TITLE:
Paraneoplastic limbic encephalitis in a human epidermal growth factor receptor-2-positive gastric cancer patient treated with trastuzumab-combined chemotherapy: A case report and literature review

AUTHOR(S):
Uneno, Yu; Yokoyama, Akira; Nishikawa, Yoshitaka; Funakoshi, Taro; Ozaki, Yoshinao; Aoyama, Ikuo; Baba, Kiichiro; ... Matsumoto, Riki; Matsumoto, Shigemi; Muto, Manabu

CITATION:

ISSUE DATE:
2016

URL:
http://hdl.handle.net/2433/218930

RIGHT:
© 2016 The Japanese Society of Internal Medicine; The Internal Medicine is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Paraneoplastic Limbic Encephalitis in a Human Epidermal Growth Factor Receptor-2-positive Gastric Cancer Patient Treated with Trastuzumab-combined Chemotherapy: A Case Report and Literature Review

Yu Uneno¹, Akira Yokoyama¹, Yoshitaka Nishikawa¹, Taro Funakoshi¹, Yoshinao Ozaki¹, Ikuo Aoyama¹, Kiichiro Baba¹, Daikuke Yamaguchi², Shuko Morita¹, Yukiko Mori¹, Masashi Kanai¹, Hisanori Kinoshita¹, Takeshi Inoue⁴, Nobukatsu Sawamoto⁴, Riki Matsumoto⁵, Shigemi Matsumoto¹ and Manabu Muto¹

Abstract

Paraneoplastic neurological syndromes (PNSs) are rare nervous system dysfunctions in cancer patients, which are primarily observed with small-cell lung cancer, gynecological cancer, and thymoma. We herein present an uncommon case of PNS in an anti-Hu antibody-positive patient with human epidermal growth factor receptor (HER)-2-positive gastric cancer (GC), who developed limbic encephalitis and a worsening cognitive function. Trastuzumab-combined chemotherapy was initiated and appeared to be partially effective for controlling the neurological symptoms and tumor volume. Chemotherapy failure eventually led to uncontrollable neurological symptoms. This is the first case demonstrating that trastuzumab-combined chemotherapy may be effective for controlling neurological symptoms of PNS in HER2-positive GC patients.

Key words: gastric cancer, trastuzumab, HER-2, paraneoplastic limbic encephalitis, anti-Hu antibody

(Intern Med 55: 2605-2609, 2016)
(DOI: 10.2169/internalmedicine.55.6917)

Introduction

Paraneoplastic neurological syndromes (PNSs) are rare neurological disorders of unknown cause that are often observed in association with cancer (1). The identification of several antibodies against neural antigens in primary tumors (onconeural antibodies) has suggested that the development of PNSs is immune-mediated. As specific onconeural antibodies are associated with several different cancers and neurological syndromes, the detection of onconeural antibodies may contribute to the identification of the primary site of cancers (1). However, the scientific literature on PNSs in gastric cancer (GC) is scarce; hence, detailed information on specific onconeural antibodies and neurological syndromes associated with GC remains unknown. We herein report the rare case of a patient with human epidermal growth factor receptor (HER)-2-positive GC who developed limbic encephalitis and was positive for anti-Hu antibodies and provide a literature review of PNSs accompanying GC. Our case is the first report to demonstrate that trastuzumab-combined chemotherapy may contribute to the management of PNS-associated neurological symptoms in HER2-positive GC patients.

Case Report

A 71-year-old Japanese man had no history of dementia and had been healthy until approximately 2 weeks prior to his first visit at a community hospital. However, his family...
had consulted the hospital because of a rapid deterioration in cognitive function, general malaise, and an attack of unresponsiveness. Magnetic resonance imaging (MRI; T2-weighted fluid-attenuated inversion-recovery images) of the brain revealed hyperintensity in the bilateral mesial temporal regions (Fig. 1a, b). Therefore, he was referred to our hospital for further assessment and treatment.

A neurological examination performed at our hospital showed cognitive dysfunction; in particular, we observed disorientation, acalculia, and memory disturbance [Minimal Mental State Examination score (MMSE) 18/30; Wechsler Memory Scale-Revised (WMS-R): verbal memory, 69; visual memory, 70; general memory, 67; attention/concentration, 93; and delayed recall, 59]. Frequent complex partial seizures were observed, resulting in unresponsiveness. A routine electroencephalography (EEG) examination revealed frequent EEG seizure patterns originating from the left temporal area.

Laboratory tests showed normal levels of vitamin B₁₂, folic acid, antinuclear antibody, and thyroid hormones. An elevated erythrocyte sedimentation rate (26 mm/h) and elevated levels of carcinoembryonic antigen (5.2 ng/mL) were detected. A cerebrospinal fluid analysis revealed a white blood cell count of 10/μL and a protein level of 48.4 mg/dL, without malignant cells.

Positron emission tomography (PET)/computed tomography (CT) of the brain showed increased ¹⁸F-fluorodeoxyglucose (FDG) avidity in the left mesial temporal region [maximum standardized uptake value (SUVmax), 13.2]. CT: computed tomography, FDG: ¹⁸F-fluorodeoxyglucose, FLAIR: fluid-attenuated inversion recovery, MRI: magnetic resonance imaging, PET: positron emission tomography.

PET/CT showed a tumor-specific uptake in the liver (SUVmax, 5.5) and stomach (SUVmax, 6.9). CT: computed tomography, FDG: ¹⁸F-fluorodeoxyglucose, PET: positron emission tomography, SUV: standardized uptake value.

EGD revealed the presence of multiple type-5 tumors in the body of the stomach. EGD: esophagogastroduodenoscopy.

Figure 4. (a) Hematoxylin and Eosin staining. (b) An immunohistochemical analysis showing strong staining for HER2. HER2: human epidermal growth factor receptor-2

Figure 5. CT of the abdomen showed exuberant growth of the gastric cancer. CT: computed tomography

As support and home medical care by the patient’s family were available, X+HER therapy was continued at an outpatient oncology unit. X+HER therapy appeared to be effective in terms of stabilizing the tumor, considering that a slight increase was noted in the stomach tumor size; moreover, the liver metastases exhibited a significant reduction, as observed on follow-up CT after the 7th course of chemotherapy (approximately 8 months after the onset of symptoms). The patient’s cognitive condition was also stable (MMSE, 22/30; WMS-R: verbal memory, 77; visual memory, 61; general memory, 69; attention/concentration, 94; delayed recall, 56), and PET/CT of the brain showed a lower FDG uptake (SUVmax, 5.8) in the mesial temporal regions. Because we considered it to be a clinically stable disease, we continued X+HER therapy.

After 10 courses of chemotherapy (over a period of approximately 11 months after the onset of symptoms), the patient suffered a generalized tonic-clonic seizure and was transferred to the emergency department of our hospital. CT of the abdomen revealed multiple enlarged liver metastases and thickening of the gastric wall (Fig. 5). Despite the addition of an antiepileptic drug to his regimen, the complex partial seizures and cognitive dysfunction worsened and became uncontrollable. Given the failure of chemotherapy and the deterioration in the performance status and progressing dementia, treatment was discontinued and best supportive care was initiated. Approximately 14 months after the onset of symptoms, the patient passed away.

Discussion

Although PNSs are tumor-associated, immune-mediated syndromes, they are not caused by a local effect of the tumor or its metastases. They potentially affect any level of the nervous system and may result in motor neuron syndromes, extrapyramidal symptoms, cerebellar degeneration, myelitis, mononeuropathy, and limbic encephalitis (1). The main pathogenic effect is most likely exerted by cytotoxic T cells, resulting in neuronal cell death. The incidence of PNS is far less than 1% for solid tumors, and commonly associ-
well-characterized onconeural antibodies were recognized in cases of GC patients with PNSs have been reported, and with GC, we performed a literature review (Table). Only 11 coneural antibodies and neurological symptoms in patients and a sensitivity of 82% (5). Aiming to identify specific onconeural antibodies has often been useful for identifying paraneoplastic limbic encephalitis, that precede the diagnosis of cancer.

The symptoms of PNSs can be dramatic. A rapid worsening of neurological symptoms is sometimes critical in the diagnosis of PNSs. The management of PNS symptoms has been challenging, as various immunosuppressive treatments have proved to be ineffective for syndromes with onconeural antibodies. Previous studies suggest that surgical tumor removal could stabilize and even improve the clinical picture of these patients (7, 8). In the present case, the response to trastuzumab-combined chemotherapy was clinically stable disease, including stable neurological symptoms, and the SUVmax of the mesial temporal regions was 5.8 by PET/CT; however, chemotherapy eventually failed, and the patient’s symptoms deteriorated, with the SUVmax of the mesial temporal regions rising to 10.8. This presentation suggests that the tumor volume corresponds to the amount of antibody, antineoplastic therapy was associated with recovery or stabilization, with an odds ratio of 4.56 (95% confidence interval, 1.62-12.86) (3). Thus, prompt tumor volume control.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age (years)/Sex</th>
<th>Pathological Diagnosis</th>
<th>Neurological Syndrome</th>
<th>Onconeural Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>63/female</td>
<td>Adenocarcinoma</td>
<td>Subacute sensory neuropathy</td>
<td>Anti-Hu antibody</td>
</tr>
<tr>
<td>9</td>
<td>73/male</td>
<td>Adenocarcinoma</td>
<td>Subacute cerebellar degeneration</td>
<td>Anti-Yo antibody</td>
</tr>
<tr>
<td>10</td>
<td>61/male</td>
<td>Adenocarcinoma</td>
<td>Limbic and brainstem encephalitis</td>
<td>Anti-Ma antibody</td>
</tr>
<tr>
<td>11</td>
<td>63/male</td>
<td>Adenocarcinoma and neuroendocrine carcinoma</td>
<td>Subacute cerebellar degeneration</td>
<td>Anti-Ri antibody</td>
</tr>
<tr>
<td>12</td>
<td>71/male</td>
<td>Adenocarcinoma</td>
<td>Subacute cerebellar degeneration</td>
<td>Anti-Yo antibody</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>Encephalomyelitis</td>
<td>Anti-Hu antibody</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>Encephalomyelitis</td>
<td>Anti-Hu antibody</td>
</tr>
<tr>
<td>13</td>
<td>38/female</td>
<td>Neuroendocrine carcinoma</td>
<td>Neuromyelitis optica</td>
<td>Negative (but NMO-IgG positive)</td>
</tr>
<tr>
<td>14</td>
<td>72/female</td>
<td>Adenocarcinoma</td>
<td>Systemic myositis and subacute sensory neuropathy</td>
<td>Negative</td>
</tr>
<tr>
<td>15</td>
<td>59/male</td>
<td>Adenocarcinoma</td>
<td>Opsoclonus-myoclonus</td>
<td>Negative</td>
</tr>
<tr>
<td>16</td>
<td>58/male</td>
<td>Neuroendocrine carcinoma</td>
<td>Subacute cerebellar degeneration</td>
<td>Negative</td>
</tr>
<tr>
<td>Our case</td>
<td>71/male</td>
<td>Adenocarcinoma</td>
<td>Limbic encephalitis</td>
<td>Anti-Hu antibody</td>
</tr>
</tbody>
</table>

NA: information not available
may contribute to improving symptom management, and our case suggested that molecularly-targeted, combined-drug chemotherapy could potentially be effective for the management of PNS.

In conclusion, we presented a rare case of PNS with HER2-positive GC that developed limbic encephalitis and carried anti-Hu antibodies. This case brought to our attention the fact that a prompt diagnosis and treatment are essential, as optimal chemotherapy may lead to the improvement of PNSs.

The authors state that they have no Conflict of Interest (COI).

References


The Internal Medicine is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).