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Factor Endowment-commodity Output Relationships in a Three-
factor, Two-good General Equilibrium Trade Model 

Yoshiaki NAKADA

中田 義昭 :  2財 3要素一般均衡貿易モデルにおける要素賦存量・財の生産量
の関係

　本稿では、2財 3要素一般均衡貿易モデルにおいて、要素賦存量・財の生産量の関係を表現
する、リプチンスキー符号パターンを分析する。この関係は、強いリプチンスキー効果が成
立するかどうかを決定する。全てのリプチンスキー符号パターンが成り立つ十分条件を体系
的方法で探る。他の研究はこれを成し遂げていない。一定の要素集約度順位を仮定した。分
析には EWS（economy-wide substitution経済全体の要素間代替性指標）比率ベクトル、行列
のアダマール積を使う。EWS比率ベクトルの位置がリプチンスキー符号パターンを決定する。
この論文は更なる研究の基礎を提供する。

1. Introduction

	 Batra and Casas (1976) (hereinafter BC) published an article on functional relations in 

a three-factor, two-good neoclassical model (or 3 x 2 model). The authors claimed that ‘a 

strong Rybczynski result’ arises if we use Thompson’s (1985) terminology. According to 

Suzuki (1983, p. 141), BC contended in Theorem 6 (p. 34) that ‘if commodity 1 is relatively 

capital intensive and commodity 2 is relatively labor intensive, an increase in the supply of 

labor increases the output of commodity 2 and reduces the output of commodity 1. [Moreover, 

an increase in the supply of capital increases the output of commodity 1 and reduces the out-

put of commodity 2.]’ 1）  This is what a strong Rybczynski result implies. A strong Rybczynski 

result is a loose concept, as we show later, and it includes three Rybczynski sign patterns, 

which express the factor endowment–commodity output relationships.

 Suzuki (1983) contended that this could not be the case under the assumption of ‘perfect 

complementarity.’ He used the Allen partial elasticities of substitution (hereinafter AES) for 

his analysis. Jones and Easton (1983) (hereinafter JE) mainly analyzed the commodity price–

factor price relationship. This relationship is the dual counterpart in the factor endowment–

commodity output relationship. On this duality, see JE (p. 67); see also BC (p. 36, eqs. (31)-

(33)). In section 4 (pp. 77-81), JE showed six patterns of the commodity price–factor price 

relationship using a diagrammatic technique.2）Apparently, a strong Rybczynski result does 

not hold for some relationships that JE showed. JE (p. 75) defined ‘economy-wide substitu-

tion’ (hereinafter EWS) for their analysis. Using EWS, JE showed some sufficient conditions 
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for the commodity price–factor price relationship to hold in subsection 5.2 (pp. 86-92). JE 

suggested that ‘the factor-intensity ranking’ and EWS are important for their analysis (see p. 

67 and 96). Thompson (1985) also tried to show some sufficient conditions for a strong Ryb-

czynski result to hold (or not to hold). He used the concept of ‘aggregate substitution.’ Aggre-

gate substitution is related with EWS as shown in eq. (A16).

 In summary, these three articles tried to disprove BC’s claim of ‘a strong Rybczynski result’ 
and tried to show sufficient conditions for that result to hold (or not to hold). However, Su-

zuki (1983)’s proof is not plausible (see Nakada (2015a)).3）  JE’s analysis is somewhat com-

plicated. Particularly, JE’s proof in subsections 5.2.4 and 5.2.5 (p. 90-2) using ‘perfect com-

plementarity’, defined by the authors themselves, is implausible (see Nakada (2015b) and eq. 

(A18)).4）  Thompson’s analysis is questionable. In the Appendix (p. 66-70), Teramachi (1993) 

commented that the analysis in Thompson (1985) was not plausible. Before Thompson (1985), 

it was meaningful to disprove the results derived by BC; however, since Thompson (1985), 

the significance of disproving the results seems to have decreased. 

 On the other hand, Takayama (1982, p. 13-21) analyzed the factor endowment–commod-

ity output relationship and its dual counterpart in the 3 x 2 model in his survey article. Ac-

cording to Takayama, if ‘extreme factors’ are ‘aggregate complements’ (for this definition, 

see Takayama, (1982, p. 18)), we derive the result that is equivalent to ‘a strong Rybczynski 

result.’ 5） 

 The following questions arise.

(i) Can we do a more detailed analysis on a sufficient condition for each Rybczynski sign

  pattern to hold? If so, how can we do it?

(ii) What results can we derive otherwise?

 After Thompson (1985), what studies have been conducted on the 3 x 2 model? We ex-

plain the articles that address the factor endowment-commodity output relationship and/or its 

dual-counterpart, the commodity price-factor price relationship.

 We have classified the articles after Thompson (1985) as follows. 6） 

(i) Studies that assume the functional form of production functions; for example, Thompson

  (1995).

(ii)  Studies that make another assumption concerning production functions (e.g., normal 

property, separability). See, for example, Suzuki (1985), Suzuki (1987, Chapter 2), and 

Bliss (2003).

(iii)  Studies that modify one of the basic assumptions; for example, Ide (2009).

(iv)  Other studies, for example, Teramachi (1993, 1995, 2015) and Easton (2008). 

(v)  Studies that analyzed a somewhat different aspect or the commodity price-relative factor 
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price relationship. For example, Ban (2007a), Ban (2008), and Ban (2011). See also Ban 

(2007b). Ban assumed that production functions were of the two-level CES type.

 In summary, some of these studies after Thompson (1985) are more complex. I am uncer-

tain whether all of these studies have plausible results. Some papers apply the models before 

the basic functions of the model are understood. The analyses in some articles differ signifi-

cantly from others, and it is not easy to make a comparison. Some studies such as Bliss (2003) 

did not present the process of computation. Some results are implausible. For example, 

Easton (2008) tried to extend the concept of ‘perfect complementarity’ defined by JE, which 

does not hold, as the author showed in the Appendix A (see eq. (A18)). Therefore, it seems 

questionable to extend that concept further as in Easton (2008). Teramachi (1993, 2015) as-

sumed that, for example, extreme factors are perfect complements, as JE assumed. However, 

that is implausible, as I stated earlier. 7） 

 At least, concerning a sufficient condition for each Rybczynski sign pattern to hold in the 3 

x 2 model of BC’s original type, other studies are far from systematic. That is, no other stud-

ies derived all the conditions in a one-to-one correspondence. The purpose of this article is 

to derive such a condition in a systematic manner. Notably, we define the EWS-ratio vector 

based on the EWS, 8）  and we use this and the Hadamard product of matrices for the analysis. 

The EWS-ratio is the relative magnitude of EWS compared to another EWS. In this article, 

we conclude that the position of the EWS-ratio vector determines the Rybczynski sign pat-

tern. Using this relationship, we derive a sufficient condition for a strong Rybczynski result 

to hold (or not to hold). 

 Can we estimate the position of the EWS-ratio vector? Nakada (2016a) proves that we can 

estimate it if we have appropriate data. This article provides a basis for further applications. 

For example, it is useful for estimating the Rybczynski sign pattern in some countries, and it 

will contribute to international economics and energy economics.9） 

 Section 2 of this study explains the model. In subsection 2.1, we explain the basic structure 

of the model. We make a system of linear equations using a 5 x 5 matrix.10）  In subsection 

2.2, we assume factor-intensity ranking.11）  In subsection 2.3, we define the EWS-ratio vec-

tor based on EWS for the analysis. We derive the important relationship among EWS-ratios 

and draw the EWS-ratio vector boundary in the figure, which is useful for our analysis. In 

subsection 2.4, we derive the solutions of a system of linear equations. In subsection 2.5, we 

develop a Rybczynski matrix and transform its component using EWS-ratios. In subsection 

2.6, we draw the border line for a Rybczynski sign pattern to change in the figure, which we 

call line ij. Line ij divides the region of the EWS-ratio vector into 12 subregions. In subsec-

tion 2.7, we analyze Rybczynski sign patterns using the Hadamard product of matrices and 
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derive a sufficient condition for each Rybczynski sign pattern to hold and, next, derive a suf-

ficient condition for a strong Rybczynski result to hold (or not to hold). In subsection 2.8, we 

analyze Stolper-Samuelson sign patterns, which express the commodity price–factor price 

relationships. In section 3, we show some applications of these results. Section 4 presents the 

conclusion, and the Appendix A derives the important relationship among EWSs. The Ap-

pendix B shows that the determinant of the coefficient matrix of a system of linear equations, 

is negative.

 The studies after Thompson (1985) are as follows. 

(i)  Thompson (1995) assumed that production functions were of the trans-log type, and 

estimated the values of parameters in the United States using econometrics. Based on 

these parameter values, he computed ‘the aggregate elasticities’ (equivalent to EWS). 

This is an application.12）  Next, Thompson assumed that production functions were of the 

Cobb-Douglas and CES types. Additionally, he assumed ‘strong degrees of complemen-

tarity.’ This is a simulation.

(ii)  Suzuki (1985) assumed ‘normal property’ of the factor of production. In Suzuki (1987, 

Chapter 2, p. 27-36), the author assumed that production functions were separable (p. 

32). Bliss (2003) assumed that only one sector had a specific factor. He assumed sepa-

rability and non-separability in production functions. Bliss (2003) assumed that capital 

and land were ‘Hicksian complements’ in agriculture (p. 274) and attempted to explain 

the wage movement in British economic history. This is a type of application. 

(iii)  Ide (2009) modified one of the model’s basic assumptions and assumed the model with 

increasing returns to scale technology. He assumed that extreme factors were ‘aggregate 

complements.’ This is a theoretical study.

(iv)  Teramachi (1993) analyzed the commodity price–factor price relationships in elastic-

ity terms. Teramachi (2015, Chapter 3) published most of this article as a chapter in 

his book.13）  See also Teramachi (1995). Easton (2008) analyzed whether the extent of 

substitutability and complementarity affected the commodity price-factor price relation-

ships. He reconsidered the analysis in JE (1983). 

(v)  Ban (2007a) attempted to analyze how commodity prices affected relative factor prices, 

for example, the skilled labor wage over unskilled labor wage. The author described the 

effects when she changed ‘the cost share pattern’ (or the factor-intensity ranking in our 

expression). She assumed that production functions were of the two-level CES type. In 

her model, the three factors are skilled labor, capital, and unskilled labor. She assumed 

that skilled labor and capital could be ‘[Allen-] complements’ in each sector, and she 

computed the values of AES theoretically. However, her analysis is somewhat compli-
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cated, and her results are not clear. She showed some definite results. This is a theoreti-

cal study. Ban (2008, p. 4, Table 1) showed a table classifying the results in Ban (2007a) 

by factor-intensity ranking and factor-intensity ranking for the middle factor.14）  She clas-

sified the countries in the world into 14 regions in total and computed the input-output 

coefficient for each area using the GTAP version 6 database to derive factor-intensity 

ranking. However, Ban (2008) did not show the factor-intensity ranking for the middle 

factor.15）  Additionally, she assumed 10 types of values for ‘the elasticities of substitution’ 
(equivalent to EWS) to simulate how commodity prices affect the relative factor prices. 

This is an application. Ban (2011, chapter 4, p. 87-109) summarized the results of Ban 

(2007a) and Ban (2008) and modified the studies. For her results, see Ban (2011, p. 96-

7, Table 4-1). See also Ban (2007b). In summary, in all her studies, Ban assumed that 

production functions are of the two-level CES type. Therefore, I am uncertain whether 

the results hold in general. 

2. Model

2.1. Basic structure of the model
 We assume similarly to BC (p. 22-3). That is, we assume as follows. Products and factor 

markets are perfectly competitive. The supply of all factors is perfectly inelastic. Production 

functions are homogeneous of degree one and strictly quasi-concave. All factors are not spe-

cific and perfectly mobile between sectors, and factor prices are perfectly flexible. These two 

assumptions ensure the full employment of all resources. The country is small and faces ex-

ogenously given world prices, or the movement in the price of a commodity is exogenously 

determined. The movements in factor endowments are exogenously determined.

 Full employment of factors implies
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where pj is the price of good j, and wi is the reward of factor i.
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Because aij is homogeneous of degree zero in all input prices, we have 

0,  ,  ,  ,  1,  2.ij ij
h h h hj h i T K L j                              (12) 

Eqs (8) to (12) are equivalent to the expressions in BC (p. 24, n.6). See also JE (p. 74, eqs (12)-(13)). From these, 

we derive 

 1* *.ij
ij h h ha w                                                      (13) 

Substituting eq. (13) in (4), we derive 

  1 1* *  * *  *,   ,  ( ,  .)ij
ijj h h h ij j h ih h j ij j iw X g w X V i T K L       (14) 

where 

 , ,  ,  ,  .ij
ih j ij hg i h T K L                                            (15) 

This is the EWS (or the economy-wide substitution) between factors i and h defined by JE (p. 75). ihg  is the 

aggregate of ij
h . JE (p. 75) stated, ‘Clearly, the substitution terms in the two industries are always averaged 

together. With this in mind, we define the term i
k to denote the economy-wide substitution towards or away 

from the use of factor i when the kth factor becomes more expensive under the assumption that each industry's 

output is kept constant.’ 

We can easily show that 

  , ,  ,  0ihhg i T K L ,                                                 (16) 

 ( / ) ,  ,  , ,  ih h i hig g i h T K L ,                                          (17) 

where i  and j  are, respectively, the share of factor i , , ,i T K L , and good j , 1,2j  in national income. 

That is, /j j jp X I , /i i iwV I , where j j jI p X = ii iw V . See BC (p. 25, eq. (16)). Hence, we obtain 

( / )ij j i ij  (see JE (p. 72, n. 9)). Note that 1,j j 1i i . ihg  is not symmetric. Specifically, 

,  ih hig g i h  in general. On eq. (17), see also JE (p. 85).  

From (9), (11), and (15), we can show that 

 0iig .             (18) 

From eqs (16) and (18), we derive 

 0KT KL KKg g g , 0TK TL TTg g g , 0.LK LT LLg g g      (19) 

 (12)
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This equation shows that JE’s proof is impossible. Next, we show the disproof of JE. JE (p. 75) define

, ,    1,  2,  3k
i i k  , as EWS. In subsection 5.2.4 (p. 90), JE states, ‘First we assume that the two extreme factors 

[factors 1 and 2] are perfect complements in the sense that any factor price change does not alter the ratio of the 

intensities of their use (  1 2 ,  1,  2,  3k k k   ).’  

Here, for the authors, ‘perfect complementarity’ implies 1 2
k k  . If we replace k

i  with ihg , this implies 

that  

 ,  ,  ,    ,  ,  .Th Kh TT KT TK KK TL KLg g h T K L g g g g g g                  (A18) 

In other words, the authors found that the set of three equations holds for EWS under the assumption of ‘perfect 

complementarity.’ Next, the authors used this set to prove how commodity prices affect factor prices.  

If we compare eq. (A18) with eq. (A17), we find that the latter is not consistent with the former. That is, if eq. 

(A18) holds, L.H.S. of (A17) equals zero. Hence, JE’s result is impossible. Specifically, the authors fails to explain 

what ‘perfect complementarity’ implies. In summary, their proof is not plausible.  

In subsection 5.2.5 (p. 91), JE’s analysis is similarly to subsection 5.2.4. The authors assume that extreme factor 

(factor 2) is a perfect complement of the middle factor (factor 3). The authors state that they derive 1 1
3 2  . In 

the authors’ context, this implies  
3 2 ,    1,  2,  3k k k   . We can prove in a similar fashion that this is 

impossible.  

Equation Section (Next) 

Appendix B:  

∆ is the determinant of matrix A, the coefficient matrix of a system of linear equations (see eq. (46)). We can show 

that ∆ < 0. ∆ is equivalent to the 3 x 3 determinant D in BC, and it was proved that D < 0 (see BC (p. 25-26)). 

However, BC’s method requires some technique. We show the proof using the important relationship among EWSs. 

From eqs (46) and (21), we derive  

 ∆ = det (A)= 1 2

1 2

1 2

1 1 1

2 2 2

0 0
0 0

.

T K L

T K L

TT TK TL

KT KK KL

LT

T T

K K

LL LLK L

g g g
g g g
g g g

 

  
 









         (B1) 

Sum columns 1 and 2 in column 3, and subtract row 2 from row 1. We have 

i
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At most, one of the EWSs ( , , )LK LT KTg g g  can be negative. 

Combine eqs (14) and (7) to make a system of linear equations. Using a 5 x 5 matrix, we obtain 

  AX = P,                                                            (21) 

where A= 1 2

1 2

1

1 1

2 2 2

2

1 0 0
0 0

T K L

T K L

TT TK TL

KT KK KL

LT LK LL

T T

K K

L L

g g g
g g g
g g g

, X=

1

1

1

1

2

*
*
*
*
*

T

K

L

w
w
w
X
X

, P=

0

*
*
*

T

K

L

P
V
V
V

.  

A is a 5 x 5 coefficient matrix, and X, P are column vectors. 

 

2.2. Factor-intensity ranking 

In this article, we assume 

 
1 1 1

2 2 2

T L K

T L K

a a a
a a a

.                                                      (22) 

This implies 

 
1 1 1

2 2 2

T L K

T L K
.                                                      (23) 

This is, ‘the factor-intensity ranking’ (see JE (p. 69), see also BC (p. 26-7), Suzuki (1983, p. 142)). This implies 

that sector 1 is relatively land-intensive, and sector 2 is relatively capital-intensive, labor is the middle factor, and 

land and capital are extreme factors (see also Ruffin (1981, p. 180)). 
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 2 11 1 2 2( ., , ), , LK LT T KA B E                               (26) 

This is the inter-sectoral difference in the distributional share. Recall (5) ( 1i ij ), which implies 

 0.A B E                                                         (27) 

From eq. (27), we have 

 ( , , ) ( , , ),( , , ),( , , ),( , , ),( , , ),( , , )A B E .           (28) 

However, eq. (23) implies  

 ,  ,  ,  ,  ? .A B E                                                (29) 

From eqs (28) and (29), we have 

 ( , , ) ( , , ),( , , )A B E .                                           (30) 

From eq. (27), for example, we obtain 

 ( )E A B , 

 ( ).B A E                                                         (31) 

If we assume eq. (24) holds, we derive  

 ,  ,  ,  ,  .A B E                                                (32) 

On the other hand, if we assume eq. (25) holds, we derive  

 ,  ,  ,  ,  .A B E                                                (33) 

In this article, we assume eqs (23) and (24) hold, hence, (32) holds. 

 

2.3. EWS-ratio vector boundary 

In this section, we derive the important relationship between EWS-ratios, and we draw the EWS-ratio vector 

boundary in the figure. This is useful for our analysis. 

Each ija  function is homogeneous of degree zero in all input prices (see eq. (3)). According to BC (p. 33), ‘Given 

the assumption that production functions are strictly quasi-concave and linearly homogeneous’,   0ij
i  (see eq. 

(11)). These imply (see eq. (A17) in the Appendix A) 
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2.3. EWS-ratio vector boundary
 In this section, we derive the important relationship between EWS-ratios, and we draw the 

EWS-ratio vector boundary in the figure. This is useful for our analysis.

 Each aij function is homogeneous of degree zero in all input prices (see eq. (3)). According 

to BC (p. 33), ‘Given the assumption that production functions are strictly quasi-concave and 

linearly homogeneous’, 
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  0.KK TT TK KTg g g g                                                  (34) 

Recall eq. (19). That is,   KK KT KLg g g  and   TT TK TLg g g . Substitute these equations to 

eliminate KKg  and TTg  from L.H.S. of eq. (34). Next, recall eq. (17), that is, ( / )ih h i hig g . Use this 

equation to eliminate ,,KL TLg g  and TKg . That is, express using only three EWSs, namely, ,  ,LK LTg g  and 

KTg : 

 L.H.S. of (34)= [ ( ) ]L L
KT TL KL TK KL TL KT LT LK LK LT

T K
g g g g g g g g g g g ( > 0). (35) 

From eq. (19), 0.LK LT LLg g g  Using this, transform eq. (35) to obtain  

 

L LK LT
KT

K LK LT

g gg
g g .                                                 (36) 

Define that, for ease of notation, 

  ,  ,  , , .LK LT KTS T U g g g                                          (37) 

If we use eq. (37), eq. (36) reduces 

 

L

K

STU
S T ,                                                     (38) 

Dividing both sides of (38) by T, we derive 

 
''

'
 0

1
,  L

K

SU T
S

if ; 
''

'
 0

1
,  L

K

SU T
S

if ,                  (39) 

where 

 ’,  ’ / ,  / / , /LK LT KT LTS U S T U T g g g g ,                      (40) 

which we call the EWS-ratio vector. S’ denotes the relative magnitude of EWS between factors L and K compared 

to EWS between factors L and T. U’ denotes the relative magnitude of EWS between factors K and T compared to 

EWS between factors L and T.  

Transform  

 

' 1'
' 1 ' 1

L L L

K K K

SU
S S ,                                     (41) 

which expresses the rectangular hyperbola. We call this the equation for the EWS-ratio vector boundary. It passes 
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Use this equation to eliminate gKL, gTL and gTK . That is, express using only three EWSs, 

namely, gLK , gLT and gKT :
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1 BC have derived a conclusion (p. 34) that an increase in the supply of one factor, at constant commodity prices, 

will increase the output of the commodity using the expanding factor relatively intensively and reduce the output of 

the other commodity.  

2 The authors did not show these results using the sign pattern as shown in this article, but using the ranking form 

such as 1 2* * *( 0) * *T L Kw p w p w  if we use our expression. On this, see JE (p. 79, eq. (22)), for 
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Fig. 1 Illustration of the EWS-ratio vector boundary and line-ij
(border line for a Rybczynski sign pattern to  change)
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　　　EWS-ratio vector boundary, if T > 0,

　　　 The EWS-ratio vector exists in the lower-left region of the EWS-ratio

　　　vector boundary if T < 0. (42) 

The sign pattern of the EWS-ratio vector is, in each quadrant (on this, see also eq. (20)): 

 　　quad.   I: (S ’, U ’) = (+,+) ↔  (S , T, U ) =  (+, +, +); 

 　　quad.  II: (S ’, U ’) = (-,+) ↔  (S , T, U ) =  (-, +, +);

 　　quad. III: (S ’, U ’) = (-,-)↔  (S , T, U ) =  (+, -, +);

 　　quad. IV: (S ’, U ’) = (+,-) ↔  (S , T, U ) =  (+, +, -). (43)

Hence, one of the EWS can be negative at most. Note that 

 　　T > 0, if (S ’, U ’) exists in quadrant I, II, or IV, 

 　　T < 0, if (S ’, U ’) exists in quadrant III, (44)

where we recall eqs (37) and (40), that is, 

「生物資源経済研究」原稿修正箇所 by Yoshiaki Nakada 2017/02/10 

1. 式(A14)の辺り(ベクトル行列はイタリックをトル)： 

Transform エラー! 参照元が見つかりません。: 

 LLs  x Ax ,                                                       ( 1) 

where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  

 ,
K KK KT

T TK TT

w s s
w s s
   

    
   

x A .  

2. 式(78) の下の辺り(数式が一部一段下がっているのを修正)： 

Using eq. エラー! 参照元が見つかりません。, we can show that   

 . .S.L H of エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 

1 1 2 1 2 1 1 2 2 1( ) ( ) 0L T T L L T L T L T                .  

3. 式(44)の下の式（うち合わせではイキだが、=の前後に余計なスペースがある。その修正のついでに変

更を希望する。Mathtypeインライン１つを３つに分割した）： 

where we recall eqs エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。  and 

エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 , that is,    ’,  ’ / ,  /S U S T U T

 / ,  / ,LK LT KT LTg g g g    (,  ),  , ,KT LK LTS T U g g g . We define (for i ≠ h),  

「生物資源経済研究」原稿修正箇所 by Yoshiaki Nakada 2017/02/10 

1. 式(A14)の辺り(ベクトル行列はイタリックをトル)： 

Transform エラー! 参照元が見つかりません。: 

 LLs  x Ax ,                                                       ( 1) 

where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  

 ,
K KK KT

T TK TT

w s s
w s s
   

    
   

x A .  

2. 式(78) の下の辺り(数式が一部一段下がっているのを修正)： 

Using eq. エラー! 参照元が見つかりません。, we can show that   

 . .S.L H of エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 

1 1 2 1 2 1 1 2 2 1( ) ( ) 0L T T L L T L T L T                .  

3. 式(44)の下の式（うち合わせではイキだが、=の前後に余計なスペースがある。その修正のついでに変

更を希望する。Mathtypeインライン１つを３つに分割した）： 

where we recall eqs エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。  and 

エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 , that is,    ’,  ’ / ,  /S U S T U T

 / ,  / ,LK LT KT LTg g g g    (,  ),  , ,KT LK LTS T U g g g . We define (for i ≠ h),  

「生物資源経済研究」原稿修正箇所 by Yoshiaki Nakada 2017/02/10 

1. 式(A14)の辺り(ベクトル行列はイタリックをトル)： 

Transform エラー! 参照元が見つかりません。: 

 LLs  x Ax ,                                                       ( 1) 

where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  

 ,
K KK KT

T TK TT

w s s
w s s
   

    
   

x A .  

2. 式(78) の下の辺り(数式が一部一段下がっているのを修正)： 

Using eq. エラー! 参照元が見つかりません。, we can show that   

 . .S.L H of エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 

1 1 2 1 2 1 1 2 2 1( ) ( ) 0L T T L L T L T L T                .  

3. 式(44)の下の式（うち合わせではイキだが、=の前後に余計なスペースがある。その修正のついでに変

更を希望する。Mathtypeインライン１つを３つに分割した）： 

where we recall eqs エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。  and 

エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 , that is,    ’,  ’ / ,  /S U S T U T

 / ,  / ,LK LT KT LTg g g g    (,  ),  , ,KT LK LTS T U g g g . We define (for i ≠ h),  

 　　Factors i and h are economy-wide substitutes, if  gih > 0

 　　Factors i and h are economy-wide complements, if  gih < 0 (45)

2.4. Solution
 Using Cramer’s rule to solve (21) for X2*, we derive
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g g V
g g V
g g V

.   

Express the above as a cofactor expansion along the third column:  

  2 3 1 3 2 3 3 3 4 3
4 1 1 1 11 1 * 1 * 1 * 1P T T K K L LP C V C V C V C  (51) 
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CP1 =

2

2

2

TT TK

KT K

T

K

L

K

LT LK

g g
g g
g g

, CT1 = 2

2

0
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L LT LK

A B
g g
g g

, CK1 = 2

2

0
TTT TK

L LT LK

A B
g g
g g

, CL1 = 2

2

0
TTT TK

K KT KK

A B
g g
g g

(52). 

Hence, from eqs (50) and (51), we have 

 4
1 1 1 1 1[1*  1  *  * ].( )*( )P T T K K L LX PC V C V C V C         (53) 

 In summary, from eqs (49) and (53), we obtain 

 2 2 2 2 2
1* *( ) * *( )[ .]P T T K K L LX PC V C V C V C                    (54) 

 (53)

In summary, from eqs (49) and (53), we obtain
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 2 2 2 2 2
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 1 1 1 1 1
1* ( ) * *( ) *[ ].P T T K K L LX P C V C V C V C                     (55) 

 

2.5. Rybczynski matrix  

From the above, the Rybczynski matrix * / *j iX V (to use Thompson’s terminology (1985, p. 619)) in elasticity 

terms is:  

  
1 1 1

2

1 1 1

2 22 22

* / * * / * */ * 1*/ *
*/ * */ * */ *

T K LT K L
j

T K L

i
T K L

X V X V X V
X V

X V X V X
C C C
C C CV

.     (56) 

Express in general:  

 (1/ ) 1 ,  ,  ,  ,  1,  2*/ * .i j
ijj i C i T K LX V j                         (57) 

Substitute 1, 2, 3 instead of T, K, L, respectively, when we compute (-1)i+j. Sign patterns are of interest. We can 

show that 1*/ *LX V  and 2*/ *LX V  are, respectively, equivalent to eq. (26) and (27) in BC (p. 32). BC only 

obtained these two equations. BC’s method of derivation is somewhat complicated. The method shown here is 

simpler. 

Using Saruss’s rule to expand (48) and (52), we derive 

 CT1 = A 2LKKg +B 2 TK Lg -(A 2KLKg +BgKT 2L ), 

 CK1 = AgTK 2L +B 2T gLT -(A 2TLKg +BgTT 2L ), 

 CL1 = AgTK 2K +B 2T gKT -(A 2TKKg +BgTT 2K ); 

 CT2 = A KKg 1L +B 1K LTg -(A LKg 1K +BgKT L1), 

 CK2 = AgTK 1L +B 1T gLT -(A LKg 1T +BgTT 1L ), 

 CL2 = AgTK 1K +B 1T gKT -(A KKg 1T +BgTT 1K ).                          (58) 

Recall eq. (19), that is,   KK KT KLg g g  and   TT TK TLg g g . Substitute these equations into eq. 

(58) to eliminate gKK, and gTT. Next, recall eq. (17), that is, ( / )ih h i hig g . Use this equation to eliminate 

,  ,KL TLg g  and TKg . Recall eq. (37), that is, ,  ,  , ,LK LT KTS T U g g g . Using these symbols for ease of 

notation, transform eq. (58): 

 (55)

2.5. Rybczynski matrix 
 From the above, the Rybczynski matrix [Xj*/Vi*](to use Thompson’s terminology (1985, p. 

619)) in elasticity terms is: 

 (56)

Express in general: 
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 (57)

Substitute 1, 2, 3 instead of T, K, L, respectively, when we compute (-1)i+j. Sign patterns are 

of interest. We can show that X1*/VL*and X2*/VL*  are, respectively, equivalent to eqs. (26) 

and (27) in BC (p. 32). BC only obtained these two equations. BC’s method of derivation is 

somewhat complicated. The method shown here is simpler.

 Using Saruss’s rule to expand (48) and (52), we derive



　 75 　

中田　義昭：2財 3要素一般均衡貿易モデルにおける要素賦存量・財の生産量の関係

15 
 

 1 1 1 1 1
1* ( ) * *( ) *[ ].P T T K K L LX P C V C V C V C                     (55) 

 

2.5. Rybczynski matrix  

From the above, the Rybczynski matrix * / *j iX V (to use Thompson’s terminology (1985, p. 619)) in elasticity 

terms is:  

  
1 1 1

2

1 1 1

2 22 22

* / * * / * */ * 1*/ *
*/ * */ * */ *

T K LT K L
j

T K L

i
T K L

X V X V X V
X V

X V X V X
C C C
C C CV

.     (56) 

Express in general:  

 (1/ ) 1 ,  ,  ,  ,  1,  2*/ * .i j
ijj i C i T K LX V j                         (57) 

Substitute 1, 2, 3 instead of T, K, L, respectively, when we compute (-1)i+j. Sign patterns are of interest. We can 

show that 1*/ *LX V  and 2*/ *LX V  are, respectively, equivalent to eq. (26) and (27) in BC (p. 32). BC only 

obtained these two equations. BC’s method of derivation is somewhat complicated. The method shown here is 

simpler. 

Using Saruss’s rule to expand (48) and (52), we derive 

 CT1 = A 2LKKg +B 2 TK Lg -(A 2KLKg +BgKT 2L ), 

 CK1 = AgTK 2L +B 2T gLT -(A 2TLKg +BgTT 2L ), 

 CL1 = AgTK 2K +B 2T gKT -(A 2TKKg +BgTT 2K ); 

 CT2 = A KKg 1L +B 1K LTg -(A LKg 1K +BgKT L1), 

 CK2 = AgTK 1L +B 1T gLT -(A LKg 1T +BgTT 1L ), 

 CL2 = AgTK 1K +B 1T gKT -(A KKg 1T +BgTT 1K ).                          (58) 

Recall eq. (19), that is,   KK KT KLg g g  and   TT TK TLg g g . Substitute these equations into eq. 

(58) to eliminate gKK, and gTT. Next, recall eq. (17), that is, ( / )ih h i hig g . Use this equation to eliminate 

,  ,KL TLg g  and TKg . Recall eq. (37), that is, ,  ,  , ,LK LT KTS T U g g g . Using these symbols for ease of 

notation, transform eq. (58): 

 (58)
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into eq. (58) to eliminate gKK, and gTT. Next, recall eq. (17), that is,
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. Use this 

equation to eliminate gKL, gTL, and gTK. Recall eq. (37), that is,(S , T, U ) =(gLK, gLT, gKT). Us-

ing these symbols for ease of notation, transform eq. (58):
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 CT1 = E 2L U -A 2

K
(1- 2T )S +B K2 T, 

 CK1 = (-E)
K

T
2L U - A 2T S + B

2

T
(1- 2K )T, 

 CL1 = (-E) 2

T
(1- 2L ) U+ A L

K
2T S+ B L

T
2K T; 

 CT2 = E L1 U -A 1

K
(1- 1T )S+B 1K T, 

 CK2 = (-E) K

T
1L U - A 1T S + B 1

T
(1- 1K )T, 

 CL2 =
1

1 11( ) (1 ) L L
L

T
K

T
T

K
E U A S B T ,                         (59) 

where we recall eq. (31), that is, ( )E A B . Cij is a linear function in S, T, and U. Recall eq. (40), that is,

’, ’ / , / / , /LK LT KT LTS U S T U T g g g g , which we call the EWS-ratio vector. Using this, transform eq. 

(59) to derive 

 CT1 = E 2L T [U’-fT1(S’)]], CK1 = (-E)
K

T
2L T[U’-fK1(S’)],  

 CL1 =(-E)
2

T
(1- 2L ) T[U’-fL1(S’)];  

 CT2 = E 1L T [U’-fT2(S’)]], CK2 = (-E)
K

T
L1 T[U’-fK2(S’)], 

 CL2 = (-E)
1

T
(1- 1L )T[U’-fL2(S’)],                                          (60) 

where 

 fT1(S’) = [A
2

K
(1- 2T )S’ -B K2 ] (E L2 )-1

, 

 fK1(S’) = [A T2S’- B
2

T
(1- 2K )][(-E)

K

T
L2] -1

, 

 fL1(S’) = [- A
L

K
T2 S’ -B

L

T
K2 ][ (-E)

2

T
(1- 2L )] -1; 

 fT2(S’) = [A
1

K
(1- 1T )S’ -B K1 ] (E L1 )-1, 

 (59)

where we recall eq. (31), that is, E=-(A+B). Cij is a linear function in S , T, and U .  Recall eq. 

(40), that is,(S ’, U ’)=(S /T, U /T)=(gLK / gLT, gKT / gLT) , which we call the EWS-ratio vector. 

Using this, transform eq. (59) to derive
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 fK2(S’) = [A 1T S’- B 1

T
 (1- 1K )][(-E) K

T
L1] -1, 

 fL2(S’) = [- A
L

K
T1 S’ -B

L

T
K1 ][ (-E)

1

T
(1- 1L )] -1.         (61) 

Define  

 1[ ' ]' ,ij ij ji ijA S B Ef S  and ' ' , , , , 1,’ 2.ijijC U i T K L jf S       (62) 

In these expressions, Aij, B ij, and Eij are the parameters respectively related to A, B, and E. That is,  

 , ,( )ij ij ijA B E = (A 2

K
(1- 2T ), -B K2, E L2), for ij = T1, 

  = (A T2, -B
2

T
(1- 2K ), (-E) K

T
L2 ), for ij = K1,  

   = (-A
L

K
T2, -B

L

T
K2, (-E)

2

T
(1- 2L ) ), for i j = L1;  

  = (A 1

K
(1- 1T ), -B K1, E L1 ), for ij =T2, 

  = (A T1, - B
1

T
(1- 1K ), (-E)

K

T
L1

 ), for i j = K2, 

  = (- A
L

K
T1, -B

L

T
K1, (-E) 1

T
(1- 1L ) ), for ij = L2.           (63) 

'ijC  is a linear function in S’ and U’. Express in general:  
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This equation expresses the straight line in two dimensions. We call it the equation for line 
ij, which expresses the border line for a Rybczynski sign pattern to change. The gradient and 

intercept of line ij are, respectively, AijEij
-1 and BijEij

-1.

 Using eqs (66) and (41), make a system of equations:
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In summary, there are seven intersection points. Each line ij passes through the same point, which we call point Q. 

The Cartesian coordinates of point Q are  
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We call six intersection points other than point Q, the point , , , , 1,2ij i T K jR L . The Cartesian coordinates of 
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From eqs (23) and (24), we derive eq. (32), that is,  ,  ,    ,  ,  A B E . Substituting this in eq. (70), we 

derive the sign pattern of point Q, that is, 

  ’,  ’   ,  .sign S U                                              (72) 

This implies that point Q belongs to quadrant III. 

 (67)
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for line-T1, K1, L1; T2, K2, L2, respectively:  
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In summary, there are seven intersection points. Each line ij passes through the same point, which we call point Q. 

The Cartesian coordinates of point Q are  
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We call six intersection points other than point Q, the point , , , , 1,2ij i T K jR L . The Cartesian coordinates of 

these points are, for line-T1, K1, L1; T2, K2, L2, respectively: 
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From eqs (23) and (24), we derive eq. (32), that is,  ,  ,    ,  ,  A B E . Substituting this in eq. (70), we 

derive the sign pattern of point Q, that is, 

  ’,  ’   ,  .sign S U                                              (72) 

This implies that point Q belongs to quadrant III. 

 . The Car-

tesian coordinates of these points are, for line-T1, K1, L1; T2, K2, L2, respectively:



　 78 　

生物資源経済研究

18 
 

This equation expresses the straight line in two dimensions. We call it the equation for line ij, which expresses the 
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From eqs (23) and (24), we derive eq. (32), that is, ( A, B, E )= (+, -, +). Substituting this in 

eq. (70), we derive the sign pattern of point Q, that is,
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From eqs (23) and (24), we derive eq. (32), that is,  ,  ,    ,  ,  A B E . Substituting this in eq. (70), we 

derive the sign pattern of point Q, that is, 

  ’,  ’   ,  .sign S U                                              (72) 

This implies that point Q belongs to quadrant III. 

 (72)

This implies that point Q belongs to quadrant III.

 The sign patterns of point Rij are, respectively,
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 The sign patterns of point Rij are, respectively, 

  ’,  ’   ,  ,  ,  ,  ,  ;  ,  ,  ,  ,  ,  .sign S U    (73) 

Hence, point RT1 and RT2 are in quadrant II; point RK1 and RK2 are in quadrant III; and point RL1 and RL2 are in 

quadrant IV. 

Next, we investigate the relative position of point Rij and Q. From eq. (23), we can prove for S’ values of point RK1 

and RK2:  

 2 1

2 1

(1 ) (1 )K K

T T
.                                               (74) 

Equation (74) explains the relative position of the two points (RK1 and RK2). Similarly, from eq. (23), we can prove 

for S’ values of point RT1, RT2, the origin of O, point RL2, and RL1: 

 2 1 1 2

2 1 1 2
0

1 1
K K K K

T T T T
.                                     (75) 

Equation (75) explains the relative position of these five points.  

 We can prove for S’ values of point RK2 and Q: 
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B
A

.                                                      (76) 

The derivation of eq. (76) is as follows. Because we assume (32), that is,  ,  ,    ,  ,  A B E , we have 

  .A  Hence, (76) reduces 

 
1 1(1 )AK T B                                                      (77) 

Recall eq. (31), ( ).B A E  Substitute this in eq. (77) and multiply both sides by (-1). By transforming this, 

we derive 

  
1 1A 0L TE                                                         (78) 

Using eq. (23), we can show that   

 . .S.L H of (78) 1 2 2 1
1 1 2 1 2 1

0( ) ( ) L T L T
L T T L L T

. 

Thus, we have proved eq. (76). 

From eqs (70)-(76), we can draw point Q and Rij and, hence, line ij in the figure. Each line ij divides the region of 
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Hence, point RT1 and RT2 are in quadrant II; point RK1 and RK2 are in quadrant III; and point 
RL1 and RL2 are in quadrant IV.

 Next, we investigate the relative position of point Rij and Q. From eq. (23), we can prove 

for S ’ values of point RK1 and RK2: 

19 
 

 The sign patterns of point Rij are, respectively, 

  ’,  ’   ,  ,  ,  ,  ,  ;  ,  ,  ,  ,  ,  .sign S U    (73) 

Hence, point RT1 and RT2 are in quadrant II; point RK1 and RK2 are in quadrant III; and point RL1 and RL2 are in 

quadrant IV. 

Next, we investigate the relative position of point Rij and Q. From eq. (23), we can prove for S’ values of point RK1 

and RK2:  

 2 1

2 1

(1 ) (1 )K K

T T
.                                               (74) 

Equation (74) explains the relative position of the two points (RK1 and RK2). Similarly, from eq. (23), we can prove 

for S’ values of point RT1, RT2, the origin of O, point RL2, and RL1: 

 2 1 1 2

2 1 1 2
0

1 1
K K K K

T T T T
.                                     (75) 

Equation (75) explains the relative position of these five points.  

 We can prove for S’ values of point RK2 and Q: 

 1

1

(1 )K

T

B
A

.                                                      (76) 

The derivation of eq. (76) is as follows. Because we assume (32), that is,  ,  ,    ,  ,  A B E , we have 

  .A  Hence, (76) reduces 

 
1 1(1 )AK T B                                                      (77) 

Recall eq. (31), ( ).B A E  Substitute this in eq. (77) and multiply both sides by (-1). By transforming this, 

we derive 

  
1 1A 0L TE                                                         (78) 

Using eq. (23), we can show that   

 . .S.L H of (78) 1 2 2 1
1 1 2 1 2 1

0( ) ( ) L T L T
L T T L L T

. 

Thus, we have proved eq. (76). 

From eqs (70)-(76), we can draw point Q and Rij and, hence, line ij in the figure. Each line ij divides the region of 

 (74)

Equation (74) explains the relative position of the two points (RK1 and RK2). Similarly, from 

eq. (23), we can prove for S ’ values of point RT1, RT2, the origin of O, point RL2, and RL1:

19 
 

 The sign patterns of point Rij are, respectively, 

  ’,  ’   ,  ,  ,  ,  ,  ;  ,  ,  ,  ,  ,  .sign S U    (73) 

Hence, point RT1 and RT2 are in quadrant II; point RK1 and RK2 are in quadrant III; and point RL1 and RL2 are in 

quadrant IV. 

Next, we investigate the relative position of point Rij and Q. From eq. (23), we can prove for S’ values of point RK1 

and RK2:  

 2 1

2 1

(1 ) (1 )K K

T T
.                                               (74) 

Equation (74) explains the relative position of the two points (RK1 and RK2). Similarly, from eq. (23), we can prove 

for S’ values of point RT1, RT2, the origin of O, point RL2, and RL1: 

 2 1 1 2

2 1 1 2
0

1 1
K K K K

T T T T
.                                     (75) 

Equation (75) explains the relative position of these five points.  

 We can prove for S’ values of point RK2 and Q: 

 1

1

(1 )K

T

B
A

.                                                      (76) 

The derivation of eq. (76) is as follows. Because we assume (32), that is,  ,  ,    ,  ,  A B E , we have 

  .A  Hence, (76) reduces 

 
1 1(1 )AK T B                                                      (77) 

Recall eq. (31), ( ).B A E  Substitute this in eq. (77) and multiply both sides by (-1). By transforming this, 

we derive 

  
1 1A 0L TE                                                         (78) 

Using eq. (23), we can show that   

 . .S.L H of (78) 1 2 2 1
1 1 2 1 2 1

0( ) ( ) L T L T
L T T L L T

. 

Thus, we have proved eq. (76). 

From eqs (70)-(76), we can draw point Q and Rij and, hence, line ij in the figure. Each line ij divides the region of 

 (75)

Equation (75) explains the relative position of these five points. 

 We can prove for S ’ values of point RK2 and Q:

19 
 

 The sign patterns of point Rij are, respectively, 

  ’,  ’   ,  ,  ,  ,  ,  ;  ,  ,  ,  ,  ,  .sign S U    (73) 

Hence, point RT1 and RT2 are in quadrant II; point RK1 and RK2 are in quadrant III; and point RL1 and RL2 are in 

quadrant IV. 

Next, we investigate the relative position of point Rij and Q. From eq. (23), we can prove for S’ values of point RK1 

and RK2:  

 2 1

2 1

(1 ) (1 )K K

T T
.                                               (74) 

Equation (74) explains the relative position of the two points (RK1 and RK2). Similarly, from eq. (23), we can prove 

for S’ values of point RT1, RT2, the origin of O, point RL2, and RL1: 

 2 1 1 2

2 1 1 2
0

1 1
K K K K

T T T T
.                                     (75) 

Equation (75) explains the relative position of these five points.  

 We can prove for S’ values of point RK2 and Q: 

 1

1

(1 )K

T

B
A

.                                                      (76) 

The derivation of eq. (76) is as follows. Because we assume (32), that is,  ,  ,    ,  ,  A B E , we have 

  .A  Hence, (76) reduces 

 
1 1(1 )AK T B                                                      (77) 

Recall eq. (31), ( ).B A E  Substitute this in eq. (77) and multiply both sides by (-1). By transforming this, 

we derive 

  
1 1A 0L TE                                                         (78) 

Using eq. (23), we can show that   

 . .S.L H of (78) 1 2 2 1
1 1 2 1 2 1

0( ) ( ) L T L T
L T T L L T

. 

Thus, we have proved eq. (76). 

From eqs (70)-(76), we can draw point Q and Rij and, hence, line ij in the figure. Each line ij divides the region of 

 (76)

The derivation of eq. (76) is as follows. Because we assume (32), that is, ( A, B, E )= (+, -, +), 
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Using eq. (23), we can show that 
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「生物資源経済研究」原稿修正箇所 by Yoshiaki Nakada 2017/02/10 

1. 式(A14)の辺り(ベクトル行列はイタリックをトル)： 

Transform エラー! 参照元が見つかりません。: 

 LLs  x Ax ,                                                       ( 1) 

where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  

 ,
K KK KT

T TK TT

w s s
w s s
   

    
   

x A .  

2. 式(78) の下の辺り(数式が一部一段下がっているのを修正)： 

Using eq. エラー! 参照元が見つかりません。, we can show that   

 . .S.L H of エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 

1 1 2 1 2 1 1 2 2 1( ) ( ) 0L T T L L T L T L T                .  

3. 式(44)の下の式（うち合わせではイキだが、=の前後に余計なスペースがある。その修正のついでに変

更を希望する。Mathtypeインライン１つを３つに分割した）： 

where we recall eqs エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。  and 

エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 , that is,    ’,  ’ / ,  /S U S T U T

 / ,  / ,LK LT KT LTg g g g    (,  ),  , ,KT LK LTS T U g g g . We define (for i ≠ h),  

 

Thus, we have proved eq. (76).

 From eqs (70)-(76), we can draw point Q and Rij and, hence, line ij in the figure. Each line 
ij divides the region of the EWS-ratio vector into 12 subregions, that is, the subregion P1-5 

(upper-right region) and M1-7 (lower-left region) (see Fig. 1).

2.7. Rybczynski sign patterns
 Define the 2 x 3 matrices:
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f S f S UC C C f S
C . (79) 

Using the Hadamard product of these matrices, we can transform eq. (56): 

  
1* / *j iX V F C ,                                                  (80) 

where (see eq. (64)) 

 TC E C' .                                                         (81) 

In general, if A = [aij] and B = [bij] are each m x n matrices, their Hadamard product is the matrix of element-wise 

products, that is, [ ]ij ija bA B . For this definition, see, for example, Styan (1973, p. 217-18). Hadamard product 

is known, for example, in the literature of statistics.  

Hence, Rybczynski sign patterns are: 

 
1 1*/ *j isign X V sign sign signF C F C ,                         (82) 

where  

 ( )sign sign T sign sign TC E C' E C' .                               (83) 

Recall that 0 (see eq. (46)). Hence, 
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Recall that ∆ < 0 (see eq. (46)). Hence,
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Recall that we assume eq. (32), that is, ( A, B, E )= (+, -, +). Hence, 
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Recall that we assume eq. (32), that is, ,  ,    ,  ,  A B E . Hence,  

 signE .                                                 (85) 

In general, if the EWS-ratio vector (S’, U’) exists in the subregion above line ij (resp. below line ij), we derive  

 ’ 0' ' iij jfC U S . ( ' '. ’ 0)ij ijC Uresp f S .         (86) 

For example, if the EWS-ratio vector exists in subregion P2, that is, below line T1, T2, L2, and above line L1, K1, 

K2, the sign pattern of matrix C’ is 

 ’ ’  ijsign CC . 

Sign patterns of matrix C’ are, respectively, for each subregion: 

  P1  P2     P3   P4  P5 

  s i g nC'  =  

 M1  M2       M3  M4  M5       M6  M7 

(87) 

In summary, the position of the EWS-ratio vector determines the sign pattern of matrix C’.  

Of course, we can state that from eq. (44) and Fig. 1, 

 T > 0, if the EWS-ratio vector exists in any of the subregions P1-P5,  

 T < 0, if the EWS-ratio vector exists in any of the subregions M1-M7.           (88) 

From eqs (87) and (88), the sign patterns of the matrix C’T are, for each subregion: 

  P1  P2     P3   P4  P5 

  s i g nC'  =  

 M1  M2       M3  M4  M5       M6  M7 

(89) 

Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7.  
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For example, if the EWS-ratio vector exists in subregion P2, that is, below line T1, T2, L2, and above line L1, K1, 

K2, the sign pattern of matrix C’ is 
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Sign patterns of matrix C’ are, respectively, for each subregion: 

  P1  P2     P3   P4  P5 

  signC'  = 
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    

   
    

(87) 

In summary, the position of the EWS-ratio vector determines the sign pattern of matrix C’.  

Of course, we can state that from eq. (44) and Fig. 1, 

 T > 0, if the EWS-ratio vector exists in any of the subregions P1-P5,  

 T < 0, if the EWS-ratio vector exists in any of the subregions M1-M7.           (88) 

From eqs (87) and (88), the sign patterns of the matrix C’T are, for each subregion: 
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   
    
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    

(89) 

Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7.  
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In summary, the position of the EWS-ratio vector determines the sign pattern of matrix C’.  

Of course, we can state that from eq. (44) and Fig. 1, 
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Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7.  
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For example, if the EWS-ratio vector exists in subregion P2, that is, below line T1, T2, L2, and above line L1, K1, 
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In summary, the position of the EWS-ratio vector determines the sign pattern of matrix C’.  

Of course, we can state that from eq. (44) and Fig. 1, 

 T > 0, if the EWS-ratio vector exists in any of the subregions P1-P5,  

 T < 0, if the EWS-ratio vector exists in any of the subregions M1-M7.           (88) 

From eqs (87) and (88), the sign patterns of the matrix C’T are, for each subregion: 
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Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7.  
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In general, if the EWS-ratio vector (S’, U’) exists in the subregion above line ij (resp. below line ij), we derive  
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For example, if the EWS-ratio vector exists in subregion P2, that is, below line T1, T2, L2, and above line L1, K1, 

K2, the sign pattern of matrix C’ is 
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Sign patterns of matrix C’ are, respectively, for each subregion: 

  P1  P2     P3   P4  P5 
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In summary, the position of the EWS-ratio vector determines the sign pattern of matrix C’.  

Of course, we can state that from eq. (44) and Fig. 1, 

 T > 0, if the EWS-ratio vector exists in any of the subregions P1-P5,  

 T < 0, if the EWS-ratio vector exists in any of the subregions M1-M7.           (88) 
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Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7.  
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In general, if the EWS-ratio vector (S’, U’) exists in the subregion above line ij (resp. below line ij), we derive  
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For example, if the EWS-ratio vector exists in subregion P2, that is, below line T1, T2, L2, and above line L1, K1, 

K2, the sign pattern of matrix C’ is 
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Sign patterns of matrix C’ are, respectively, for each subregion: 

  P1  P2     P3   P4  P5 

  signC'  = 
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
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(87) 

In summary, the position of the EWS-ratio vector determines the sign pattern of matrix C’.  

Of course, we can state that from eq. (44) and Fig. 1, 

 T > 0, if the EWS-ratio vector exists in any of the subregions P1-P5,  

 T < 0, if the EWS-ratio vector exists in any of the subregions M1-M7.           (88) 

From eqs (87) and (88), the sign patterns of the matrix C’T are, for each subregion: 
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(89) 

Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7.  
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   (89)

Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7. 

 Recall eq. (83), that is,
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Recall eq. (83), that is, ( )sign sign T sign sign T C E C' E C'  . Substituting eqs (89) and (85) in (83), we 

have 

  P1  P2     P3   P4  P5 

  signC  = 
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(90) 

Recall eq. (82), that is, 
1[ */ *]j isign X V sign sign


F C . Substitute eqs (90) and (84) in (82), we derive the 

Rybczynski sign patterns. They are, for each subregion: 

   P1  P2     P3   P4  P5 

  sign */ *j iX V =
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(91) 

In summary, the position of the EWS-ratio vector determines the Rybczynski sign pattern. There are 12 patterns in 

total. Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7. If we do not count the 

duplication, there are seven patterns in total.  

We make the following statements. 

(i) If the EWS ratio vector (S’, U’) exists in subregion P1, P2, or P3, the effects of land endowment on 

commodity output in sector 1 and sector 2 are positive and negative, respectively. The effects of capital 

endowment on commodity output in sector 1 and sector 2 are negative and positive, respectively.  

(ii) If the EWS ratio vector exists in subregion P4 or M6, the effects of land endowment on commodity output 

in both sectors 1 and 2 are positive. The effects of capital endowment on commodity output in sector 1 and 

sector 2 are negative and positive, respectively.  

(iii) If the EWS ratio vector exists in subregion P5 or M7, the effects of land endowment on commodity output 

in sector 1 and sector 2 are negative and positive, respectively. The effects of capital endowment on 

. Substituting eqs (89) 

and (85) in (83), we have
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Recall eq. (83), that is, ( )sign sign T sign sign T C E C' E C'  . Substituting eqs (89) and (85) in (83), we 

have 

  P1  P2     P3   P4  P5 

  signC  = 
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(90) 

Recall eq. (82), that is, 
1[ */ *]j isign X V sign sign


F C . Substitute eqs (90) and (84) in (82), we derive the 

Rybczynski sign patterns. They are, for each subregion: 

   P1  P2     P3   P4  P5 

  sign */ *j iX V =
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(91) 

In summary, the position of the EWS-ratio vector determines the Rybczynski sign pattern. There are 12 patterns in 

total. Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7. If we do not count the 

duplication, there are seven patterns in total.  

We make the following statements. 

(i) If the EWS ratio vector (S’, U’) exists in subregion P1, P2, or P3, the effects of land endowment on 

commodity output in sector 1 and sector 2 are positive and negative, respectively. The effects of capital 

endowment on commodity output in sector 1 and sector 2 are negative and positive, respectively.  

(ii) If the EWS ratio vector exists in subregion P4 or M6, the effects of land endowment on commodity output 

in both sectors 1 and 2 are positive. The effects of capital endowment on commodity output in sector 1 and 

sector 2 are negative and positive, respectively.  

(iii) If the EWS ratio vector exists in subregion P5 or M7, the effects of land endowment on commodity output 

in sector 1 and sector 2 are negative and positive, respectively. The effects of capital endowment on 
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Recall eq. (83), that is, ( )sign sign T sign sign T C E C' E C'  . Substituting eqs (89) and (85) in (83), we 

have 

  P1  P2     P3   P4  P5 

  signC  = 
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(90) 

Recall eq. (82), that is, 
1[ */ *]j isign X V sign sign


F C . Substitute eqs (90) and (84) in (82), we derive the 

Rybczynski sign patterns. They are, for each subregion: 

   P1  P2     P3   P4  P5 

  sign */ *j iX V =
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(91) 

In summary, the position of the EWS-ratio vector determines the Rybczynski sign pattern. There are 12 patterns in 

total. Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7. If we do not count the 

duplication, there are seven patterns in total.  

We make the following statements. 

(i) If the EWS ratio vector (S’, U’) exists in subregion P1, P2, or P3, the effects of land endowment on 

commodity output in sector 1 and sector 2 are positive and negative, respectively. The effects of capital 

endowment on commodity output in sector 1 and sector 2 are negative and positive, respectively.  

(ii) If the EWS ratio vector exists in subregion P4 or M6, the effects of land endowment on commodity output 

in both sectors 1 and 2 are positive. The effects of capital endowment on commodity output in sector 1 and 

sector 2 are negative and positive, respectively.  

(iii) If the EWS ratio vector exists in subregion P5 or M7, the effects of land endowment on commodity output 

in sector 1 and sector 2 are negative and positive, respectively. The effects of capital endowment on 

  

   (90)

Recall eq. (82), that is,
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Recall eq. (83), that is, ( )sign sign T sign sign T C E C' E C'  . Substituting eqs (89) and (85) in (83), we 

have 

  P1  P2     P3   P4  P5 

  signC  = 
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(90) 

Recall eq. (82), that is, 
1[ */ *]j isign X V sign sign


F C . Substitute eqs (90) and (84) in (82), we derive the 

Rybczynski sign patterns. They are, for each subregion: 

   P1  P2     P3   P4  P5 

  sign */ *j iX V =
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(91) 

In summary, the position of the EWS-ratio vector determines the Rybczynski sign pattern. There are 12 patterns in 

total. Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7. If we do not count the 

duplication, there are seven patterns in total.  

We make the following statements. 

(i) If the EWS ratio vector (S’, U’) exists in subregion P1, P2, or P3, the effects of land endowment on 

commodity output in sector 1 and sector 2 are positive and negative, respectively. The effects of capital 

endowment on commodity output in sector 1 and sector 2 are negative and positive, respectively.  

(ii) If the EWS ratio vector exists in subregion P4 or M6, the effects of land endowment on commodity output 

in both sectors 1 and 2 are positive. The effects of capital endowment on commodity output in sector 1 and 

sector 2 are negative and positive, respectively.  

(iii) If the EWS ratio vector exists in subregion P5 or M7, the effects of land endowment on commodity output 

in sector 1 and sector 2 are negative and positive, respectively. The effects of capital endowment on 

. Substitute eqs (90) and (84) in (82), 

we derive the Rybczynski sign patterns. They are, for each subregion:
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Recall eq. (83), that is, ( )sign sign T sign sign T C E C' E C'  . Substituting eqs (89) and (85) in (83), we 

have 

  P1  P2     P3   P4  P5 

  signC  = 
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(90) 

Recall eq. (82), that is, 
1[ */ *]j isign X V sign sign


F C . Substitute eqs (90) and (84) in (82), we derive the 

Rybczynski sign patterns. They are, for each subregion: 

   P1  P2     P3   P4  P5 

  sign */ *j iX V =
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(91) 

In summary, the position of the EWS-ratio vector determines the Rybczynski sign pattern. There are 12 patterns in 

total. Note that the sign patterns for P1-P5 are, respectively, the same as those for M3-M7. If we do not count the 

duplication, there are seven patterns in total.  

We make the following statements. 

(i) If the EWS ratio vector (S’, U’) exists in subregion P1, P2, or P3, the effects of land endowment on 

commodity output in sector 1 and sector 2 are positive and negative, respectively. The effects of capital 

endowment on commodity output in sector 1 and sector 2 are negative and positive, respectively.  

(ii) If the EWS ratio vector exists in subregion P4 or M6, the effects of land endowment on commodity output 

in both sectors 1 and 2 are positive. The effects of capital endowment on commodity output in sector 1 and 

sector 2 are negative and positive, respectively.  

(iii) If the EWS ratio vector exists in subregion P5 or M7, the effects of land endowment on commodity output 

in sector 1 and sector 2 are negative and positive, respectively. The effects of capital endowment on 
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Recall eq. (83), that is, ( )sign sign T sign sign T C E C' E C'  . Substituting eqs (89) and (85) in (83), we 

have 

  P1  P2     P3   P4  P5 

  signC  = 
   
    

   
    

   
    

   
    

   
    

 

 M1  M2       M3  M4  M5       M6  M7 

   
    

   
    

   
    

   
    

   
    

   
    

   
    

(90) 

Recall eq. (82), that is, 
1[ */ *]j isign X V sign sign


F C . Substitute eqs (90) and (84) in (82), we derive the 
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effects of capital endowment on commodity output in sector 1 and sector 2 are negative 

and positive, respectively. 

(iv)  If the EWS ratio vector exists in subregion M1, the effects of land endowment on com-

modity output in sector 1 and sector 2 are positive and negative, respectively. The ef-

fects of capital endowment on commodity output in sector 1 and sector 2 are positive 

and negative, respectively. 

(v)  If the EWS ratio vector exists in Subregion M2, the effects of land endowment on com-

modity output in sector 1 and sector 2 are positive and negative, respectively. The ef-

fects of capital endowment on commodity output in both sectors 1 and 2 are positive.

 We can state as follows.

  A strong Rybczynski result holds if the EWS-ratio vector exists in the subregion

 P1, P2, P3; M3, M4, or M5. 

  A strong Rybczynski result does not hold if the EWS-ratio vector exists in the

 subregion P4, P5; M1, M2, M6, or M7.  (92)

2.8. The commodity price–factor price relationship
 From the reciprocity relations derived by Samuelson, BC (p. 36, eqs (31)-(33)) derived
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where we recall (7), that is, 1 2  *  *.P p p   Define the Stolper-Samuelson matrix in elasticity terms: 
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This matrix shows how the relative price of a commodity affects the real factor prices. Sign patterns are of interest. 

Multiply the second row of eq. (91) by (-1) and interchange row 1 and row 2, we derive the Stolper-Samuelson sign 

patterns as follows. They are, for each subregion:  
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where we recall (7), that is, P=p1*-p2*.  Define the Stolper-Samuelson matrix in elasticity 
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In summary, the position of the EWS-ratio vector determines the Stolper-Samuelson sign pattern.  

Note that  

 the sign patterns of matrix [ * *i jw p ] are similar to eq. (95), if     0P     , 

 the sign patterns of matrix [ * *i jw p ] are opposite to eq. (95), if     0P    , (96) 

 

3. Some applications 

Example 1: For example, we derive the following. 

(i) If    ',  ’ ,  S U    , the EWS-ratio vector exists in quadrant I, that is, in the subregion P1-P5.  

(ii) If    ',  ’ ,  S U    , the EWS-ratio vector exists in quadrant II, that is, in the subregion P3, P4, or P5.  

(iii) If    ',  ’ ,  S U    , the EWS-ratio vector exists in quadrant III, that is, in the subregion M1-M7.  

In all three cases, it is indeterminate whether a strong Rybczynski result holds.  

(iv) If    ’,  ’ ,  S U    , the EWS-ratio vector exists in quadrant IV, that is, in the subregion P1, P2, or P3. 

We assume (iv) holds. That is (see eq. (43)), 
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This implies that capital and land, extreme factors, are economy-wide complements. From (92), a strong 

Rybczynski result holds necessarily. Hence, the Rybczynski sign patterns for P1-P3 hold (see (91)). The following 

result has been established. 
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(1985, p. 619) terminology for subregions P1-P3 are, respectively:
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Eq. (100) implies that each sign pattern expresses the factor endowment–commodity output relationship. Notably, 

the sign of Column 3 shows the labor endowment–commodity output relationship. An increase in the supply of land 

increases the output of commodity 1 and reduces the output of commodity 2. Moreover, an increase in the supply of 

capital increases the output of commodity 2 and reduces the output of commodity 1. However, it is indeterminate 

how an increase in the supply of labor affects the outputs of commodities 1 and 2. Three patterns are possible. 

Therefore, we make the following statements.  

(i) If the EWS ratio vector (S’, U’) exists in subregion P1, the effects of labor endowment on commodity 

output in sector 1 and sector 2 are negative and positive, respectively.  

(ii) If the EWS ratio vector exists in subregion P2, the effects of labor endowment on commodity output in 

both sectors 1 and 2 are positive. 

(iii) If the EWS ratio vector exists in subregion P3, the effects of labor endowment on commodity output in 

sector 1 and sector 2 are positive and negative, respectively.  

Eq. (101) implies as follows. Each sign pattern expresses the commodity price–factor price relationships. For 

example, if we assume that P = (+) > 0, the sign patterns of the matrix [ * *i jw p ] are similar to the above. That is, 

both the real factor prices of land measured by good 1 and 2 increase, and both the real factor prices of capital 

decrease.  

(i) If the EWS-ratio vector (S’, U’) exists in the subregion P1, both the real factor prices of labor measured by good 

1 and 2 decrease. This is not favorable for the labor owner. 
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the opposite to the above. 

 For example, as in Takayama (1982, p. 20), we can apply these results to the US trade 

problem in the 1980s. Takayama (1982) did not analyze in elasticity terms but in differential 

forms. If we replace factors T, K, L in our analysis with factors 1, 2, 3, respectively, Takaya-

ma’s (1982) result is very similar to ours.

 Takayama (1982) calls factors 1, 2, and 3, respectively, skilled labor, (physical) capital, 

and unskilled labor (or raw labor). The author called industries 1 and 2, respectively, export-

able and importable. 

 The author also states, ‘there seems to be strong evidence that the current US commodity 

structure of trade is such that her exports are relatively skilled labor (or R&D) intensive vis-

a-vis unskilled labor, and that her imports are relatively capital intensive vis-a-vis unskilled 

labor (e.g., Baldwin, 1971, 1979).’ This implies (see Takayama (1982, p. 14, p. 20)) 
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This is the factor-intensity ranking. Takayama (1982, p. 20) continues, ‘there is some evidence that skilled labor 

and capital are (aggregate) complements (e.g., Branson-Monoyios, 1977). This indicates that our assumption of 

[aggregate] complements for extreme factors are satisfied.’  

This implies that 12  0s   (see Takayama (p. 18)). This implies 12 0g  , if we use EWS. The reason is that 
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Takayama (1982) derived the sign pattern of ‘the Stolper-Samuelson matrix’ (see Takayama (p. 20). If we use our 
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where t denotes the transpose. Takayama (1982, p. 20) states, ‘we may conclude that an im-

port restriction which raises the domestic price of importables (say, automobiles from Japan) 

in the US increases the return on capital and lowers the return on skilled labor (or R&D) in 

the US.’ Similarly, the author analyzed the effect of a reduction on import restrictions, which 

is the opposite of the above. 

 Takayama (1982) only analyzed the effect on the price of extreme factors (factors 1 and 

2). He did not analyze how the strengthening (or reduction) of import restrictions affected 

the price of the middle factor (factor 3, or unskilled labor). In our analysis, the strengthening 

implies that P=p1*-p2* =(-), and the reduction implies that P=(+).

 Our results suggest that it is possible for us to analyze how the trade policy change af-
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fected the middle factor in the US if we have two other pieces of information. That is, the in-

formation on the factor-intensity ranking of the middle factor (that is, which equation holds,  
θ31> θ32 , or θ31< θ32) and the information on the position of the EWS-ratio vector, that is, 

the subregion P1, P2, or P3. Using these pieces of information, we can identify the Stolper-

Samuelson sign pattern.

 If we assume θ31> θ32 , we know that three of the Stolper-Samuelson sign patterns hold as 

shown above. On the other hand, if we assume θ31< θ32, we can analyze similarly. 

 Of course, if we use econometrics, we can estimate the value of each coefficient in eq. (56), 

that is, the Rybczynski matrix. Therefore, we can derive the Rybczynski sign pattern and, 

hence, the Stolper-Samuelson sign pattern. This will be useful. 

Example 2: By comparing the Cartesian coordinates of Points RL2 and RL1 with the EWS-ratio 

vector (S ’, U ’) , we can show some examples of a sufficient condition for a specific Stolper-

Samuelson sign pattern to hold. We assume

27 
 

where t denotes the transpose. Takayama (1982, p. 20) states, ‘we may conclude that an import restriction which 

raises the domestic price of importables (say, automobiles from Japan) in the US increases the return on capital and 

lowers the return on skilled labor (or R&D) in the US.’ Similarly, the author analyzed the effect of a reduction on 

import restrictions, which is the opposite of the above.  

Takayama (1982) only analyzed the effect on the price of extreme factors (factors 1 and 2). He did not analyze how 

the strengthening (or reduction) of import restrictions affected the price of the middle factor (factor 3, or unskilled 

labor). In our analysis, the strengthening implies that  1 2* *P p p    , and the reduction implies that 

 P    . 

Our results suggest that it is possible for us to analyze how the trade policy change affected the middle factor in the 

US if we have two other pieces of information. That is, the information on the factor-intensity ranking of the 

middle factor (that is, which equation holds, 31 32  , or 31 32  ) and the information on the position of the 

EWS-ratio vector, that is, the subregion P1, P2, or P3. Using these pieces of information, we can identify the 

Stolper-Samuelson sign pattern. 

If we assume 31 32  , we know that three of the Stolper-Samuelson sign patterns hold as shown above. On the 

other hand, if we assume 31 32  , we can analyze similarly.  

Of course, if we use econometrics, we can estimate the value of each coefficient in eq. (56), that is, the Rybczynski 

matrix. Therefore, we can derive the Rybczynski sign pattern and, hence, the Stolper-Samuelson sign pattern. This 

will be useful.  

 

Example 2: By comparing the Cartesian coordinates of Points 2LR  and 1LR  with the EWS-ratio vector 

 ’,  ’S U , we can show some examples of a sufficient condition for a specific Stolper-Samuelson sign pattern to 

hold. We assume 

        ’,  ’   ,    ,  ,    ,  ,  S U S T U         .  

 From (71), the Cartesian coordinates of Points 2LR  and 1LR  are, respectively, 

 ( 1 1

1 1
,
1

K K

T L

 
 




L

K




) ( 2 2

2 2
,
1

K K

T L

 
 




L

K




).       (104) 

(i) If the EWS-ratio vector (S’, U’) satisfies 
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The EWS-ratio vector exists in the lower right of point RL1. Hence, it exists in the subregion P1.  

(ii) If the EWS-ratio vector satisfies 
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The EWS-ratio vector exists in the lower right of the origin of O, and in the upper left of point RL2. Hence, it exists 

in the subregion P3.  

In all three cases, a strong Rybczynski result holds. 

 

Example 3: In summary, I have shown that the position of the EWS-ratio vector determines the Rybczynski sign 

pattern (see eq. (91)). Notably, if extreme factors are economy-wide complements, a strong Rybczynski result holds 

necessarily (see Theorem 1).  

Therefore, the question arises. Can we estimate the position of the EWS-ratio vector? Nakada (2016a) has shown 

that the EWS-ratio vector exists on the line segment. Using this relationship, he has developed a method to estimate 

the position of the EWS-ratio vector. That is, we can estimate it to some extent if we have the appropriate data. 

Nakada (2016a) derived the following results. 

(i) First, he derived a sufficient condition for the EWS-ratio vector to exist in quadrant IV (that is, subregion 

P1, P2, or P3). In this case, extreme factors are economy-wide complements. If this holds, ‘a strong 

Rybczynski result’ holds, that is, three of the Rybczynski sign patterns hold. 

(ii) Further, he derived a sufficient condition for the EWS-ratio vector to exist in a specific subregion (P1, P2, 

or P3). If this holds, a specific Rybczynski sign pattern holds. 

In addition, Nakada (2016a) has shown that extreme factors must be economy-wide complements in some cases. In 

this case, it is not plausible to assume the functional form of production functions, such as Cobb-Douglas, or 
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 Example 3: In summary, I have shown that the position of the EWS-ratio vector deter-

mines the Rybczynski sign pattern (see eq. (91)). Notably, if extreme factors are economy-

wide complements, a strong Rybczynski result holds necessarily (see Theorem 1). 

 Therefore, the question arises. Can we estimate the position of the EWS-ratio vector? Na-

kada (2016a) has shown that the EWS-ratio vector exists on the line segment. Using this re-

lationship, he has developed a method to estimate the position of the EWS-ratio vector. That 

is, we can estimate it to some extent if we have the appropriate data. Nakada (2016a) derived 

the following results.

(i)  First, he derived a sufficient condition for the EWS-ratio vector to exist in quadrant 

IV (that is, subregion P1, P2, or P3). In this case, extreme factors are economy-wide 

complements. If this holds, ‘a strong Rybczynski result’ holds, that is, three of the Rybc-

zynski sign patterns hold.

(ii)  Further, he derived a sufficient condition for the EWS-ratio vector to exist in a specific 

subregion (P1, P2, or P3). If this holds, a specific Rybczynski sign pattern holds.

 In addition, Nakada (2016a) has shown that extreme factors must be economy-wide 

complements in some cases. In this case, it is not plausible to assume the functional form of 

production functions, such as Cobb-Douglas, or all-constant CES in each sector, which do 

not allow any two factors to be Allen-complements. Hence, we derive

29 
 

all-constant CES in each sector, which do not allow any two factors to be Allen-complements. Hence, we derive 

 (1,1,1), ( , , )ij
h c c c  , c is constant.         (108) 

 

Example 4: Further, Nakada (2016b) applied Nakada’s (2016a) results to data from Thailand and, in doing so, 

derived the factor endowment–commodity output relationship for Thailand during the period 1920-1929. He 

restricted the analysis to this period on account of data availability. I show the essence of his results.  

In the model, Nakada (2016b) considered rice as an exportable (or commodity 1) and cotton textiles as an 

importable (or commodity 2). He considered land, capital, and labor as the three factors. Nakada (2016b) showed 

that a certain pattern of factor intensity ranking, as shown in eq. (23), holds for Thailand. Moreover, he assumed 

that the factor intensity ranking of the middle factor, as shown in eq. (24), holds. That is, sector 1 was relatively 

land intensive, sector 2 was relatively capital intensive, labor was the middle factor, and land and capital were 

extreme factors. He assumed that the middle factor was used relatively intensively in sector 1. He could draw the 

following conclusions for the data pertaining to Thailand for the period 1920-1929. The EWS-ratio vector 

 ’,  ’S U   exists in quadrant IV (or sub-regions P1-P3), in other words, capital and land, extreme factors, are 

economy-wide complements. Hence, a strong Rybczynski result necessarily holds. 

He derived three of the Rybczynski sign patterns. However, by making a more detailed estimate, he could reduce 
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The EWS-ratio vector contains AESs. For example, if we substitute the data on ,ij ij  , and assume the value of 

AES, we can compute the Cartesian coordinates of the EWS-ratio vector. This is a type of simulation. However, as 

explained in Example 3, the EWS-ratio vector exists on the line-segment. This implies that the EWS-ratio vector is 

constrained by the data observed, hence, it cannot be arbitrary. 

Moreover, by analogy with the EWS-ratio vector, I expect that the value of AES is constrained by the data observed, 

hence, the value cannot be arbitrary. However, I do not discuss this. 

For example, if we assume the Cobb-Douglas production function in each sector, the AESs are all units: 

 (1,1,1)ij
h  for all i, h, j. 

If we substitute this in eq. (112), we derive the EWS-ratio vector as follows. 

    ’,  ’ ,S U    . 

It exists in quadrant I, that is, the subregions P1-P5. From eq. (92), a strong Rybczynski result holds if the 

EWS-ratio vector exists in the subregion P1, P2, or P3. The position of the EWS-ratio vector depends on the value 

of ij   and ij . However, note that this simulation is not plausible in some cases (see (108)).  
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The EWS-ratio vector contains AESs. For example, if we substitute the data on mij, θij and 

assume the value of AES, we can compute the Cartesian coordinates of the EWS-ratio vec-

tor. This is a type of simulation. However, as explained in Example 3, the EWS-ratio vector 
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exists on the line-segment. This implies that the EWS-ratio vector is constrained by the data 

observed, hence, it cannot be arbitrary.

 Moreover, by analogy with the EWS-ratio vector, I expect that the value of AES is con-

strained by the data observed, hence, the value cannot be arbitrary. However, I do not discuss 

this.

 For example, if we assume the Cobb-Douglas production function in each sector, the AESs 

are all units:
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It exists in quadrant I, that is, the subregions P1-P5. From eq. (92), a strong Rybczynski re-

sult holds if the EWS-ratio vector exists in the subregion P1, P2, or P3. The position of the 

EWS-ratio vector depends on the value of mij and θij . However, note that this simulation is 

not plausible in some cases (see (108)). 

4. Conclusion 
 We assumed a certain pattern of factor-intensity ranking, including a certain pattern of 

factor-intensity ranking of the middle factor. We have assumed that sector 1 is relatively land 

intensive, and sector 2 is relatively capital intensive, and that labor is the middle factor, and 

land and capital are extreme factors. Further, we assume that the middle factor is used rela-

tively intensively in sector 1.We analyzed the Rybczynski matrix and its sign pattern using 

the EWS-ratio vector and the Hadamard product. This matrix expresses the factor endow-

ment–commodity output relationships. There are 12 patterns in total. The EWS-ratio vector 

boundary demarcates the boundary of the region where the EWS-ratio vector can exist. Line 

ij divides this region into 12 subregions. We have derived a sufficient condition for each 

Rybczynski sign pattern to hold. That is, the position of the EWS-ratio vector determines the 

Rybczynski sign pattern. A strong Rybczynski result holds for some subregions. We derived 

a sufficient condition for a strong Rybczynski result to hold (or not to hold) in a systematic 

manner. Notably, if the EWS-ratio vector (S ’, U ’) exists in quadrant IV (or subregions P1-

P3); in other words, if capital and land, extreme factors, are economy-wide complements, a 

strong Rybczynski result holds necessarily. This result itself might not sound new. However, 

expressing the theorem using the EWS-ratio vector is novel. This enables us to perform 

further analysis. We also analyzed the Stolper-Samuelson matrix and its sign pattern, which 
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expresses the commodity price–factor price relationships. Some applications are presented. 

 Can we estimate the position of the EWS-ratio vector? As I stated in Section 3, Nakada 

(2016a) has shown that the EWS-ratio vector exists on the line segment. Using this relation-

ship, the author developed a method to estimate the position of the EWS-ratio vector. That 

is, we can estimate it to some extent if we have the appropriate data. Further, Nakada (2016b) 

applied Nakada’s (2016a) results to data from Thailand and, in doing so, derived the factor 

endowment–commodity output relationship for Thailand during the period 1920 to 1929. On 

this, see Section 3. 

 This article provides the basis for such applications. It will be useful for efforts to derive 

the factor endowment–commodity output relationships in some countries. This study con-

tributes to international and energy economics. For example, the EWS-ratio vector is useful 

for the analysis of functional relations in a 3 x 2 model of another type, that is, a 3 x 2 model 

with three factors (capital, labor, and imported energy), for example. In this model, one of 

factor payments is exogenous. On this, see Nakada (2016c). 

Appendix A: Derivation of important relationships among EWS 

 This appendix is a modified version of Nakada (2015b). Thompson (1985, p. 618) stated, 

‘Aggregate substitution between factors h and k is expressed by the substitution term 
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Appendix A: Derivation of important relationships among EWS  

This appendix is a modified version of Nakada (2015b). Thompson (1985, p. 618) stated, ‘Aggregate substitution 

between factors h and k is expressed by the substitution term  

  / ,  ,  1,  2,  3 .kh j j kj hs x a w k h                                        (A1) 

The 3 x 3 matrix of substitution terms is symmetric and negative semidefinite. A result of cost minimizing behavior 

is  

 0,  i hi is w  for every factor h [, 1,  2,  3].h  ’                           (A2) 

Thompson’s (1985) definition of these symbols is similar to the definitions in this article, but his explanation seems 

too short. The cost minimizing behavior implies that each aij function is homogeneous of degree zero for all input 

prices (see eq. (3), note 5). From this, we can derive Thompson’s (1985) result (A2). We prove it below. 

Recall eq. (9),  

   /  .ij ij
h ij h hj hlog a log w                                            (A3) 

From eq. (A3), we obtain 

 / /  ,  ,  ,  ,  ,  1,  2ij
ij h h ij ha w a w i h T K L j     .                          (A4) 

Replacing skh in (A1) with sih, we derive  

 / ,  ,  ,  ,  .ih j j ij hs x a w i h T K L                                          (A5) 

Substituting (A4) in (A5), we obtain: 

 ,/  ,  ,  ,  .ij
ih j j h ij hs x a w i h T K L                                       (A6) 

Because each aij function is homogeneous of degree zero (recall eq. (12)):  

0,  ,  ,  ,  1,  2.ij ij
h h h hj h i T K L j                                     (A7) 

From eqs (A6) and (A7), we can show that 

0,  ,  ,  .h ih hs w i T K L                                                 (A8) 

This is equivalent to eq. (A2).  

AESs are symmetric in the sense that (see eq. (10)) 

  .ij hj
h i                                                           (A9) 

Additionally, according to BC (p. 33), ‘Given the assumption that production functions are strictly quasi-concave 

 (A1)

The 3 x 3 matrix of substitution terms is symmetric and negative semidefinite. A result of 

cost minimizing behavior is 
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Appendix A: Derivation of important relationships among EWS  

This appendix is a modified version of Nakada (2015b). Thompson (1985, p. 618) stated, ‘Aggregate substitution 

between factors h and k is expressed by the substitution term  

  / ,  ,  1,  2,  3 .kh j j kj hs x a w k h                                        (A1) 

The 3 x 3 matrix of substitution terms is symmetric and negative semidefinite. A result of cost minimizing behavior 

is  

 0,  i hi is w  for every factor h [, 1,  2,  3].h  ’                           (A2) 

Thompson’s (1985) definition of these symbols is similar to the definitions in this article, but his explanation seems 

too short. The cost minimizing behavior implies that each aij function is homogeneous of degree zero for all input 

prices (see eq. (3), note 5). From this, we can derive Thompson’s (1985) result (A2). We prove it below. 

Recall eq. (9),  

   /  .ij ij
h ij h hj hlog a log w                                            (A3) 

From eq. (A3), we obtain 

 / /  ,  ,  ,  ,  ,  1,  2ij
ij h h ij ha w a w i h T K L j     .                          (A4) 

Replacing skh in (A1) with sih, we derive  

 / ,  ,  ,  ,  .ih j j ij hs x a w i h T K L                                          (A5) 

Substituting (A4) in (A5), we obtain: 

 ,/  ,  ,  ,  .ij
ih j j h ij hs x a w i h T K L                                       (A6) 

Because each aij function is homogeneous of degree zero (recall eq. (12)):  

0,  ,  ,  ,  1,  2.ij ij
h h h hj h i T K L j                                     (A7) 

From eqs (A6) and (A7), we can show that 

0,  ,  ,  .h ih hs w i T K L                                                 (A8) 

This is equivalent to eq. (A2).  

AESs are symmetric in the sense that (see eq. (10)) 

  .ij hj
h i                                                           (A9) 

Additionally, according to BC (p. 33), ‘Given the assumption that production functions are strictly quasi-concave 

 (A2)

Thompson’s (1985) definition of these symbols is similar to the definitions in this article, but 

his explanation seems too short. The cost minimizing behavior implies that each aij function 

is homogeneous of degree zero for all input prices (see eq. (3), note 5). From this, we can 

derive Thompson’s (1985) result (A2). We prove it below.

Recall eq. (9), 
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Appendix A: Derivation of important relationships among EWS  

This appendix is a modified version of Nakada (2015b). Thompson (1985, p. 618) stated, ‘Aggregate substitution 

between factors h and k is expressed by the substitution term  

  / ,  ,  1,  2,  3 .kh j j kj hs x a w k h                                        (A1) 

The 3 x 3 matrix of substitution terms is symmetric and negative semidefinite. A result of cost minimizing behavior 

is  

 0,  i hi is w  for every factor h [, 1,  2,  3].h  ’                           (A2) 

Thompson’s (1985) definition of these symbols is similar to the definitions in this article, but his explanation seems 

too short. The cost minimizing behavior implies that each aij function is homogeneous of degree zero for all input 

prices (see eq. (3), note 5). From this, we can derive Thompson’s (1985) result (A2). We prove it below. 

Recall eq. (9),  

   /  .ij ij
h ij h hj hlog a log w                                            (A3) 

From eq. (A3), we obtain 

 / /  ,  ,  ,  ,  ,  1,  2ij
ij h h ij ha w a w i h T K L j     .                          (A4) 

Replacing skh in (A1) with sih, we derive  

 / ,  ,  ,  ,  .ih j j ij hs x a w i h T K L                                          (A5) 

Substituting (A4) in (A5), we obtain: 

 ,/  ,  ,  ,  .ij
ih j j h ij hs x a w i h T K L                                       (A6) 

Because each aij function is homogeneous of degree zero (recall eq. (12)):  

0,  ,  ,  ,  1,  2.ij ij
h h h hj h i T K L j                                     (A7) 

From eqs (A6) and (A7), we can show that 

0,  ,  ,  .h ih hs w i T K L                                                 (A8) 

This is equivalent to eq. (A2).  

AESs are symmetric in the sense that (see eq. (10)) 

  .ij hj
h i                                                           (A9) 

Additionally, according to BC (p. 33), ‘Given the assumption that production functions are strictly quasi-concave 

 (A3)

From eq. (A3), we obtain
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Appendix A: Derivation of important relationships among EWS  

This appendix is a modified version of Nakada (2015b). Thompson (1985, p. 618) stated, ‘Aggregate substitution 

between factors h and k is expressed by the substitution term  

  / ,  ,  1,  2,  3 .kh j j kj hs x a w k h                                        (A1) 

The 3 x 3 matrix of substitution terms is symmetric and negative semidefinite. A result of cost minimizing behavior 

is  

 0,  i hi is w  for every factor h [, 1,  2,  3].h  ’                           (A2) 

Thompson’s (1985) definition of these symbols is similar to the definitions in this article, but his explanation seems 

too short. The cost minimizing behavior implies that each aij function is homogeneous of degree zero for all input 

prices (see eq. (3), note 5). From this, we can derive Thompson’s (1985) result (A2). We prove it below. 

Recall eq. (9),  

   /  .ij ij
h ij h hj hlog a log w                                            (A3) 

From eq. (A3), we obtain 

 / /  ,  ,  ,  ,  ,  1,  2ij
ij h h ij ha w a w i h T K L j     .                          (A4) 

Replacing skh in (A1) with sih, we derive  

 / ,  ,  ,  ,  .ih j j ij hs x a w i h T K L                                          (A5) 

Substituting (A4) in (A5), we obtain: 

 ,/  ,  ,  ,  .ij
ih j j h ij hs x a w i h T K L                                       (A6) 

Because each aij function is homogeneous of degree zero (recall eq. (12)):  

0,  ,  ,  ,  1,  2.ij ij
h h h hj h i T K L j                                     (A7) 

From eqs (A6) and (A7), we can show that 

0,  ,  ,  .h ih hs w i T K L                                                 (A8) 

This is equivalent to eq. (A2).  

AESs are symmetric in the sense that (see eq. (10)) 

  .ij hj
h i                                                           (A9) 

Additionally, according to BC (p. 33), ‘Given the assumption that production functions are strictly quasi-concave 

 (A4)

Replacing skh in (A1) with sih, we derive 
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Appendix A: Derivation of important relationships among EWS  

This appendix is a modified version of Nakada (2015b). Thompson (1985, p. 618) stated, ‘Aggregate substitution 

between factors h and k is expressed by the substitution term  

  / ,  ,  1,  2,  3 .kh j j kj hs x a w k h                                        (A1) 

The 3 x 3 matrix of substitution terms is symmetric and negative semidefinite. A result of cost minimizing behavior 

is  

 0,  i hi is w  for every factor h [, 1,  2,  3].h  ’                           (A2) 

Thompson’s (1985) definition of these symbols is similar to the definitions in this article, but his explanation seems 

too short. The cost minimizing behavior implies that each aij function is homogeneous of degree zero for all input 

prices (see eq. (3), note 5). From this, we can derive Thompson’s (1985) result (A2). We prove it below. 

Recall eq. (9),  

   /  .ij ij
h ij h hj hlog a log w                                            (A3) 

From eq. (A3), we obtain 

 / /  ,  ,  ,  ,  ,  1,  2ij
ij h h ij ha w a w i h T K L j     .                          (A4) 

Replacing skh in (A1) with sih, we derive  

 / ,  ,  ,  ,  .ih j j ij hs x a w i h T K L                                          (A5) 

Substituting (A4) in (A5), we obtain: 

 ,/  ,  ,  ,  .ij
ih j j h ij hs x a w i h T K L                                       (A6) 

Because each aij function is homogeneous of degree zero (recall eq. (12)):  

0,  ,  ,  ,  1,  2.ij ij
h h h hj h i T K L j                                     (A7) 

From eqs (A6) and (A7), we can show that 

0,  ,  ,  .h ih hs w i T K L                                                 (A8) 

This is equivalent to eq. (A2).  

AESs are symmetric in the sense that (see eq. (10)) 

  .ij hj
h i                                                           (A9) 

Additionally, according to BC (p. 33), ‘Given the assumption that production functions are strictly quasi-concave 

 (A5)

Substituting (A4) in (A5), we obtain
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Appendix A: Derivation of important relationships among EWS  

This appendix is a modified version of Nakada (2015b). Thompson (1985, p. 618) stated, ‘Aggregate substitution 

between factors h and k is expressed by the substitution term  

  / ,  ,  1,  2,  3 .kh j j kj hs x a w k h                                        (A1) 

The 3 x 3 matrix of substitution terms is symmetric and negative semidefinite. A result of cost minimizing behavior 

is  

 0,  i hi is w  for every factor h [, 1,  2,  3].h  ’                           (A2) 

Thompson’s (1985) definition of these symbols is similar to the definitions in this article, but his explanation seems 

too short. The cost minimizing behavior implies that each aij function is homogeneous of degree zero for all input 

prices (see eq. (3), note 5). From this, we can derive Thompson’s (1985) result (A2). We prove it below. 

Recall eq. (9),  

   /  .ij ij
h ij h hj hlog a log w                                            (A3) 

From eq. (A3), we obtain 

 / /  ,  ,  ,  ,  ,  1,  2ij
ij h h ij ha w a w i h T K L j     .                          (A4) 

Replacing skh in (A1) with sih, we derive  

 / ,  ,  ,  ,  .ih j j ij hs x a w i h T K L                                          (A5) 

Substituting (A4) in (A5), we obtain: 

 ,/  ,  ,  ,  .ij
ih j j h ij hs x a w i h T K L                                       (A6) 

Because each aij function is homogeneous of degree zero (recall eq. (12)):  

0,  ,  ,  ,  1,  2.ij ij
h h h hj h i T K L j                                     (A7) 

From eqs (A6) and (A7), we can show that 

0,  ,  ,  .h ih hs w i T K L                                                 (A8) 

This is equivalent to eq. (A2).  

AESs are symmetric in the sense that (see eq. (10)) 

  .ij hj
h i                                                           (A9) 

Additionally, according to BC (p. 33), ‘Given the assumption that production functions are strictly quasi-concave 

 (A6)

Because each aij function is homogeneous of degree zero (recall eq. (12)): 
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Appendix A: Derivation of important relationships among EWS  

This appendix is a modified version of Nakada (2015b). Thompson (1985, p. 618) stated, ‘Aggregate substitution 

between factors h and k is expressed by the substitution term  

  / ,  ,  1,  2,  3 .kh j j kj hs x a w k h                                        (A1) 

The 3 x 3 matrix of substitution terms is symmetric and negative semidefinite. A result of cost minimizing behavior 

is  

 0,  i hi is w  for every factor h [, 1,  2,  3].h  ’                           (A2) 

Thompson’s (1985) definition of these symbols is similar to the definitions in this article, but his explanation seems 

too short. The cost minimizing behavior implies that each aij function is homogeneous of degree zero for all input 

prices (see eq. (3), note 5). From this, we can derive Thompson’s (1985) result (A2). We prove it below. 

Recall eq. (9),  

   /  .ij ij
h ij h hj hlog a log w                                            (A3) 

From eq. (A3), we obtain 

 / /  ,  ,  ,  ,  ,  1,  2ij
ij h h ij ha w a w i h T K L j     .                          (A4) 

Replacing skh in (A1) with sih, we derive  

 / ,  ,  ,  ,  .ih j j ij hs x a w i h T K L                                          (A5) 

Substituting (A4) in (A5), we obtain: 

 ,/  ,  ,  ,  .ij
ih j j h ij hs x a w i h T K L                                       (A6) 

Because each aij function is homogeneous of degree zero (recall eq. (12)):  

0,  ,  ,  ,  1,  2.ij ij
h h h hj h i T K L j                                     (A7) 

From eqs (A6) and (A7), we can show that 

0,  ,  ,  .h ih hs w i T K L                                                 (A8) 

This is equivalent to eq. (A2).  

AESs are symmetric in the sense that (see eq. (10)) 

  .ij hj
h i                                                           (A9) 

Additionally, according to BC (p. 33), ‘Given the assumption that production functions are strictly quasi-concave 

 (A7)

From eqs (A6) and (A7), we can show that
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Appendix A: Derivation of important relationships among EWS  

This appendix is a modified version of Nakada (2015b). Thompson (1985, p. 618) stated, ‘Aggregate substitution 

between factors h and k is expressed by the substitution term  

  / ,  ,  1,  2,  3 .kh j j kj hs x a w k h                                        (A1) 

The 3 x 3 matrix of substitution terms is symmetric and negative semidefinite. A result of cost minimizing behavior 

is  

 0,  i hi is w  for every factor h [, 1,  2,  3].h  ’                           (A2) 

Thompson’s (1985) definition of these symbols is similar to the definitions in this article, but his explanation seems 

too short. The cost minimizing behavior implies that each aij function is homogeneous of degree zero for all input 

prices (see eq. (3), note 5). From this, we can derive Thompson’s (1985) result (A2). We prove it below. 

Recall eq. (9),  

   /  .ij ij
h ij h hj hlog a log w                                            (A3) 

From eq. (A3), we obtain 

 / /  ,  ,  ,  ,  ,  1,  2ij
ij h h ij ha w a w i h T K L j     .                          (A4) 

Replacing skh in (A1) with sih, we derive  

 / ,  ,  ,  ,  .ih j j ij hs x a w i h T K L                                          (A5) 

Substituting (A4) in (A5), we obtain: 

 ,/  ,  ,  ,  .ij
ih j j h ij hs x a w i h T K L                                       (A6) 

Because each aij function is homogeneous of degree zero (recall eq. (12)):  

0,  ,  ,  ,  1,  2.ij ij
h h h hj h i T K L j                                     (A7) 

From eqs (A6) and (A7), we can show that 

0,  ,  ,  .h ih hs w i T K L                                                 (A8) 

This is equivalent to eq. (A2).  

AESs are symmetric in the sense that (see eq. (10)) 

  .ij hj
h i                                                           (A9) 

Additionally, according to BC (p. 33), ‘Given the assumption that production functions are strictly quasi-concave 

 (A8)

This is equivalent to eq. (A2). 

 AESs are symmetric in the sense that (see eq. (10))
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Appendix A: Derivation of important relationships among EWS  

This appendix is a modified version of Nakada (2015b). Thompson (1985, p. 618) stated, ‘Aggregate substitution 

between factors h and k is expressed by the substitution term  

  / ,  ,  1,  2,  3 .kh j j kj hs x a w k h                                        (A1) 

The 3 x 3 matrix of substitution terms is symmetric and negative semidefinite. A result of cost minimizing behavior 

is  

 0,  i hi is w  for every factor h [, 1,  2,  3].h  ’                           (A2) 

Thompson’s (1985) definition of these symbols is similar to the definitions in this article, but his explanation seems 

too short. The cost minimizing behavior implies that each aij function is homogeneous of degree zero for all input 

prices (see eq. (3), note 5). From this, we can derive Thompson’s (1985) result (A2). We prove it below. 

Recall eq. (9),  

   /  .ij ij
h ij h hj hlog a log w                                            (A3) 

From eq. (A3), we obtain 

 / /  ,  ,  ,  ,  ,  1,  2ij
ij h h ij ha w a w i h T K L j     .                          (A4) 

Replacing skh in (A1) with sih, we derive  

 / ,  ,  ,  ,  .ih j j ij hs x a w i h T K L                                          (A5) 

Substituting (A4) in (A5), we obtain: 

 ,/  ,  ,  ,  .ij
ih j j h ij hs x a w i h T K L                                       (A6) 

Because each aij function is homogeneous of degree zero (recall eq. (12)):  

0,  ,  ,  ,  1,  2.ij ij
h h h hj h i T K L j                                     (A7) 

From eqs (A6) and (A7), we can show that 

0,  ,  ,  .h ih hs w i T K L                                                 (A8) 

This is equivalent to eq. (A2).  

AESs are symmetric in the sense that (see eq. (10)) 

  .ij hj
h i                                                           (A9) 

Additionally, according to BC (p. 33), ‘Given the assumption that production functions are strictly quasi-concave 

 (A9)

Additionally, according to BC (p. 33), ‘Given the assumption that production functions are 

strictly quasi-concave and linearly homogeneous,’ (see eq. (11))
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and linearly homogeneous,’ (see eq. (11)) 

 0.ij
i                                                              (A10) 

From eqs (A6), (A3), and (A9), we can show that 

 ,ih his s                                                            (A11) 

specifically, aggregate substitutions are symmetric. Substitute eq. (A10) in eq. (A3) to derive 0ij
i  . By 

substituting this equation in eq. (A6), we obtain 

 0iis  .                                                             (A12) 

Next, we analyze LLs  in a similar way as that used by BC (p. 33) in analyzing AES ( Lj
L ). Eliminating TLs  and 

KLs from eq. (A8), we derive 

 
    2    1 .LL T T TT K TK K T KT K KK

L

s w w s w s w w s w s
w

                 (A13) 

Transform (A13): 

 LLs x Ax  ,                                                       (A14) 

where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  

 ,
K KK KT

T TK TT

w s s
x A

w s s
   

    
   

.  

To quote a passage from BC (p. 33): ‘the quadratic form on the right-hand side of the expression above must be 

negative definite. This, in turn, implies that’ 17 

  0KK TT KT TKA s s s s   ,                                             (A15) 

where A  is the 2 x 2 determinant. Transform eq. (A6) to derive  

 / / ,ij
ijih j h i h ih i hs V w g V w     ,  ,  ,  .i h T K L       (A16) 

This equation shows how aggregate substitution and EWS are related.18 From eq. (A16), ihg  is not symmetric. 

Specifically,  ,    ih hig g i h   in general. 

Substituting eq. (A16) in eq. (A15), we obtain  

  0KK TT KT TKg g g g  .                                               (A17) 

 (A10)

From eqs (A6), (A3), and (A9), we can show that
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and linearly homogeneous,’ (see eq. (11)) 

 0.ij
i                                                              (A10) 

From eqs (A6), (A3), and (A9), we can show that 

 ,ih his s                                                            (A11) 

specifically, aggregate substitutions are symmetric. Substitute eq. (A10) in eq. (A3) to derive 0ij
i  . By 

substituting this equation in eq. (A6), we obtain 

 0iis  .                                                             (A12) 

Next, we analyze LLs  in a similar way as that used by BC (p. 33) in analyzing AES ( Lj
L ). Eliminating TLs  and 

KLs from eq. (A8), we derive 
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Transform (A13): 

 LLs x Ax  ,                                                       (A14) 
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This equation shows how aggregate substitution and EWS are related.18 From eq. (A16), ihg  is not symmetric. 

Specifically,  ,    ih hig g i h   in general. 

Substituting eq. (A16) in eq. (A15), we obtain  

  0KK TT KT TKg g g g  .                                               (A17) 
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Transform (A13): 
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where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  
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where A  is the 2 x 2 determinant. Transform eq. (A6) to derive  

 / / ,ij
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From eqs (A6), (A3), and (A9), we can show that 
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specifically, aggregate substitutions are symmetric. Substitute eq. (A10) in eq. (A3) to derive 0ij
i  . By 

substituting this equation in eq. (A6), we obtain 
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Next, we analyze LLs  in a similar way as that used by BC (p. 33) in analyzing AES ( Lj
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Transform (A13): 
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where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  
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where A  is the 2 x 2 determinant. Transform eq. (A6) to derive  
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Substituting eq. (A16) in eq. (A15), we obtain  
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Eliminating sTL and sKL from eq. (A8), we derive
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From eqs (A6), (A3), and (A9), we can show that 
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specifically, aggregate substitutions are symmetric. Substitute eq. (A10) in eq. (A3) to derive 0ij
i  . By 

substituting this equation in eq. (A6), we obtain 

 0iis  .                                                             (A12) 

Next, we analyze LLs  in a similar way as that used by BC (p. 33) in analyzing AES ( Lj
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KLs from eq. (A8), we derive 
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Transform (A13): 
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where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  
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To quote a passage from BC (p. 33): ‘the quadratic form on the right-hand side of the expression above must be 

negative definite. This, in turn, implies that’ 17 

  0KK TT KT TKA s s s s   ,                                             (A15) 

where A  is the 2 x 2 determinant. Transform eq. (A6) to derive  
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Substituting eq. (A16) in eq. (A15), we obtain  
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Transform (A13):

「生物資源経済研究」原稿修正箇所 by Yoshiaki Nakada 2017/02/10 

1. 式(A14)の辺り(ベクトル行列はイタリックをトル)： 

Transform エラー! 参照元が見つかりません。: 

 LLs  x Ax ,                                                       ( 1) 

where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  

 ,
K KK KT

T TK TT

w s s
w s s
   

    
   

x A .  

2. 式(78) の下の辺り(数式が一部一段下がっているのを修正)： 

Using eq. エラー! 参照元が見つかりません。, we can show that   

 . .S.L H of エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 

1 1 2 1 2 1 1 2 2 1( ) ( ) 0L T T L L T L T L T                .  

3. 式(44)の下の式（うち合わせではイキだが、=の前後に余計なスペースがある。その修正のついでに変

更を希望する。Mathtypeインライン１つを３つに分割した）： 

where we recall eqs エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。  and 

エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 , that is,    ’,  ’ / ,  /S U S T U T

 / ,  / ,LK LT KT LTg g g g    (,  ),  , ,KT LK LTS T U g g g . We define (for i ≠ h),  

 (A14)

where x is a vector, A is a matrix, and x・Ax is the inner product of vectors; 
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1. 式(A14)の辺り(ベクトル行列はイタリックをトル)： 

Transform エラー! 参照元が見つかりません。: 

 LLs  x Ax ,                                                       ( 1) 

where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  
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2. 式(78) の下の辺り(数式が一部一段下がっているのを修正)： 

Using eq. エラー! 参照元が見つかりません。, we can show that   
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3. 式(44)の下の式（うち合わせではイキだが、=の前後に余計なスペースがある。その修正のついでに変

更を希望する。Mathtypeインライン１つを３つに分割した）： 

where we recall eqs エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。  and 

エ ラ ー ! 参 照 元 が 見 つ か り ま せ ん 。 , that is,    ’,  ’ / ,  /S U S T U T

 / ,  / ,LK LT KT LTg g g g    (,  ),  , ,KT LK LTS T U g g g . We define (for i ≠ h),  

 

To quote a passage from BC (p. 33): ‘the quadratic form on the right-hand side of the expres-

sion above must be negative definite. This, in turn, implies that’ 17）  
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and linearly homogeneous,’ (see eq. (11)) 
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From eqs (A6), (A3), and (A9), we can show that 

 ,ih his s                                                            (A11) 

specifically, aggregate substitutions are symmetric. Substitute eq. (A10) in eq. (A3) to derive 0ij
i  . By 

substituting this equation in eq. (A6), we obtain 

 0iis  .                                                             (A12) 

Next, we analyze LLs  in a similar way as that used by BC (p. 33) in analyzing AES ( Lj
L ). Eliminating TLs  and 
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Transform (A13): 
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 ,
K KK KT

T TK TT

w s s
x A

w s s
   

    
   

.  

To quote a passage from BC (p. 33): ‘the quadratic form on the right-hand side of the expression above must be 
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where A  is the 2 x 2 determinant. Transform eq. (A6) to derive  
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This equation shows how aggregate substitution and EWS are related.18 From eq. (A16), ihg  is not symmetric. 

Specifically,  ,    ih hig g i h   in general. 

Substituting eq. (A16) in eq. (A15), we obtain  

  0KK TT KT TKg g g g  .                                               (A17) 
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From eqs (A6), (A3), and (A9), we can show that 
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specifically, aggregate substitutions are symmetric. Substitute eq. (A10) in eq. (A3) to derive 0ij
i  . By 

substituting this equation in eq. (A6), we obtain 
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Next, we analyze LLs  in a similar way as that used by BC (p. 33) in analyzing AES ( Lj
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Transform (A13): 
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Substituting eq. (A16) in eq. (A15), we obtain  
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where A  is the 2 x 2 determinant. Transform eq. (A6) to derive  
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This equation shows how aggregate substitution and EWS are related.18 From eq. (A16), ihg  is not symmetric. 

Specifically,  ,    ih hig g i h   in general. 

Substituting eq. (A16) in eq. (A15), we obtain  
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This equation shows how aggregate substitution and EWS are related. 18） From eq. (A16),  
gih is not symmetric. Specifically,
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From eqs (A6), (A3), and (A9), we can show that 
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specifically, aggregate substitutions are symmetric. Substitute eq. (A10) in eq. (A3) to derive 0ij
i  . By 

substituting this equation in eq. (A6), we obtain 

 0iis  .                                                             (A12) 

Next, we analyze LLs  in a similar way as that used by BC (p. 33) in analyzing AES ( Lj
L ). Eliminating TLs  and 

KLs from eq. (A8), we derive 
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L
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Transform (A13): 

 LLs x Ax  ,                                                       (A14) 

where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  
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.  

To quote a passage from BC (p. 33): ‘the quadratic form on the right-hand side of the expression above must be 

negative definite. This, in turn, implies that’ 17 

  0KK TT KT TKA s s s s   ,                                             (A15) 

where A  is the 2 x 2 determinant. Transform eq. (A6) to derive  
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This equation shows how aggregate substitution and EWS are related.18 From eq. (A16), ihg  is not symmetric. 

Specifically,  ,    ih hig g i h   in general. 

Substituting eq. (A16) in eq. (A15), we obtain  
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  Substitutingeq. (A16) in eq. (A15), we obtain 
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 0.ij
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From eqs (A6), (A3), and (A9), we can show that 

 ,ih his s                                                            (A11) 

specifically, aggregate substitutions are symmetric. Substitute eq. (A10) in eq. (A3) to derive 0ij
i  . By 

substituting this equation in eq. (A6), we obtain 

 0iis  .                                                             (A12) 

Next, we analyze LLs  in a similar way as that used by BC (p. 33) in analyzing AES ( Lj
L ). Eliminating TLs  and 

KLs from eq. (A8), we derive 

 
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L
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w
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Transform (A13): 

 LLs x Ax  ,                                                       (A14) 

where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  
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.  

To quote a passage from BC (p. 33): ‘the quadratic form on the right-hand side of the expression above must be 

negative definite. This, in turn, implies that’ 17 

  0KK TT KT TKA s s s s   ,                                             (A15) 

where A  is the 2 x 2 determinant. Transform eq. (A6) to derive  

 / / ,ij
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Substituting eq. (A16) in eq. (A15), we obtain  
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This equation shows that JE’s proof is impossible. Next, we show the disproof of JE. JE (p. 75)  

define , 
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From eqs (A6), (A3), and (A9), we can show that 

 ,ih his s                                                            (A11) 

specifically, aggregate substitutions are symmetric. Substitute eq. (A10) in eq. (A3) to derive 0ij
i  . By 

substituting this equation in eq. (A6), we obtain 

 0iis  .                                                             (A12) 

Next, we analyze LLs  in a similar way as that used by BC (p. 33) in analyzing AES ( Lj
L ). Eliminating TLs  and 

KLs from eq. (A8), we derive 
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L

s w w s w s w w s w s
w
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Transform (A13): 

 LLs x Ax  ,                                                       (A14) 

where x is a vector, A is a matrix, and x Ax  is the inner product of vectors;  
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.  

To quote a passage from BC (p. 33): ‘the quadratic form on the right-hand side of the expression above must be 

negative definite. This, in turn, implies that’ 17 

  0KK TT KT TKA s s s s   ,                                             (A15) 

where A  is the 2 x 2 determinant. Transform eq. (A6) to derive  

 / / ,ij
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This equation shows how aggregate substitution and EWS are related.18 From eq. (A16), ihg  is not symmetric. 
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In other words, the authors found that the set of three equations holds for EWS under the as-
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[factors 1 and 2] are perfect complements in the sense that any factor price change does not alter the ratio of the 

intensities of their use (  1 2 ,  1,  2,  3k k k   ).’  

Here, for the authors, ‘perfect complementarity’ implies 1 2
k k  . If we replace k

i  with ihg , this implies 

that  
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In other words, the authors found that the set of three equations holds for EWS under the assumption of ‘perfect 

complementarity.’ Next, the authors used this set to prove how commodity prices affect factor prices.  

If we compare eq. (A18) with eq. (A17), we find that the latter is not consistent with the former. That is, if eq. 

(A18) holds, L.H.S. of (A17) equals zero. Hence, JE’s result is impossible. Specifically, the authors fails to explain 

what ‘perfect complementarity’ implies. In summary, their proof is not plausible.  

In subsection 5.2.5 (p. 91), JE’s analysis is similarly to subsection 5.2.4. The authors assume that extreme factor 

(factor 2) is a perfect complement of the middle factor (factor 3). The authors state that they derive 1 1
3 2  . In 

the authors’ context, this implies  
3 2 ,    1,  2,  3k k k   . We can prove in a similar fashion that this is 
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Equation Section (Next) 

Appendix B:  

∆ is the determinant of matrix A, the coefficient matrix of a system of linear equations (see eq. (46)). We can show 

that ∆ < 0. ∆ is equivalent to the 3 x 3 determinant D in BC, and it was proved that D < 0 (see BC (p. 25-26)). 

However, BC’s method requires some technique. We show the proof using the important relationship among EWSs. 

From eqs (46) and (21), we derive  
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Sum columns 1 and 2 in column 3, and subtract row 2 from row 1. We have 

2
k, k = 1, 

2, 3 . We can prove in a similar fashion that this is impossible. 
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Sum columns 1 and 2 in column 3, and subtract row 2 from row 1. We have 
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where we may recall eq. (26), that is,   11 2 1 2 2,  ,  ,  ( , ).T T K K L LEA B         Express the above as a 
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Express the above as a cofactor expansion along the fourth row, and permutate rows 2 and 3. 
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From eq. (17), we derive .TK T KT Kg g   Using this equation, expand eq. (B7) to derive 

 2 2'[ 2 ].KK K TT T KT KA g B g ABg                (B8) 
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 2 2'[ 2 ] ,KK K TT T KT Kg x g xg A               (B9) 

where /x B A . This is a quadratic formula. From eq. (18), we have  

 0.TT Tg              (B10) 

Hence, the coefficient of 2x  in eq. (B9) is negative. The quarter of discriminant of eq. (B9) is  

 2
./ 4 ( )KT K KK K TT TD g g g    .          (B11) 
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Recall eq. (A17), 0.KK TT KT TKg g g g   Substitute this in eq. (B12) to derive: 

 / 4 0.D             (B13) 

From eqs (B10) and (B13), we have  

 0.              (B14) 

Using eqs (19) and (17), transform eq. (B8) to derive: 
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Note
1）  BC have derived a conclusion (p. 34) that an increase in the supply of one factor, at constant commodity 

prices, will increase the output of the commodity using the expanding factor relatively intensively and 
reduce the output of the other commodity. 

2）  The authors did not show these results using the sign pattern as shown in this article, but using the rank-
ing form such as
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(22)), for example. However, their technique requires some skill and is not easy. Additionally, it is not 
useful for the analysis of a sufficient condition for a Rybczynski sign pattern to hold. The analysis based 
on computation is far easier. Additionally, Thompson (1993) also used a diagrammatic technique devel-
oped by JE, and supplemented JE’s analysis. He derived 11 patterns of ranking form in total. Apparently, 
for some cases, two ranking forms correspond to the same sign pattern. 

3）  Suzuki (1983) assumed that capital and land (middle factor and extreme factor, respectively) were ‘per-
fect complements’ in each sector, and derived the implications using AES, that is, ‘ , 
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KK KT LK LT       and 0.j j

KT TT   ’ j
ik  is the AES between the ith and the 

kth factors in the jth industry. Suzuki used this in his disproof. BC (p33) derived the relationship for AES on 

the assumption that the production functions were strictly quasi-concave and linearly homogeneous, i.e.: 

2( 0) .j j j
KK TT KT     If we compare this inequality with Suzuki’s equations, we find that the latter is not 

consistent with the former. On this, see Nakada (2015a).  

4 In subsections 5.2.1 to 5.2.5 (p. 86-92), JE analyzed the cases shown below. That is, (1) factor intensity of the 

middle factor is the same, or 1 2L L   in our expression, (2) extreme factors are independent, or 0TKg   in 

our expression, (3) all factors including extreme factors are substitutes, (4) extreme factors are perfect complements, 

(5) the middle factor and an extreme factor are perfect complements. Specifically, both (1) and (2) are special cases. 

In the case of (3), JE (p. 88) assumed that ‘the middle factor is used more intensively in 1x  [or sector 1] than in 

2x  [or sector 2],’ that is, 1 2L L   in our expression. JE only showed two patterns of the commodity 

price–factor price relationships that hold. The explanations in (3) are complicated. I am uncertain whether they are 

plausible. If all factors are substitutes,    ,  ,    ,  ,  S T U      holds, hence,    ',  ’ ,  S U    holds (see 

eq. (43)). Therefore, as we show in section 3 in this article, the EWS-ratio vector exists in quadrant I, that is, in the 

subregion P1 to P5. This implies that five patterns of the commodity price–factor price relationship hold. This is not 

discussed further.  

5 From eq. (A16), if factors i and h are aggregate complements, they are economy-wide complements, and vice 

versa. Takayama (1982) showed only one sufficient condition for a strong Rybczynski result to hold. Suzuki (1987) 

derived a similar result. In Suzuki (1987, Chapter 1, p. 17-26), the author assumed that extreme factors are 

‘Allen-complements’ in each sector (p. 23), and he derived a strong Rybczynski result. Apparently, if extreme 
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in our expression. JE only 
showed two patterns of the commodity price–factor price relationships that hold. The explanations in 

(3) are complicated. I am uncertain whether they are plausible. If all factors are substitutes,
= holds, hence, = holds (see eq. (43)). Therefore, as we show in section 3 in 
this article, the EWS-ratio vector exists in quadrant I, that is, in the subregion P1 to P5. This implies that 
five patterns of the commodity price–factor price relationship hold. This is not discussed further. 

5）  From eq. (A16), if factors i and h are aggregate complements, they are economy-wide complements, and 
vice versa. Takayama (1982) showed only one sufficient condition for a strong Rybczynski result to hold. 
Suzuki (1987) derived a similar result. In Suzuki (1987, Chapter 1, p. 17-26), the author assumed that 
extreme factors are ‘Allen-complements’ in each sector (p. 23), and he derived a strong Rybczynski re-
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6）  Additionally, Ban (2010) modified an important basic assumption. She assumed that commodity prices 
are endogenous. She analyzed how factor endowments affected factor prices in a theoretical study.

7）  Additionally, as I showed in Nakada (2016a), in some cases, it is not plausible to assume that production 
functions are of a Cobb-Douglas type, or an all-constant CES type in each sector, which do not allow any 
two factors to be Allen-complements, as Thompson (1995) assumed. Moreover, it is not plausible to as-
sume that production functions are of the two-level CES type, as Ban (2007a) assumed. 

8）  EWS contains AES in two sectors. Strangely, JE did not mention AES at all. There are nine EWSs. I 
show that only three EWSs are needed for the analysis. Absolute value of EWS is not important to ana-
lyze a sufficient condition for each Rybczynski sign pattern to hold. Only by defining the EWS-ratio vec-
tor can we analyze it systematically using the figure in two dimensions. 

9）  For example, Nakada (2016b) applied Nakada’s (2016a) results to data from Thailand and, in doing so, 
derived the factor endowment–commodity output relationship for Thailand during the period 1920 -1929. 
To some extent, these results show how Chinese immigration affected commodity output in Thailand be-
tween 1920 and 1929.

10）  Our method using a 5 x 5 matrix does not require special techniques, which other studies used. For ex-
ample, BC transformed some equations using some techniques and made a system of linear equations 
using a 3 x 3 matrix. On the other hand, in section 3 (p. 73-77), JE used other techniques, and made a 
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system of three linear equations. In fact, these methods are not easy to reapply.
11）  We assume that sector 1 is relatively land intensive, and sector 2 is relatively capital intensive, and that 

labor is the middle factor, and land and capital are extreme factors. Further, we assume that the middle 
factor is used relatively intensively in sector 1.

12）  However, estimating the values of parameters belongs to a partial equilibrium analysis. 
13）  In section 4, Teramachi (2015, p. 50) showed 12 patterns of ‘ J sign patterns’, which express the com-

modity price–factor price relationships (
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substitutes. His analysis is mainly based on the condition that JE showed, as he stated. That is, the suf-
ficient conditions that Teramachi showed are similar to those that JE analyzed. Out of the six sufficient 
conditions that Teramachi showed, five conditions do not show a one-to-one correspondence with J sign 
pattern. See the table in Teramachi (2015, p. 61).

14）  For example, Ban (2008) showed the factor-intensity ranking as follows. That is, (

 denotes the cost share (distributive share in our expression); S is the skilled 
labor, K capital, and L unskilled labor. This implies that unskilled labor is the middle factor, and skilled 
labor and capital are extreme factors. 

15）  Ban (2008, Appendix table) did not compute the distributive share, based on which we show the factor-

intensity ranking for the middle factor, that is, whether
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perfect complements), (D) factor intensity of the middle factor is the same, (E) the middle factor and an extreme 

factor are perfect complements, (F) all factors are substitutes. His analysis is mainly based on the condition that JE 

showed, as he stated. That is, the sufficient conditions that Teramachi showed are similar to those that JE analyzed. 

Out of the six sufficient conditions that Teramachi showed, five conditions do not show a one-to-one 

correspondence with J  sign pattern. See the table in Teramachi (2015, p. 61). 

14 For example, Ban (2008) showed the factor-intensity ranking as follows. That is, 

1 2 1 2 1 21S S L L K K        , where ij denotes the cost share (distributive share in our expression); S is the 

skilled labor, K capital, and L unskilled labor. This implies that unskilled labor is the middle factor, and skilled 

labor and capital are extreme factors.  

15 Ban (2008, Appendix table) did not compute the distributive share, based on which we show the factor-intensity 

ranking for the middle factor, that is, whether 1 2L L   or 1 2L L   holds, for example, if unskilled labor (L) 

is the middle factor. She only showed whether 1 2L La a  or 1 2L La a  held, if we use our expression. Similarly, 

Ban (2011, chapter 4, p. 107, Appendix Table 4-1) did not compute the distributive share. This is confusing.  

16  Some explanation is required. Samuelson (1953, Chapter 4, p. 59) defines the function, 

1( , , , ), ( 1, , )i
i nv f x w w i n    . iv  is ‘an optimum value for each productive factor’ to derive ‘the minimum 

total cost for each output (p. 58),’ x  is production, and iw  is ‘prices of productive factors.’ Samuelson (1953, 

Chapter 4, p. 68) stated that iv  ‘must be homogeneous of order zero in the variables 1( , , )nw w , x  being 

constant’ (see also Samuelson (1986, chapter 4, eq. (5) in p. 61; eq. (52) in p. 70)). This implies that from the 

condition of cost minimization, we can show that ija  is homogeneous of degree zero in all input prices.  

17 Takayama (1982, p. 5, Theorem 1, note 5) analyzed the general m x n model, and he stated that because 

‘substitution matrix’ S is negative semidefinite and   1R m S , the  1m   x    1m   matrix is 

negative definite, from which 0,  1,  2,  ,  .iis i m     R S  denotes the rank of a particular matrix, and 

 ihsS . 

18 Teramachi (1993, p. 44) showed the equation equivalent to (A16).  

or
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