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Abstract 

A three-dimensional numerical model of a single solid oxide fuel cell (SOFC) considering 

chromium poisoning on the cathode side has been developed to investigate the evolution of the 

SOFC performance over long-term operation. The degradation model applied in the simulation 

describes the loss of the cathode electrochemical activity as a decrease in the active triple-phase 

boundary (TPB) length. The calculations are conducted for two types of cell: lanthanum strontium 

manganite (LSM)/yttria-stabilized zirconia (YSZ)/Ni-YSZ and LSM-YSZ/YSZ/Ni-YSZ. Their 

electrode microstructures are acquired by imaging with a focused ion beam scanning-electron 

microscope (FIB-SEM). The simulation results qualitatively reproduce the trends of chromium 

poisoning reported in the literature. It has been revealed that the performance degradation by 



chromium is primarily due to an increase in the cathode activation overpotential. In addition, in the 

LSM-YSZ composite cathode, TPBs in the vicinity of the cathode–electrolyte interface preferentially 

deteriorate, shifting the active reaction site towards the cathode surface. This also results in an 

increase in the cathode ohmic loss associated with oxide ion conduction through the YSZ phase. The 

effects of the cell temperature, the partial pressure of steam at the chromium source, the cathode 

microstructure, and the cathode thickness on chromium poisoning are also discussed. 
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1. Introduction 

The performance degradation of solid oxide fuel cells (SOFCs) due to impurities is a critical issue 

that must be overcome for the commercialization of SOFC systems. Chromium, which is contained 

in the alloy separators and flow channel walls of SOFC systems, causes severe degradation in SOFC 

cathodes [1]. A number of experimental studies [2-9] and a thermodynamic analysis [10] have led to 

the proposal of the following two main reactions for chromium poisoning in lanthanum strontium 

manganite/yttria-stabilized zirconia (LSM-YSZ) cathodes. 

 

2CrO2(OH)2(g) + 6e− → Cr2O3(s)+2H2O+3O2− (1) 

 

(La0.8Sr0.2)MnO3 + 0.1CrO3(g) → 1.1(La0.8Sr0.2)0.909(Mn0.909Cr0.091)O3 (2) 

 

Eq. (1) is an electrochemical reaction, where gaseous chromium in the supplied air is 

electrochemically reduced near the active reaction sites to form solid chromium oxide (III), covering 

up the reaction sites at which the electrochemical reduction reaction of oxygen can occur [9]. On the 

other hand, Eq. (2) is a chemical reaction, where chromium replaces manganese atoms in the B-site 

of the perovskite LSM crystal [10], which may reduce the electronic conductivity within the phase.  

 



Konysheva et al. [5,6] reported the distribution of chromium in an LSM-YSZ composite cathode 

after exposure to chromium-containing air as observed by an energy-dispersive X-ray (EDX) 

mapping. Under open-circuit voltage (OCV) conditions, chromium was distributed randomly in the 

entire cathode, whereas under a current load of 200 mA cm-2, chromium was detected in the vicinity 

of the cathode–electrolyte interface. In addition, the increase in the activation overpotential under a 

current load was significantly larger than that under OCV conditions. Horita et al. [9] reported a 

similar tendency in an LSM cathode; chromium deposition mainly occurred near the triple-phase 

boundary (TPB) region under a current load while a uniform chromium distribution was observed 

under OCV conditions. Most of the degradation in the cathode was found to be due to an increase in 

the activation overpotential, although a slight increase in the ohmic resistance was also observed. 

These findings indicate that the main factor causing degradation by chromium is not the chemical 

reaction between LSM and chromium but the electrochemical reaction of chromium oxide at the 

TPBs. In this case, higher activation overpotential may promote the deposition of chromium. 

 

The deposited chromium oxide may block the diffusion pathways of reactant gas species to the 

electrode reaction sites, i.e, TPBs, and decrease the local exchange current density. Nakajo et al. [11] 

proposed a model that considers the decrease in the local exchange current density as a decrease in 



the TPB length owing to the electrochemical reaction of chromium oxide in LSM-YSZ composite 

cathodes. In this model, the relative decrease in the TPB density is a function of the cathode 

activation overpotential. They applied this model to a one-dimensional (1D) macroscale simulation 

and investigated the changes in overall performance over 12,000 h of exposure to chromium. 

 

To improve understanding of the chromium degradation in SOFC cathodes, microscale simulation 

using actual microstructure data for porous electrodes is useful. Recent developments in tomography 

techniques, such as imaging with a focused ion beam scanning electron microscope (FIB-SEM) and 

X-ray computed tomography (CT), enable us to directly observe and virtually reconstruct electrode 

microstructures, which can be used in microscale simulations. Numerical simulation is an effective 

approach not only for calculating the overall system performance but also for analyzing microscale 

phenomena inside complex porous electrodes. Because the microstructure of the electrodes has a 

significant effect on the cell performance, researchers have been investigating the relationships 

between the electrode microstructure and the electrochemical performance through experimental and 

numerical approaches [12-18]. 

 

In this study, a three-dimensional (3D) numerical model of an SOFC considering chromium 



poisoning on the cathode side has been developed to investigate the evolution of the SOFC 

performance over long-term operation. As a model for the chromium poisoning in LSM and 

LSM-YSZ composite cathodes, an empirical relationship proposed by Nakajo et al. [11] is applied. 

The electrode microstructures are acquired by FIB-SEM imaging. The time evolution of the cathode 

electrochemical performances, such as the activation overpotential and ohmic loss, is investigated. 

Also, the effects of the cell temperature, the partial pressure of steam at the chromium source, the 

cathode microstructure, and the cathode thickness on chromium poisoning are discussed. 

 

2. 3D microstructural data of electrodes 

To conduct the microscale simulation, we acquired 3D data of actual electrode microstructures 

using an FIB-SEM. Since Konysheva et al. [5] reported that the chromium-induced degradation on 

LSM cathodes was faster than that on LSM-YSZ composite cathodes, we prepared not only an LSM 

cathode but also an LSM-YSZ composite cathode for comparative purposes. Commercial LSM and 

LSM-YSZ inks (Fuel Cell Materials, U.S.A.) were painted and sintered on YSZ disks (Tosoh, Japan) 

at 1150 oC for 5 h. The sintered cathodes were impregnated with epoxy resin (Struers, Denmark) 

under vacuum so that the pores could be distinguished from the solid phases in SEM imaging. In the 

FIB-SEM imaging, a cross-sectional surface was first exposed by FIB milling, which was then 



imaged by SEM using an in-lens secondary electron detector. After the SEM imaging, the surface 

was milled by an FIB with an increment of 10 nm orders so that a new surface was exposed for the 

subsequent SEM imaging. By repeating such FIB milling and SEM imaging, a series of 2D SEM 

images was obtained. More details of the FIB-SEM imaging can be found elsewhere [15]. Regions 

were selected for microstructural analysis and were subjected to the following image processing 

using Avizo software (FEI, U.S.A.): (i) alignment of the stack of images, (ii) noise reduction, and 

(iii) segmentation. More details can be found elsewhere [19,20]. Then, the 3D porous microstructure 

was virtually reconstructed, from which various microstructural parameters were quantified. For the 

Ni-YSZ anode, the results reported by Kishimoto et al. [17] were used. Quantification of the 

electrode microstructures was performed using the methods proposed by Iwai et al. [15]. Table 1 

summarizes the microstructural parameters of the LSM cathode, LSM-YSZ composite cathode, and 

Ni-YSZ composite anode. 

 

3. Numerical model 

The simulation is based on the finite volume method (FVM), where the conservation of electrons, 

ions, and gas species is considered. The electrochemical reaction is assumed to take place only at the 

TPBs. In this model, the local transport coefficients in each grid 𝛤𝛤𝑖𝑖
eff,local are evaluated as 



 

𝛤𝛤𝑖𝑖
eff,local = 𝑉𝑉𝑖𝑖local𝛤𝛤𝑖𝑖bulk,  (3) 

 

where 𝑉𝑉𝑖𝑖 is the volume fraction of phase 𝑖𝑖 in the grid. Details of the model were reported by 

Kishimoto et al. [16,17].  

 

3.1 Calculation domains 

The calculation domains in this study are LSM/YSZ/Ni-YSZ and LSM-YSZ/YSZ/Ni-YSZ single 

cells (Fig. 1). The x axis in Fig. 1 corresponds to the thickness direction of the cell. The anode and 

cathode have the 3D reconstructed microstructures obtained by FIB-SEM imaging, while the 

electrolyte is assumed to be a flat plate with a thickness of 8 μm. The microstructure is divided into 

grid elements, each of which contains a number of image voxels obtained from the FIB-SEM 

imaging. Table 2 summarizes information on the grid systems used in the numerical simulation. 

Using the sub-grid-scale (SGS) model developed by Kishimoto et al. [16,17], conservation of the 

phase volume is considered in each grid element, on the basis of which the effective transport 

coefficients of each chemical species are evaluated. In the composite electrode microstructure, TPBs 

are distributed within the entire 3D cathode structure, while in the LSM cathode they exist only on 

the 2D LSM–YSZ interface. The temperature is assumed to be constant and uniform in the whole of 



the calculation domains. 

 

3.2 Gas diffusion 

The conservation of gas species 𝑖𝑖 is expressed using the molar flux 𝑁𝑁𝑖𝑖 and source term 𝑠𝑠𝑖𝑖 as 

 

∇ ⋅ 𝑁𝑁𝑖𝑖 = 𝑠𝑠𝑖𝑖.  (4) 

 

The dusty-gas model is used to evaluate the gas diffusion flux in the porous electrodes [21]: 

 

𝑁𝑁𝑖𝑖
𝐷𝐷𝑖𝑖,K
eff + ∑ 𝑋𝑋𝑗𝑗𝑁𝑁𝑖𝑖−𝑋𝑋𝑖𝑖𝑁𝑁𝑗𝑗

𝐷𝐷𝑖𝑖𝑗𝑗
eff

𝑛𝑛
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 = − 𝑃𝑃t

𝑅𝑅𝑅𝑅
∇𝑋𝑋𝑖𝑖 −

𝑋𝑋𝑖𝑖
𝑅𝑅𝑅𝑅
�1 + 𝐾𝐾𝑃𝑃t

𝜇𝜇𝐷𝐷𝑖𝑖,K
eff� ∇𝑃𝑃𝑡𝑡, (5) 

 

where 𝑋𝑋𝑖𝑖 and 𝑃𝑃𝑖𝑖 are the molar fraction and partial pressure of gas species 𝑖𝑖, respectively, and 𝑃𝑃𝑡𝑡 

is the total pressure. 𝜇𝜇 and 𝐾𝐾 are the mixture viscosity and permeability, respectively. 𝐷𝐷𝑖𝑖,Keff and 

𝐷𝐷𝑖𝑖𝑗𝑗eff are the effective Knudsen diffusion coefficients and the effective binary diffusion coefficients 

[17], respectively. Assuming that the total pressure gradient is negligible, the second term of the 

right-hand side is ignored in this study. 

 

The source term 𝑠𝑠𝑖𝑖 is given by the electrochemical reaction at TPBs as follows:  



 

Cathode side 

𝑠𝑠O2 = 𝑖𝑖ct
4𝐹𝐹
，𝑠𝑠N2 = 0，  (6) 

Anode side 

𝑠𝑠H2 = − 𝑖𝑖ct
2𝐹𝐹
，𝑠𝑠H2O = 𝑖𝑖ct

2𝐹𝐹
,  (7) 

 

where 𝐹𝐹 is the Faraday constant and 𝑖𝑖ct is the charge-transfer current density associated with the 

electrochemical reaction in the electrodes. 

 

3.3 Electron and ion diffusion 

The conservation of electrons and ions is expressed using electrochemical potentials as 

 

∇ ⋅ �𝜎𝜎e−
eff

𝐹𝐹
∇𝜇𝜇�e−� = −𝑖𝑖ct,  (8) 

∇ ⋅ �
𝜎𝜎o2−
eff

2𝐹𝐹
∇𝜇𝜇�o2−� = 𝑖𝑖ct,  (9) 

 

where 𝜇𝜇�e− and 𝜇𝜇�o2− are the electrochemical potential of electrons and oxide ions, respectively. 

𝜎𝜎e−eff and 𝜎𝜎o2−
eff  are the effective electronic and ionic conductivity, respectively. In this model, both 



LSM and YSZ are considered to be mixed conductors, while Ni is considered to be a pure electron 

conductor. The bulk conductivities are given as follows: 

 

LSM phase [22,23]  

𝜎𝜎e− = 4.2×107

𝑅𝑅
exp �−1200

𝑅𝑅
�,  (10) 

𝜎𝜎o2− = 4.0 × 10−6,  (11) 

YSZ phase [24,25] 

𝜎𝜎e− = max �
1.31 × 109 exp �−4.52×104

𝑅𝑅
� �𝑃𝑃O2,YSZ

101325
�
−14 ,

2.35 × 104 exp �−1.94×104

𝑅𝑅
� �𝑃𝑃O2,YSZ

101325
�
1
4

� , (12) 

𝜎𝜎o2− = 3.40 × 10−4 exp �−10350
𝑅𝑅

�,  (13) 

Ni phase [26,27] 

𝜎𝜎e− = 3.27 × 106 − 1065.3𝑇𝑇,  (14) 

 

where 𝑃𝑃O2,YSZ is the local partial pressure of oxygen in the YSZ phase and can be estimated from 

the electrochemical potentials as follows by assuming local thermodynamic equilibrium: 

 

𝜇𝜇�o2− − 2𝜇𝜇�e− = 1
2
𝑅𝑅𝑇𝑇 ln 𝑃𝑃O2,YSZ

105
.  (15) 

 



3.4 Electrochemical reaction 

The charge transfer current density 𝑖𝑖ct, which is associated with oxygen reduction in the cathode 

or hydrogen oxidation in the anode, is evaluated by the following Butler–Volmer-type equation: 

 

Cathode side [28] 

𝑖𝑖ct = 𝑖𝑖0,cat𝑙𝑙TPB �exp �2.0𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂act,cat� − exp �− 2.0𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂act,cat��, (16) 

Anode side [29] 

𝑖𝑖ct = 𝑖𝑖0,ano𝑙𝑙TPB �exp �2.0𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂act,ano� − exp �− 𝐹𝐹
𝑅𝑅𝑅𝑅
𝜂𝜂act,ano��, (17) 

 

where 𝑙𝑙TPB is the TPB density, 𝑖𝑖0,cat and 𝑖𝑖0,ano are the exchange current density per unit TPB 

length for the cathode and anode, respectively, and 𝜂𝜂act is the local activation overpotential. For 

𝑖𝑖0,cat and 𝑖𝑖0,ano, the following empirical formulas are used: 

 

Cathode side [18] 

𝑖𝑖0,cat = 2.14 × 105𝑃𝑃O2
0.376exp �−29200

𝑅𝑅
�,  (18) 

Anode side [30] 

𝑖𝑖0,ano = 31.4𝑃𝑃H2
−0.03𝑃𝑃H2O

0.4 exp �− 18300
𝑅𝑅

�,  (19) 

 



The activation overpotential 𝜂𝜂act is expressed as follows: 

 

Cathode side 

𝜂𝜂act,cat = − 1
2𝐹𝐹
�2𝜇𝜇�e− − 𝜇𝜇�O2− + 1

2
𝑅𝑅𝑇𝑇ln

𝑃𝑃O2
in

105
� − 𝜂𝜂con,cat, (20) 

Anode side 

𝜂𝜂act,ano = 1
2𝐹𝐹
�𝜇𝜇�O2− − 2𝜇𝜇�e− − ∆𝐺𝐺H2O

0 − 𝑅𝑅𝑇𝑇ln
𝑃𝑃H2O

in

𝑃𝑃H2
in � − 𝜂𝜂con,ano, (21) 

 

where 𝑃𝑃i
in  is the bulk partial pressure of species i on the electrode surface and 𝜂𝜂con  is the 

concentration overpotential. The concentration overpotential, 𝜂𝜂con is expressed as follows: 

 

Cathode side 

𝜂𝜂con,cat = 𝑅𝑅𝑅𝑅
4𝐹𝐹

ln
𝑃𝑃O2
𝑃𝑃O2

in,  (22) 

Anode side 

𝜂𝜂con,ano = 𝑅𝑅𝑅𝑅
2𝐹𝐹

ln
𝑃𝑃H2

in

𝑃𝑃H2

𝑃𝑃H2O

𝑃𝑃H2O
in.  (23) 

 

3.5 Model of degradation by chromium 

3.5.1 Partial pressure of chromium vapor 



Various chromium compounds can be volatilized from the chromium source, such as Cr2O3, in the 

presence of steam at elevated temperatures. From the results of thermodynamic analysis, CrO2(OH)2 

is considered to have the largest partial pressure in equilibrium with Cr2O3, which can be determined 

from the partial pressure of steam at the chromium source 𝑃𝑃H2O,Cr source and the temperature as 

reported in Hilpert et al. [31]. Therefore, we derived an approximate equation for 𝑃𝑃CrO2(OH)2 as a 

function of 𝑃𝑃H2O,Cr source and 𝑇𝑇 with an Arrhenius-type formula by fitting the reported values 

using the least-squares method as follows: 

 

𝑃𝑃CrO2(OH)2 = 2.26 × 10−2 𝑃𝑃H2O,Cr source
0.992 exp �−6.70×104

𝑅𝑅𝑅𝑅
�. (24) 

 

The thermodynamic data of the gaseous species used in the calculation by Hilpert et al. are obtained 

from the databases provided by Eddinghaus [32]. In this study,  𝑃𝑃H2O,Cr source and 𝑇𝑇 on the cathode 

side are assumed to be constant and uniform. Therefore, 𝑃𝑃CrO2(OH)2 is also assumed to be constant 

and uniform.  

 

3.5.2 Kinetic model of chromium poisoning 

 



For the simulation of chromium poisoning in SOFC cathodes, a kinetic model is required to 

evaluate the chromium deposition as a function of local chemical and electrochemical properties, 

such as temperature, chromium vapor pressure and activation overpotential. Understanding of the 

elementary reaction steps in the overall chromium reduction reaction is necessary for the accurate 

kinetic model; however, to the authors’ knowledge, there is no study to reveal them. On the other 

hand, Nakajo et al. [11] proposed a simple model of chromium poisoning by simplifying the 

deposition reaction into a single electrochemically-driven process. In their study, 1D degradation 

simulation of a single anode-supported cell considering chromium poisoning was conducted and 

compared with the experimental results of anode-supported cell stack that was operated over 3000 

hours by de Haart et al. [33]. Although the results obtained by the model did not show perfect 

agreement in terms of the cell performance drop, the trend of the degradation was qualitatively 

reproduced. In this study, we applied this model directly to the 3D numerical simulation relying on 

this reproducibility, and investigated how the degradation proceeds inside the real cathode 

microstructure obtained by FIB-SEM. 

 

In the proposed degradation model, chromium oxide is assumed to be deposited at TPBs through 

the electrochemical reaction expressed by Eq. (1). From this reaction, the chromium oxide deposited 



on TPBs reduces the local exchange current density. Other species of chromium vapor, such as CrO3, 

are ignored because of their smaller partial pressure than that of CrO2(OH)2. For instance, the 

thermodynamic calculation by Chen et al. [8] indicates that the partial pressure of CrO3 is less than 

2% of that of CrO2(OH)2 at 900 oC (𝑃𝑃CrO3= 1.4 × 10−3, 𝑃𝑃CrO2(OH)2= 9.2 × 10−2 Pa). 

 

The charge-transfer current density associated with the above chromium oxide deposition reaction 

𝑖𝑖D is evaluated from the following Butler–Volmer-type equation: 

 

𝑖𝑖D = 𝑖𝑖0,D𝑥𝑥CrO2(OH)2
0.5 𝑥𝑥H2O,Cr source

0.5 2sinh � 𝐹𝐹
2𝑅𝑅𝑅𝑅

𝜂𝜂act,cat�, (25) 

 

where 𝑥𝑥𝑖𝑖 is the molar fraction of species 𝑖𝑖. This indicates that higher chromium and steam vapor 

pressures, a lower temperature, and a higher activation overpotential cause faster degradation. In 

accordance with the results of Horita et al. [9], 𝑖𝑖0,D is defined as 6.74 A m-2. Since the contribution 

of the charge-transfer current associated with the chromium deposition reaction 𝑖𝑖D to the total 

charge-transfer current at TPBs 𝑖𝑖ct, is no more than 0.00002%, 𝑖𝑖D is neglected in the calculation of 

the electrochemical potentials (Eqs. (8) and (9)) and is only used to obtain the relative decrease in the 

TPB density explained below. Since the consumption rate of chromium was no more than 4% of 



supply rate in our calculation condition, we assumed that the chromium diffusion, Knudsen and 

molecular diffusion, is negligible and the partial pressure of chromium was constant and uniform 

within the entire cathode. Then, we also assumed constant total pressure. However, we have to note 

that this assumption can bring errors in concentration overpotential since the conservation law does 

not hold strictly. Bertei et al. [34] revealed that the anode concentration overpotential was 

overestimated when the uniform total pressure was assumed in H2-H2O-N2 systems. This was 

remarkable when the H2 and N2 partial pressures were precisely solved, and H2O partial pressure was 

estimated from the Graham’s law under the assumption of the uniform total pressure. In our study, 

the simulation was conducted in the cathode side, where O2 partial pressure was precisely solved and 

N2 partial pressure was estimated from the Graham’s law under the assumption of the uniform total 

pressure and uniform chromium vapor pressure. This might have introduced errors in the estimation 

of concentration overpotential since the conservation law does not hold strictly. Here, we would like 

to note that since the gradient of total pressure is negligible, the errors can be limited. Moreover, the 

contribution of the concentration overpotential is significantly small in the total overpotential. 

Therefore the errors in the concentration overpotential should not significantly alter the overpotential 

characteristics.  

 



Nakajo et al. [11] modeled the degradation of local electrochemical activity due to chromium 

oxide deposition as a decrease in the TPB density as follows: 

 

1
𝐴𝐴TPB

𝜕𝜕𝐴𝐴TPB
𝜕𝜕𝑡𝑡

= − 𝑀𝑀Cr2O3
6𝐹𝐹𝜌𝜌Cr2O3ℎTPB

𝑖𝑖D,  (26) 

 

where ℎTPB  is the maximum height of chromium oxide deposition, when the electrochemical  

reaction no longer proceeds at the TPBs and was set to 35 nm. This value was chosen from 

Konysheva et al. [6]. 𝑀𝑀Cr2O3 and 𝜌𝜌Cr2O3 is molecular weight and density of chromium oxide, 

respectively. Since Nakajo et al. assumed that the TPB had some width, they adopted TPB area 

𝐴𝐴TPB. Even though the relationship between the chromium deposition rate 
𝑀𝑀Cr2O3
6𝐹𝐹𝜌𝜌Cr2O3

𝑖𝑖D and the 

relative decrease in 𝐴𝐴TPB is complex, Nakajo et al. assumed that the relative decrease in 𝐴𝐴TPB is 

inverse proportional to ℎTPB to obtain Eq. (26). Since 𝐴𝐴TPB is the product of 𝑙𝑙TPB and a certain 

constant width of TPB, eq. (26) can also be rewritten as follows to explicitly describe the relative 

decrease of 𝑙𝑙TPB. 

 

1
𝑙𝑙TPB

𝜕𝜕𝑙𝑙TPB
𝜕𝜕𝑡𝑡

= − 𝑀𝑀Cr2O3
6𝐹𝐹𝜌𝜌Cr2O3ℎTPB

𝑖𝑖D,  (27) 

 



The reverse reaction is not allowed in this model. Eq. (27) can be integrated to obtain 

 

𝑙𝑙TPB(𝑡𝑡) = 𝑙𝑙TPB(0)exp �−∫
𝑀𝑀Cr2O3

6𝐹𝐹𝜌𝜌Cr2O3ℎTPB
𝑖𝑖Dd𝑡𝑡𝑡𝑡

0 �, (28) 

 

which is then discretized as follows: 

 

𝑙𝑙TPB(𝑡𝑡𝑛𝑛) = 𝑙𝑙TPB(𝑡𝑡𝑛𝑛−1)exp �−
𝑀𝑀Cr2O3

6𝐹𝐹𝜌𝜌Cr2O3ℎTPB
𝑖𝑖0,D𝑥𝑥CrO2(OH)2

0.5 𝑥𝑥H2O,Cr source
0.5 2 sinh �𝐹𝐹𝜂𝜂act,cat(𝑡𝑡𝑛𝑛−1)

2𝑅𝑅𝑅𝑅
� ∆𝑡𝑡�. (29) 

 

In this study, 𝑙𝑙TPB(𝑡𝑡𝑛𝑛) is calculated explicitly with a time span of ∆𝑡𝑡=250 h, using 𝑙𝑙TPB(𝑡𝑡𝑛𝑛−1) and 

𝜂𝜂act,cat(𝑡𝑡𝑛𝑛−1) by assuming that the transport of the gas, electrons, and ions is in the steady state 

while chromium poisoning proceeds with time.  

 

3.6 Procedure of numerical simulation 

The numerical simulation of chromium poisoning is conducted as follows, as also shown in 

Fig. 2: 

(i) Set the initial 𝑙𝑙TPB. 

(ii) Conduct the 3D simulation. 



(iii) Obtain local activation overpotentials in all grids. 

(iv) Calculate the local relative decrease in the TPB density with Eq. (29) and update the TPB 

density. 

(v) Repeat the steps (ii) - (iv) until the time reaches the maximum value (𝑡𝑡max = 1500 h). 

 

The boundary conditions for the simulation are shown in Table 3. Here LTotal is the total cell 

thickness in the x direction and Vt is the terminal voltage. LTotal is 42.2 for the LSM cathode and 

30.8 μm for the LSM-YSZ composite cathode. 

 

4. Results and discussion 

4.1 Degradation of electrochemical performance 

Table 4 shows the calculation conditions in this study. All calculations were conducted under a 

200 mA cm-2 current load with an anode gas of 97% H2-3% H2O and a cathode gas of 21% O2-79% 

N2. In Cases 1-4, the simulation was conducted for the LSM-YSZ composite cathode with different 

cell temperatures (750 and 850 oC) and molar fractions of steam at the chromium source (0.1 and 

2.6%). These results were used to investigate the effects of temperature as well as the partial pressure 

of CrO2(OH)2 in the cathode gas. In Cases 5 and 6, the simulation was conducted for the LSM 



cathode at different temperatures (750 and 850 oC) with a wet chromium source. By comparing the 

results of Cases 1 and 2 with those of Cases 5 and 6, the effects of the microstructure were 

investigated. In Cases 7 and 8, the simulation was conducted for the LSM-YSZ composite cathode 

with different thicknesses (7.0 and 13 μm) to investigate the effect of thickness.  

 

In this subsection, simulation results for the LSM-YSZ composite cathode with a steam molar 

fraction of 2.6% and a wet chromium source at 850 oC (Case 1) are discussed. Fig. 3 shows the 

evolution of the voltage losses in the cell. It is found that the degradation due to chromium is mainly 

caused by an increase in the cathode activation overpotential, which is consistent with the 

experimental results in the literature [2-9]. Also, a slight increase in the cathode ohmic loss is 

observed. No degradation is found in the anode performance under these conditions, which indicates 

that the changes on the cathode side have no significant effect on the anode side. Concentration 

overpotential was negligible before and after chromium poisoning. As chromium poisoning 

continues, the cathode ohmic loss linearly increases, whereas the cathode activation overpotential 

increases exponentially.  

 

To further understand these trends, the distribution of the 1D average active TPB density and the 



charge-transfer current density within the cathode are respectively shown in Figs. 4(a) and (b). Here, 

the TPB density and charge transfer current density at a given time are normalized by those under the 

initial conditions (𝑡𝑡 = 0), whose distributions are shown in Figs 4(a’) and (b’), respectively. Fig. 5 

shows the 3D distribution of the normalized TPB density and charge-transfer current density. Under 

the initial conditions without poisoning, since the resistance of the ion conduction is larger than that 

of the electron conduction, the electrode reaction takes place near the cathode–electrolyte interface. 

In this situation, the local activation overpotential also appears to be high near the interface, yielding 

a larger 𝑖𝑖D. Therefore, as chromium poisoning continues, TPBs preferentially deteriorate from the 

cathode–electrolyte interface side. This gives a theoretical explanation of the degradation trends 

found in several experimental studies in the literature, where more chromium was found in the 

vicinity of the cathode–electrolyte interface. Also, as described in Eq. (16), the decrease in the TPB 

density near the interface increases activation overpotential there, and in spite of high resistance of 

ion conduction, the electrode reaction can take place even at the surface side. This elongates the ionic 

transport pathways within the cathode, resulting in an increase in the ohmic loss in the cathode. 

 

4.2 Comparison with experimental studies 

The relative decrease in the TPB density strongly depends on 𝑃𝑃H2O,Cr source because 𝑖𝑖D and 



𝑃𝑃CrO2(OH)2 are affected by 𝑃𝑃H2O,Cr source as described in Eqs. (24) and (25). However, since steam 

is merely a minor impurity on the cathode side, the effects of steam on chromium poisoning were 

ignored in most studies. In addition, the relative decrease in the TPB density also depends on the 

initial TPB density and distribution. These factors preclude us from quantitative comparison with the 

experimental studies in the literature. Nevertheless, common trends exist in the dependence of the 

performance degradation rate on the cell temperature, the partial pressure of steam at the chromium 

source, the cathode microstructure, and the cathode thickness. In this study, we attempted to 

reproduce these trends of chromium poisoning using the proposed numerical model.  

 

4.2.1 Effects of cell temperature 

Taniguchi et al. [2] and Bentzen et al. [7] reported that a higher temperature prevents performance 

degradation in LSM-YSZ composite cathodes. By comparing the overpotentials in Cases 1 and 2 in 

Fig. 6, it was found that our simulation results can reproduce this tendency. One of the reasons for 

this is that the higher temperature increases 𝑖𝑖0,cat, which in turn decreases the local activation 

overpotential within the cathode, similar to the situation where the TPB density was increased in the 

previous subsection. Although a higher temperature also results in a higher 𝑃𝑃CrO2(OH)2 and may 

promote degradation due to chromium, the effect of the increase in 𝑖𝑖0,cat is larger than that of the 



increase in 𝑃𝑃CrO2(OH)2 . From the simulation results, the relative increase in the activation 

overpotential over 1000 h, (𝜂𝜂act,cat(t=1000)- 𝜂𝜂act,cat(t=0))/𝜂𝜂act,cat(t=0), at 850 oC is 80% of that at 

750 oC. 

 

4.2.2 Effects of partial pressure of steam at chromium source  

Bentzen et al. [7] and Chen et al. [8] reported that a higher 𝑃𝑃H2O,Cr source causes more severe 

degradation. Possible reasons for this are the fact that a higher 𝑃𝑃H2O,Cr source increases 𝑃𝑃CrO2(OH)2 

and at the same time promotes the chromium oxide deposition reaction as can be seen from Eq. (25). 

By comparing the overpotentials in Cases 1 and 3 and in Cases 2 and 4 in Fig. 6, it was found that 

our simulation can reproduce this trend. Under the dry conditions, the relative increase in the 

activation overpotential was smaller than that under the wet conditions, the former being only 5.4 

and 3.8%/1000 h in the LSM-YSZ composite cathode at 750 and 850 oC the letter being 290 and 

230%/1000 h, respectively. Under practical conditions, where the cathode-side gas is ambient air, the 

molar fraction of steam can easily exceed 2.4%. Therefore, measures need to be taken to keep the 

humidity of the cathode air as low as possible to prevent chromium poisoning. 

 

4.2.3 Effects of cathode microstructure 



Konysheva et al. [6] reported that LSM-YSZ composite cathodes had higher tolerance to 

chromium poisoning than LSM cathodes. By comparing the overpotentials in Cases 1 and 5 in Fig. 6, 

it was found that our simulation reproduce this phenomenon. Since the activation overpotential can 

be reduced by a larger TPB density in the composite cathodes, the relative decrease in the TPB 

density in the LSM-YSZ composite cathodes is lower than that in the LSM cathodes. This implies 

that a cathode with a finer microstructure and a larger TPB density can further increase the tolerance 

of the electrodes to chromium poisoning. In other words, at a certain current density, the initial 

activation overpotentials determine the relative decrease in the TPB density because they reflect the 

initial TPB density in the microstructure. 

 

4.2.4 Effects of cathode thickness 

Konysheva et al. [6] also reported that in LSM-YSZ composite cathodes, the relative increase in 

the activation overpotential was larger in a thinner cathode. By comparing the overpotentials in 

Cases 7 and 8 in Fig. 7(a), it was found that the trends in experiments are also reproduced in the 

simulation results. A possible reason for the larger degradation in the thinner cathode is that active 

TPBs still remain even after 1000 h of operation in the case of a thicker LSM-YSZ composite 

cathode as shown in Fig. 7(b). The mechanism of this phenomenon can be explained as follows. 



 

Chromium poisoning progresses faster in the vicinity of the cathode–electrolyte interface because 

of the higher local activation overpotential, and the electrochemically active region expands to the 

cathode surface to reduce the total activation overpotential. If this occurs, chromium poisoning 

begins to occur even in the surface region because of the electrochemical reaction there, which 

further reduces the TPB density. Once the area of chromium poisoning reaches the surface region, 

there is no other way to reduce the total activation overpotential, resulting in a rapid drop in 

performance of the LSM-YSZ composite cathodes. Because the total TPB density is larger in a 

thicker LSM-YSZ composite cathode, it takes longer for all the TPBs to be completely deactivated 

by chromium poisoning, which results in higher tolerance. This also implies that in planar SOFCs 

with chromium as an impurity, thinner parts lose their electrochemical activity more quickly, causing 

local decreases in temperature. Non-uniformity of the cathode thickness should also be avoided from 

the viewpoint of chromium poisoning. 

 

5. Conclusions 

A 3D numerical model of a single SOFC cell considering chromium poisoning on the cathode 

side has been developed to investigate the evolution of the SOFC performance over long-term 



operation. The calculation domain consisted of an actual electrode microstructure obtained using an 

FIB-SEM. The simulation results revealed that the degradation by chromium is mainly caused by an 

increase in the cathode activation overpotential due to a decrease in the TPB length. In addition, in 

LSM-YSZ composite cathodes, TPBs near the cathode–electrolyte interface are preferentially 

deteriorated by chromium since the relative decrease in the TPB density increases with the higher 

local activation overpotential. This expands the active reaction region towards the cathode surface, 

also resulting in an increase in the ohmic loss. Furthermore, our simulation reproduced the trends of 

chromium poisoning observed in experiments in the literatures: (i) a higher temperature prevents 

degradation because it increases the exchange current density per unit TPB length and reduces the 

local activation overpotential, (ii) a higher partial pressure of steam at the chromium source causes 

faster degradation because chromium vapor formation is promoted at a higher steam concentration, 

(iii) LSM cathodes have lower tolerance to chromium than LSM-YSZ composite cathodes because 

the initial activation overpotential is larger in LSM cathodes than in LSM-YSZ composite cathodes, 

(iv) thicker LSM-YSZ composite cathodes have higher tolerance to chromium poisoning because 

they have larger active TPBs even after chromium poisoning. More quantitative validation of the 

proposed model will be possible when the effects of various operation conditions of SOFC systems 

on rate of chromium poisoning are clearly understood through more elaborate experiments. This will 



enable the more reliable prediction of SOFC performance in long-term operation and should be 

attempted as future works. 
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Fig. 1  Schematic image of the calculation domains. (a) LSM/YSZ/Ni-YSZ and (b) 

LSM-YSZ/YSZ/Ni-YSZ. 

 



 
Fig. 2  Flowchart of the chromium poisoning simulation. 

 



 
Fig. 3  Time evolution of (a) voltage losses of the single cell and (b) cathode activation 
overpotential and ohmic loss. 

 



 
Fig. 4  Time evolution of (a) 1D average TPB density, (a’) normalized TPB density lTPB(t)/lTPB(t=0), 

(b) 1D average charge-transfer current density, and (b’) normalized charge-transfer current density 

ict(t)/ict(t=0). 
 



 
Fig. 5  3D distribution of (a) normalized TPB density lTPB(t)/lTPB(t=0) and (b) charge-transfer 
current density ict. 
 



 

Fig. 6  Cathode activation overpotentials in LSM and LSM-YSZ composite cathodes at 750 and 

800 ºC. 

 



 

Fig. 7  (a) Cathode activation overpotential as a function of time. (b) Normalized TPB density 
lTPB(t=1000)/lTPB(t=0). 
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