for each σ ∈ [σ∗, σ∗ + ε),

the corresponding map ϕσ exhibits observable chaos.

Proof. Recall that a decrease (increase) in the value of parameter σ shrinks (widens,

respectively) the interval [γL(σ), γR(σ)]. Now, fix A = A∗ and σ = σ∗ so that

the map is Markov with the period-5 Markov partition as in Proposition 3. By a

graphical argument, we can easily see that a decrease in σ makes attracting the

period-5 cycle, by which the period-5 Markov partition is otherwise defined. By

Li-Yorke (1975), topological chaos immediately follows from the fact that ϕσ is

continuous for σ > 0 and that the existence of a periodic point whose period is not

2n.

On the other hand, a slight increase in σ will destroy the Markov property,

but keep the map eventually expanding. In fact, for σ slightly smaller than σ∗,
ϕ2(1) ∈ (γL(σ), γR(σ)) and ϕ2(γR(σ)) = ϕ(0) ∈ (γL(σ), ϕ2(1)) ⊂ (γL(σ), γR(σ)).

Noticing also that ϕ((ϕ2(1), γL(σ))) ⊂ (γL(σ), 1), it follows by continuity that for

any x ∈ I,

|(ϕ4)′(x)| ≥ |ϕ′
L or R|3|ϕ′

M | = α3/(γR(σ) − γL(σ)) > 1,

wherever the derivative exists. This shows that, for σ arbitrarily close to σ∗ with

σ ≥ σ∗, the piecewise linear map ϕσ is eventually expanding. By the theorems of

Lasota and Yorke (1973), for such a map ϕσ, there exists an absolutely continuous

invariant measure, which means that the map exhibits observable chaos.

The above argument can be extended to a little bit more general case to obtain

the following result.

Proposition 9. (bifurcation from an attracting period-(2n+ 3) cycle to observable

chaos) Let A = A∗, where A∗ = A(σ∗) and σ∗ are given as in Proposition 5. Then,



22

for σ ∈ (0, σ∗), the map ϕσ given by (22) exhibits an attracting period-(2n+3) cycle

coexisting with topological chaos. Moreover, there exists ε > 0 such that, for each

σ ∈ [σ∗, σ∗ + ε), the corresponding map ϕσ exhibits observable chaos.

To intuitively understand the proposition above, it is useful to use a computer

to draw bifurcation diagrams with respect to σ (see Fig.8 and Fig.9). In Fig.8,

parameter A is fixed at A∗ for the period-5 Markov property. First, we look at

σ = σ∗, at which ϕσ exhibits the period-5 Markov property. By ergodicity, the

trajectory with transient iterates being omitted covers the whole interval [0, 1] (i.e.,

the vertical line at σ = σ∗). For each σ near σ∗ with σ∗ < σ, a similar situation

seems to occur, which means that observable chaos persists for all nearby σ’s larger

than σ∗. In this sense, observable chaos is abundant in our model. On the other

hand, a slight decrease in σ from σ∗ annihilates observable chaos and gives rise to

a periodic attractor of period 5 instead. Fig.9 is a bifurcation diagram associated

with the period-7 Markov case, in which the transition from a period-7 attracting

cycle to chaos is observed as σ increases.

+++ insert Fig.8 and Fig.9 of bifurcation w.r.t. σ with A∗ fixed +++

To figure out how observable chaos suddenly disappears as soon as σ falls below

σ∗, see Figures 11−13. In each of these figures, an enlargement of the graph of the

fifth iterate of ϕσ, ϕ5
σ, (see Fig.10) is depicted for a slightly different value of σ,

with A = A∗ being fixed. Moreover, see Fig.12, which draws a graph of ϕ5
σ∗ . Since,

at σ = σ∗, the period-5 Markov cycle appears on the set of kinks by construction

and is a subset of fixed points of ϕ5
σ, such a kink is on the 45 degree line as plotted

in Fig.12, which is an enlargement of Fig.10. For σ ∈ (σ∗, σ∗ + ε), where ε > 0 is

a sufficiently small number, the Markov property no longer holds and, as a result,

such a kink deviates from the 45 degree line, but ϕσ is still eventually expanding and

hence observably chaotic (see Fig.13). For σ ∈ (σ∗ − ε, σ∗), however, the kink itself

deviates from the 45 degree line in the opposite direction, so that the deviation gives

birth to two new (transverse) intersections of the graph of ϕ5
σ with the 45 degree line,

which are fixed points of ϕ5
σ (see Fig.11). At this time of the birth of intersections,

a new less steep line segment is created as well, on which one of the two newly born

intersections is located. This fixed point is the attracting periodic point described

in Proposition 9, and it attracts nearby trajectories, which would behave chaotically

and densely otherwise. Therefore, observable chaos disappears suddenly as σ drops

below σ∗.
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+++ insert Figures 10−13 of sudden disappearance of chaos +++

6 Conclusion

Based on the model analyzed by Asano et al. (2012), which is essentially equiva-

lent to the original credit cycle model proposed by Matsuyama (2007) as long as

permanent fluctuations are concerned, we have developed a model of endogenous

business cycles. By specifying the distribution of “noise” representing imperfect ob-

servability, we have obtained a continuous piecewise linear model, for which we have

shown that, using the Markov property, observable chaos is detected and described

by its invariant measures. Furthermore, the parametric restriction for the Markov

property has been relaxed by considering perturbations with respect to parameter

σ, representing the level of noise or the intensity of choice. Our results have shown

that observable chaos found at the Markov parameter values persists against such

perturbations at least in one direction of the σ value, which implies that the chaos

detected in our model is observable within a double meaning: as for initial states

and parameter values. The existence of an absolutely continuous invariant measure

assures that, for a large set of initial conditions, the chaotic behavior appears as

a long-run outcome. In our model, unlike in Asano et al. (2012), such a dynamic

property is robust against perturbations of parameter values in that for a large set

of parameter values observable chaos appears. Interestingly, the parameter values

for which the model is Markov have been demonstrated to represent bifurcation val-

ues, through which qualitative behaviors drastically change. This suggests that the

Markov property is useful not only in detecting chaotic behaviors in the given model,

but also in identifying the set of parameter values for which “structural changes”

(i.e., bifurcations) occur.
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Appendix

Computation of σ∗ and A∗

Given γ∗L and γ∗R (γ∗L < γ∗R), we can solve the following the simultaneous equations

γ∗L = γL(σ),

γ∗R = γR(σ)

for σ and A to obtain

σ∗ = σ(γ∗L, γ
∗
R) =

−B +
√
B2 +D

2m2λ2
2R

2
2

≤
√
D

2m2λ2
2R

2
2

, (30)

where

C = (R2/R1)
α(γ∗R−γ∗L)

1+α(γ∗
R

−γ∗
L

) > 1,

B = (m2 −m1)λ1λ2R1R2(1 + C)/(C − 1) > 0, and

D = 4m2λ2R2(m2λ2R2 −m1λ1R1)(λ2R2 − λ1R1) > 0.

Given σ∗ defined by (30), the solution for A will be represented by

A∗ = A(σ∗) = U/V, (31)

where

U =
m1m2(((1 + σ∗)λ2R2 − λ1R1))

(1 + σ∗)m2λ2R2 −m1λ1R1

> 0 and

V = (1 − α)(m1m2R2)
α [((1 − σ∗)λ2R2 − λ1R1)/((1 − σ∗)m2λ2R2 −m1λ1R1)]

α .

Notice that in order for A∗ to be well-defined and positive if

σ∗ <
λ2R2 − λ1R1

λ2R2
,

which is the constraint given by (14).

Verification of A∗ < Â

We show that A∗ < Â when σ = σ∗ satisfying (26) is given. By (17) and (31),

we have

A∗

Â
=

(1 + σ∗)λ2R2 − λ1R1

[(1 + σ∗)m2

m1
λ2R2 − λ1R1][1 − (1 + σ∗)λ2R2/R1]

. (32)
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Suppose A∗ ≥ Â, then by (32), a simple computation shows

σ∗ ≥ m1λ1R1 + (m2 −m1)R1 −m2λ2R2

m2λ2R2

,

which contradicts to (26). Thus, we obtain A∗ < Â.

Computation of Δ

Direct computations reveal:

|J1| = |I2| =
1

(1 + α)(1 + α2)
, π1 = α3,

|J2| = |I4| =
α

(1 + α)(1 + α2)
, π2 = α2 + α3,

|J3| = |I1| =
α2

(1 + α)(1 + α2)
, π3 = α + α2 + α3,

|J4| = |I3| =
α3

(1 + α)(1 + α2)
, π4 = 1 + α+ α2 + α3.

Thus, we obtain

Δ =
4∑

i=1

πi|Ji| =

∑4
i=1 α

4−i
∑4

j=i α
j−1

(1 + α)(1 + α2)
,

where the subscript i of πi is associated with the renumbered partition P̃= {Ji}4
i=1.
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Figure 6: The invariant density for the period-5 Markov map and 
the simulated histogram of 106 iterations 
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Figure 7: The invariant density for the period-7 Markov map and
the simulated histogram of 106 iterations
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Figure 11: An enlargement: for 𝜎𝜎 < 𝜎𝜎∗
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