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Abstract—While the performance of ASR systems depends on 

the size of the training data, it is very costly to prepare accurate 

and faithful transcripts. In this paper, we investigate a 

semi-supervised training scheme, which takes the advantage of 

huge quantities of unlabeled video lecture archive, particularly 

for the deep neural network (DNN) acoustic model. In the 

proposed method, we obtain ASR hypotheses by complementary 

GMM and DNN based ASR systems. Then, a set of CRF-based 

classifiers are trained to select the correct hypotheses and verify 

the selected data. The proposed hypothesis combination shows 

higher quality compared with the conventional system 

combination method (ROVER). Moreover, compared with the 

conventional data selection based on confidence measure score 

(CMS), our method is demonstrated more effective for filtering 

usable data. Significant improvement in the ASR accuracy is 

achieved over the baseline system and in comparison with the 

models trained with the conventional system combination and 

data selection methods. 

 
Index Terms—speech recognition, acoustic model, 

semi-supervised training, lecture transcription.  

 

I. INTRODUCTION 

utomatic speech recognition of spoken lectures has been 

investigated for almost a decade in many institutions 
world-wide [1, 2, 3, 4, 5, 6, 7], but there are still 

technically challenging issues for the system to be of practical 

use, including modeling of acoustic and pronunciation 

variations, speaker adaptation and topic adaptation. One of the 

biggest obstacles is the high expense to prepare accurate and 

faithful transcripts for spoken lectures (labeled data), since the 

performance of ASR systems depends on the size of the 

training data. In this work, we investigate a semi-supervised 

training scheme, which takes the advantage of huge quantities 

of unlabeled video lecture archive, particularly for the deep 

neural network (DNN) acoustic model.  

Semi-supervised training combines a small set of labeled 

data with a large set of unlabeled data. The conventional 

paradigm of semi-supervised acoustic model training dealing 

with the unlabeled data includes preprocessing (e.g. speech 
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segmentation, non-speech removal, speaker diarization, etc.), 
automatic transcription generation, data selection and model 

training. A number of studies have been conducted to address 

these processes [8, 9, 10, 11, 12, 13]. However, they still do not 

solve the crucial part of automatic transcription generation and 

data selection. In this paper, we focus on these issues of the 

conventional paradigm of the semi-supervised training method. 

For data selection, the most commonly used method is based 

on the confidence measure scores (CMS) computed by the ASR 

system [22, 23, 24, 25, 26, 27, 28, 60] with some 

post-processing or calibration [30, 31, 67, 10]. The word-level 

CMS is averaged over the utterance unit for data selection. 

When tuning the threshold of CMS, there is a trade-off between 
the data increase and the growth of noise in the label. It is not 

straightforward to find the optimal threshold and it is not 

practical to conduct exhaustive search. Moreover, the optimum 

threshold depends on the available data size. This means that 

we need to tune the threshold every time the data size is 

increased and the ASR system is updated. Instead of using 

CMS, we investigate a discriminative approach that uses 

dedicated classifiers to select usable data for model training. In 

recent years, conditional random fields (CRF) models [29], 

which can combine multiple sources such as acoustic, lexical 

and linguistic features with contextual information, are used for 
a variety of classification tasks including confidence estimation 

[30, 31].  

We have applied the approach to the lightly supervised 

training [32] setting, where closed caption text is available and 

combined with an ASR hypothesis [33]. However, the 

assumption of the closed caption text limits the applicability of 

the method. In this work, we extend to the more general 

semi-supervised setting. We can leverage the text quality by 

combining hypotheses from a set of complementary ASR 

systems with similar accuracy and enough diversity on 

recognition patterns [34]. Deng et al. [35] mentioned enough 

diversity exists between GMM and DNN systems. 
Conveniently, we can reuse the GMM-HMM system that is 

produced in the process of the DNN-HMM acoustic model 

training as a complementary system. Conventionally, 

ROVER-based system combination [36] has been used, but it is 

not robust to the small number of complementary systems with 

different distributions of CMS. The hypothesis combination 

can be formulated as a classification problem [63][64], but 

conventionally it is not integrated with hypothesis verification. 

In this study, the problem is solved by using a cascade of CRF 

classifications. In the proposed method, the CRF-based 

classifiers are prepared for two sub-tasks: selector CRF and 
verifier CRF. The selector CRF is trained to select a correct (or 
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better) hypothesis either from GMM-HMM or DNN-HMM on 

the character/word level. The verifier CRF is then used to 

determine whether the selected result is reliable or not. Data 

selection for acoustic model training is conducted according to 

the verification result.  

In the remainder of the paper, we first make a brief review on 

the semi-supervised training of DNN acoustic model in Section 

II. We describe the corpus of Chinese spoken lectures and the 

baseline ASR system in Section III. Next, the proposed method 

of semi-supervised training is formulated in Section IV. Then, 

the implementation of the method on the lecture transcription 

task is explained and experimental results are presented in 

Section V. The paper is concluded in Section VI. 

 

II. SEMI-SUPERVISED TRAINING OF DEEP NEURAL NETWORK 

ACOUSTIC MODEL 

Typical supervised training of DNN acoustic model [37] 

requires faithful labels for the fine-tuning, during which the 

pretrained network [38, 39] is supervised-trained by the error 

back-propagation (BP) algorithm [40].  

Semi-supervised training of DNN acoustic model [8, 9, 10, 

11, 12, 13] is developed, when the size of labeled training data 

is limited and huge quantities of unlabeled data on holding. It 

usually takes following steps:  

(1) transcribe unlabeled data with a seed model that was 

trained with the labeled data. 

(2) use the automatically generated transcript (ASR result) as 

a label. 

(3) retrain the model by adding the newly transcribed data to 

the existing labeled data. 

However, taking use of the unlabeled data without data 

selection will make the model training less effective, because 

the DNN model training is more sensitive to the noise in the 

state label compared to the GMM model training, especially in 

sequence discriminative training [11, 41, 42].  

Yu et al. [8] described the most commonly used data 

selection method, in which utterance-level CMS is adopted in 

semi-supervised training of GMM-based acoustic models from 

unlabeled data. We can sort the utterances by utterance-level 

CMS and select a certain percentage of top utterances to be 

used for model training. 

For semi-supervised training of DNN-based acoustic models, 

the similar data filtering method has been used [9, 13, 10].  

Liao et al. [9] showed that the high-confidence data are 

usually clustered like “island of confidence”, by alternatively 

adopting binary word confidence scores. Applying an “island 

of confidence” filtering heuristic to select useful training 

segments, they achieved significantly improved performance 

for transcribing YouTube videos. 

Zhang et al. [13] explored semi-supervised training of DNN 

in a meeting recognition task. They introduced improved 

DNN-based CMS estimators. Together with the error 

resolution, the CMS-based data selection achieved significant 

WER reduction. 

Huang et al. [10] investigated semi-supervised GMM and 

DNN acoustic model training. They proposed a multi-system 

combination to improve the transcription accuracy and a 

confidence re-calibration approach to improve the data 

selection. Experiments showed significant improvement of 

retrained acoustic model on the mobile data. 

Thomas et al. [19] selected the untranscribed data based on 

the utterance-level CMS, which was a log-linear combination 

of the ASR-based confidence and MLP posteriogram-based 

confidence. In their experiments, the method yielded a good 

result in a low-resource LVCSR setting.  

In the fine-tuning step of DNN training, the gradients are 

used to update network parameters (of the weight matrix and 

bias) over frame-level mini-batches. It is possible to perform 

frame-level data selection, when we have frame-level CMS. 

Vesely et al. [11] found it beneficial to conduct frame 

selection based on per-frame CMS derived from confusion 

network, as well as to reduce the disproportion in the amount of 

transcribed and untranscribed data by including the transcribed 

data several times in a low-resourced setting.  

Imseng et al. [12] exploited untranscribed data of multiple 
European languages during semi-supervised DNN training. 

The resultant ASR system outperformed the baseline system 

trained with transcribed data only. They also revealed that 

CMS-based frame selection effectively reduced the size of the 

training data without degrading the ASR performance. 

When DNN is regarded as a log-linear classifier (softmax 

output layer) upon a feature extractor (lower layers), unreliable 

data may help boost the training of lower layers, but is harmful 

for training the output softmax layer. Some recent studies [14, 

15] introduced a multi-task training architecture for 

semi-supervised training without confidence filtering. In [16, 

17, 18, 65, 66], multi-lingual training data share the same 

hidden layers but use different softmax layers for 

language-dependent senone classification. This architecture is 

used for semi-supervised training by viewing the transcribed 

and untranscribed data as different languages. After training, 

the softmax layer for unlabeled data is thrown away and only 

the softmax layer for labeled data is preserved.  

In summary, the objective of these methods is to avoid the 

unfaithful label “polluting” the softmax layer of the network. In 

this paper, we focus on more effective data selection based on 

the above-mentioned methods. There are also other machine 

learning methods for semi-supervised training of acoustic 

model, e.g. graph-based method [20], submodular-based 

method [21] and data selection based on context-dependent 

state distribution [61] or global entropy reduction [62]. 

However, we will not discuss them in this paper. 

 

III. CORPUS AND BASELINE SYSTEM 

A. Data Preparation 

We have compiled the Corpus of Chinese Lecture Room 

(CCLR) [43] as shown in Table I. While Chinese is one of the 

major languages for which ASR has been investigated, studies 

on Chinese lecture speech recognition are limited [44, 45], and 

a large-scale lecture corpus has not been made.  We have 

designed and constructed CCLR based on the CCTV program 

of “Lecture Room” (百家講壇), which is a popular academic 
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lecture program of China Central Television (CCTV) Channel 

10. Since 2001, a series of lectures have been given by 

prominent figures from a variety of areas. The closed caption 

text is also provided by CCTV and available at the official 

website for a part of the lectures.  

For the experimental purpose, we select 58 annotated 
lectures as the training set (CCLR-SV). In addition, 126 

un-annotated but captioned lectures are used for lightly 

supervised training (CCLR-LSV) [33]. We use 19 annotated 

lectures as the test set (CCLR-TST). Additionally, 12 annotated 

lectures are held out as the development set (CCLR-DEV). The 

CCLR-USV set is totally unlabeled, and are used for additional 

training in this work. It has 184 lectures (35 multi-speaker and 

149 single-speaker) in total 248 speakers and 114.7 hours. All 

these data sets are listed in Table I.  

 
TABLE I 

DATA SETS IN CORPUS OF CHINESE LECTURE ROOM (CCLR) 

 
 Data set #Lectures Duration (hours) 

Train CCLR-SV 58 35.2 

CCLR-LSV 126 62.0 

CCLR-USV 184 114.7 

Dev CCLR-DEV 12 7.2 

Test CCLR-TST 19 11.9 

 

B. Baseline ASR Systems 

The dictionary for ASR consists of 53K lexical entries from 
CCLR-SV together with Hub4 and TDT4 distributed through 

LDC. The OOV rate on CCLR-TST is 0.368%. The 

pronunciation entries were derived from the CEDICT1 open 

dictionary.  

A word trigram language model (LM) was built for decoding. 
We complemented the small-sized text of CCLR-SV and 

CCLR-LSV with lecture texts collected from the web, whose 

size is 1.07M words. Then, this lecture corpus was interpolated 

with the corpora (Hub4 of 0.34M, TDT4 of 4.75M and GALE 

of 1.03M) and the Phoenix lecture archive (4.12M, text 

recordings of 1,300 broadcasted lectures from the Phoenix-HK 

official website2). The interpolated weights were determined to 

get the lowest perplexity on CCLR-DEV as shown in Table II. 

 

TABLE II 

COMPONENT AND INTERPOLATED LANGUAGE MODELS 

 
Language model Corpora #Words PPlex. Weight 

Component LMs CCLR 1.07 M 374 0.31 

HUB4 0.34 M 710 0.01 

TDT4 4.75 M 923 0.04 

GALE 1.03 M 426 0.16 

Phoenix 4.12 M 352 0.48 

Interpolated LM / 11.31 M 248 / 

 

We adopt 113 phonemes (consonants and 5-tone vowels) as 

the basic HMM unit. We first build a GMM-HMM system and 

then a DNN-HMM system. 

The GMM system uses PLP features of 13 cepstral 

coefficients (including C0), plus their first and second 

derivatives, leading to a 39-dimensional feature vector. For 

each speaker, cepstral mean normalization (CMN) and cepstral 

variance normalization (CVN) are applied to the features. It is 

trained with the MPE criterion. Moreover, we conduct 

unsupervised speaker adaptation using MLLR for each lecture, 

which is effective for long lecture speech. 

The DNN system uses 40-dimensional filterbank features 

plus their first and second derivatives with splicing 5 frames on 

each side of the current frame, and has 1320 nodes as input, 

3000 nodes as output and 7 hidden layers with 1024 nodes per 

layer. The activation function is sigmoidal function. Training of 

DNN consists of the unsupervised pre-training step and the 

supervised fine-tuning step. We use Kaldi toolkit (nnet1) [46], 

which implements SGD to minimize the cross-entropy between 

the supervision labels and network output. The SGD uses 
mini-batches of 256 frames, and a default “Newbob” learning 

rate schedule which starts with an initial learning rate of 0.008 

and halves the rate when the improvement in frame accuracy on 

a cross-validation set between two successive epochs falls 

below 0.5%. The training terminates when the frame accuracy 

increases by less than 0.1%. The cross-validation set is held out 

from the training data by 10%. To accelerate the training time, 

we use single GPU (Tesla K20m). On this stage, the training is 

based with the CE criterion, and sequential discriminative 

training is not conducted. For decoding, we use Julius ver.4.3.1 

(DNN version3) [47] using the state transition probabilities of 
the GMM-HMM.  

Since the data size of CCLR-SV is not large enough to train a 

baseline lecture transcription system, we introduced a 

lightly-supervised training method [33] to enhance the model 

training by exploiting usable data in another large data set 

CCLR-LSV with closed caption texts. 

This baseline system achieved an average Character Error 

Rate (CER) of 24.2% and 27.5% with the MLLR speaker 

adapted GMM-HMM model, and 22.7% and 25.7% with the 

DNN-HMM model for CCLR-DEV and CCLR-TST, 

respectively. 

Hypothesis combination requires a set of complimentary 
ASR systems with similar accuracy and enough diversity on 

recognition patterns [34]. We trained two other DNN systems 

with the different feature types. One uses 13-dimensional 

MFCC features (with the first and second derivatives) and the 

other uses 13-dimensional PLP features (with the first and 

second derivatives). For these complementary systems, we 

calibrated their CMS before ROVER-based system 

combination by using a four-system committee-based 

recalibration algorithm [10]. The ASR performance (CER%) is 

listed in Table III. The pair-wise edit distances of these systems 

are listed in Table IV. The largest diversity exists between 
GMM and DNN systems with similar accuracy (difference on 

the CER% less than 2% in Table III) as mentioned in [35], and 

their ROVER result outperforms other two-system ROVER 

combinations and also the four-system ROVER combination. 

Conveniently, we can reuse the GMM-HMM system that is 

produced in the process of the DNN-HMM (filterbank feature) 
acoustic model training as a complementary system. 

 

 

 
1
Available at http://cc-cedict.org/wiki/ 

2
Available at http://v.ifeng.com/gongkaike/sjdjiangtang/ 

3
Available at http://julius.osdn.jp/en_index.php#latest_version 
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TABLE III 

ASR PERFORMANCE OF SINGLE SYSTEM AND ROVER COMBINATION 

 ON CCLR-DEV 

 

 Complementary Systems for ROVER ASR 

Performance 
DNN 

(fbank) 

DNN 

(MFCC) 

DNN 

(PLP) 

GMM 

(MPE+MLLR) 

CER (%)  

 

Single 
System 

√    22.7 
 √   23.5 
  √  24.0 
   √ 24.2 

 

 

2-system 

√ √   21.8 
√  √  21.8 
√   √ 20.8 
 √ √  22.9 
 √  √ 21.7 
  √ √ 21.7 

4-system √ √ √ √ 21.1 

 

TABLE IV 

PAIR-WISE EDIT DISTANCE OF ASR RESULTS ON CCLR-DEV  

(CHARACTER LEVEL) 

 

 GMM  

(MPE+MLLR) 

DNN 

(PLP) 

DNN 

(MFCC) 

DNN 

(fbank) 

GMM (MPE+MLLR) / / / / 
DNN (PLP) 24.5% / / / 
DNN (MFCC) 24.6% 14.7% / / 
DNN (fbank) 24.3% 17.3% 16.1% / 

 

 

IV. CRF-BASED HYPOTHESIS COMBINATION AND DATA 

SELECTION  

We propose an effective system combination and data 

selection method with CRF-based classifiers as shown in Fig. 1. 

The process flow is as follows. 

 
 

Fig. 1.  Flowchart of the proposed method. 

 

A. Process Flow 

1) Preprocessing and Hypothesis Generation 

 

For pre-processing, we first conduct speech segmentation to 

the utterance unit based on the BIC (Bayesian Information 

Criterion) method [48] and speaker clustering to remove 
non-speech segments and speech from other than the main 

lecturer. Then the unlabeled data in CCLR-USV is decoded by 

the DNN system and the speaker-adapted GMM system, 

respectively. 
 

2) Hypothesis Combination and Verification 

 

Since different recognition patterns are observed between 

GMM and DNN based recognition hypotheses, we use CRF 

models to combine these diversities with their contextual 

information and determine which hypothesis should be selected 
for acoustic model training. At first, features are extracted from 

pair-wise aligned texts on the character level. Note that each 

Chinese character represents a syllable and has a corresponding 

meaning [49, 50, 51]. We adopt the character unit in order to 

avoid the mis-alignment due to different word segmentations 

and OOV problem. Moreover, as the size of characters is much 

smaller than the vocabulary size, we can train CRF models 

more efficiently. Then, a correct (or better) hypothesis is 

selected from complementary hypotheses and verified.  

 

3) Post-processing and Acoustic Model Training 

 
Data selection for acoustic model training is conducted by 

aggregating the result of the CRF classification in the utterance 

level. The DNN system is retrained by adding the selected data.  

 

B. Categories of Alignment Patterns 

We automatically transcribed the CCLR-SV data and made a 

three-way character alignment among these two ASR 

hypotheses by the GMM-based system and the DNN-based 

system and also the faithful transcripts (reference). By 

analyzing the aligned character sequence, we can categorize 
patterns into five classes, as listed in Table V. The insertion and 

deletion cases are handled by using a null token.  

 

TABLE V 

CATEGORY OF ALIGNMENT PATTERNS 

 
Category DNN 

hypothesis 

GMM 

hypothesis 

reference 

text 

Percent 

% 

C1 发 √ 发 √ 发 75.2% 

C2 学 Ⅹ 学 Ⅹ 发 6.8% 

C3 雪 Ⅹ 学 Ⅹ 发 6.6% 

C4 发 √ 雪 Ⅹ 发 7.7% 

C5 雪 Ⅹ 发 √ 发 3.7% 

 (√ means matching with reference, Ⅹ means mismatching) 
 

The definitions of the categories are as follows: 

 

 C1: the DNN hypothesis is matched with the GMM 

hypothesis and also the correct transcript. A majority of 

the samples falls in this category. 

 

 C2: although the DNN hypothesis is matched with the 

GMM hypothesis, neither of them is correct. This case 

is rare.  

 

 C3, C4 and C5: the DNN hypothesis is different from the 

GMM hypothesis. In C3, neither of them is correct. In 

C4, the DNN hypothesis is correct. In C5, the GMM 

hypothesis is correct. 

 

DNN
system

GMM
system

Unlabeled
data 

Alignment

Selector 
CRF 名 古 屋股

Hypothesis 
combination 

Verifier 
CRF

Hypothesis 
verification

Enhanced 
AM training 

Data 
selection

Decoding

名

民

股 屋

古 古 屋

_

名 古 屋股

GMM hypothesis

DNN hypothesis
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C. Classifier Design 

We use CRF [29] as the classifier for this task. It can model 

the relationship between the features and labels by considering 

sequential dependencies of contextual information. For this 

reason, it is used for many applications such as confidence 

measuring [30, 31], ASR error detection [52], and automatic 

narrative retelling assessment [53].  

Our objective is to accept effective data (C1, C4 and C5) and 

remove erroneous data (C2 and C3). We initially tried to design 

a flat classifier and cast the data selection and verification 

problem as a five-class classification problem, but it turned to 

be difficult because of the complex decisions and the data 
imbalance (see Table V). Therefore, we adopt a cascaded 

approach.  

In the cascaded approach, we design two kinds of binary 

classifiers: selector CRF and verifier CRF. The selector CRF is 

for selection between the hypotheses, and the verifier CRF is 

for verification of the selected hypothesis. As described in the 

previous subsection, C1 and C2 are the matching cases between 

two different ASR hypotheses. In these cases, the data selection 

problem is reduced to whether to accept or discard the character 

hypothesis. On the other hand, C3, C4 and C5 are the 

mismatching cases between these two ASR hypotheses.  We 
train a binary classifier to make a choice between these ASR 

hypotheses. Then, we apply the other classifier to verify it. For 

general purpose, this classifier is the same as the one used for 

C1 and C2. We do not have enough training samples to train 

individual classifiers. 

 
Fig. 2  Cascaded classification scheme for data selection. 

 

The classification is organized by the two binary classifiers 

in a cascaded structure as illustrated in Fig. 2. The binary 

classifiers are focused on specific classification problems, so 

they are easily optimized. This design also mitigates the data 

imbalance problem. In Fig. 2, one classifier is used for selection 

of the character hypothesis with highest credibility either from 

the DNN hypothesis or the GMM hypothesis, and the other one 

is used for verification of the selected (or matched) hypothesis. 

To make binary classification in the selector CRF (CRF-1), 
we merge C3 into C5, because it makes the data distribution 

more balanced. Erroneous patterns in C3 (i.e. GMM hypothesis 

is incorrect) will be rejected by the verifier CRF (CRF-2). 

 

D. Feature Design 

The input features used in CRF-1 and CRF-2 are listed in 

Table VI and Table VII. We categorize these features into two 

groups: ASR-based features and text-based features.  

 
TABLE VI 

FEATURE DESIGN FOR CRF-1  

 

Feature Type Features 

ASR-based  

feature 

1. Confidence measure score (CMS). 

2. Duration of the current word (DUR). 

3. Word trigram LM score (WLM). 

4. Averaged acoustic model score (AM). 

5. Number of left competing words (NLW). 

6. Number of right competing words (NRW). 

7. Density within word duration (DEN). 

Text-based  

feature 

1. Lexical feature (LEX). 

2. Part-Of-Speech (POS). 

3. 5-gram char LM probability (CLM). 

4. 5-gram char LM back-off behavior (BO). 

 
TABLE VII 

FEATURE DESIGN FOR CRF-2 

 

Feature Type Features 

ASR-based  

feature 

1. Confidence measure score of baseline system and 

posterior output of CRF-1 (CMS) 

Text-based  

feature 

1. Lexical feature (LEX) 

2. Part-Of-Speech (POS) 

3. 5-gram char LM probability (CLM) 

4. 5-gram char LM back-off behavior (BO) 

 

These features are explained below. The ASR-based features 

are extracted for the word unit, and distributed to each character 

in the word. They are numeric features: 
 

 The confidence measure score (CMS) is output by the 

Julius decoder [25] of the baseline ASR system. The value 

is between [0, 1] approximating a posterior probability of 

the hypothesis word. 

 The word duration (DUR) feature is the number of frames 

of the word. 

 The word trigram LM (WLM) feature is the word trigram 

language model score of the word while decoding. 

 Averaged acoustic model score (AM) feature is the 

acoustic likelihood score averaged for each frame.  

 The left competing words (NLW) feature is the number of 

the competing words to the left side of the current word in 

the word graph. 

 The right competing words (NRW) feature is the number 

of the competing words to the right side of the current 

word in the word graph. 

 The density (DEN) feature is how many words 

overlapping between the start time and the end time of the 

current word in the word graph. 

 

The text-based features are extracted by rescoring and 

syntactic analysis in the character level: 

 

 The lexical feature (LEX) is a lexical entry (ID) of the 

current character. It is a symbolic feature. 

 The Part-Of-Speech (POS) feature is obtained for each 

no yes
C3,C4,C5 C1,C2

Verifier CRF 
(CRF2)

Verifier CRF 
(CRF2)

Discard AcceptSelect GMM

Verifier CRF 
(CRF2)

C3,C4(C3),C5

C5(C3)

Discard Accept

C4C3

Selector CRF 
(CRF1)

Select DNN

Discard Accept

DNN hypo. matches GMM hypo.?

C2 C1
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character unit by a CRF classifier trained with a 

character-based Chinese-Tree-Bank (CTB) 4 [54]. This 

feature is symbolic. 

 The language model probability feature (CLM) is a 

negative log probability of the current character rescored 

by a character 5-gram language model. This feature is 

numeric.  When back-off is used, it is recorded as back-off 

behavior feature (BO). This feature is symbolic.  

 

Because most of the CRF implementations are designed to 

work with symbolic features, we need to convert the numeric 

features (CMS, DUR, WLM, AM, NLW, NRW, DEN, CLM) 

into discrete features. Moreover, for the symbolic features 

(LEX, POS, BO), the contextual information of the current 

unit (character) is also incorporated by adding features of the 

preceding two characters and the following two characters.  

For the selector CRF (CRF-1), features from the GMM 

hypothesis and the DNN hypothesis are concatenated together, 

and the complementary information from both independent 

ASR systems can help make better classification. 

For the verifier CRF (CRF-2), it is difficult to use the 

ASR-based features for the selected hypothesis, because the 

features from two different ASR systems have different 

dynamic ranges [55, 56]. We also recalculate the text-based 
features after classification by the selector CRF (CRF-1) 

because of the context change. Additional feature we use is the 

posterior probability output of CRF-1 (for the mismatching 

cases) and the confidence measure score of the DNN system 

(for the matching cases) as shown in Table VII.  
 

E. Data Selection for Acoustic Model Training 

The ASR hypotheses are merged into a single character 

sequence after the matching and selection processes, and every 

character in the sequence will have a label, either “accept” or 

“discard”, based on the verification process according to Fig.2.  

Then, we need to make a decision whether or not this sequence 

of the data should be used for acoustic model training. Two 

kinds of data selection scheme are investigated as follows: 

 

1) Utterance-level selection 

 

The most commonly used utterance-level selection is based 

on utterance-level CMS, which is formulated as follows: 





N

1i

wisent
C

N

1
C

 
where 

wi
C  is the CMS of word wi  obtained by confusion 

network decoding [26] and N is the number of words in the 

utterance.  

Then we can sort the utterances by utterance-level CMS and 

select a certain percentage of top utterances for model training. 

In our proposed method, we compute the character 

acceptance rate (CA) for every utterance. Since Chinese is a 

syllabic language and each character is a syllable, the “CA” 

actually means the ratio of “accepted” syllables over the total 

number of syllables in an utterance.  

It is not practical to tune the CA threshold by using the 

development set, as it would take so long to train the DNN 

model for each CA threshold value. Considering spoken 

Chinese is highly homophonic, we tolerate some character 

errors existing in the utterances and select these utterances with 

their CA no lower than 70%.  

 

2) Frame-level selection 
 

We also implement frame-level data selection based on 

frame dropping and multi-task training methods. 

We determine acceptance of each frame, so the parameters of 

DNN are updated on the selected frame-level mini-batches. 

Using forced-alignment, we get the state-level label and their 

boundaries. In this way, the character-level labels can be 

distributed to all frames. With the frame-level selection, we can 

train DNN model by either multi-task training method shown in 

Fig.3(a) or frame dropping method  shown in Fig.3(b).  

We make each mini-batch (256 frames) consisting of either 

“accepted” frames or “discarded” frames, and then shuffle all 
of the mini-batches. In the multi-task training method, the 

“accepted” mini-batches and the “discarded” mini-batches 

update the shared hidden layers but update different softmax 

layers. And we only preserve the softmax layer for “accepted” 

frames after training. In the frame dropping method, we only 

use the “accepted” mini-batches to update the whole network. 

 

 

(a) multi-task training                            (b) frame dropping 

Fig. 3 Frame-level data selection methods. 

V. EXPERIMENTAL EVALUATIONS 

The proposed method is applied to CCLR-USV to make an 
enhanced acoustic model, which are tested on CCLR-DEV and 

CCLR-TST. 

A. Classifier Implementations  

1) Training and testing data for classifiers 

 

In our implementation, we train CRF classifiers using 
CCLR-SV: CRF-1, which is trained to discriminate C3+C5 vs. 

C4, and CRF-2, which is trained to verify the output of CRF-1 

(C4+C5 vs. C3) and to discriminate C1 vs. C2. 

   Since the feature of CRF-2 depends on the result of CRF-1, 

we use a five-fold cross-validation method to get the features of 

CRF-2. Specifically, we partition the training data into five 

subsets, and train an individual CRF-1 using 4/5 of the data to 

be applied to on the rest 1/5 data. 

…

Cost function (CE)

…

1 mini-batch of 
“accepted” frames

Cost function (CE)

1 mini-batch of 
“discarded” frames

softmax layer 
for

“accepted” 
frames

softmax layer 
for

“discarded” 
frames

drop
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2) Training data resampling 

 

In the training data set (CCLR-SV), there is serious 

imbalance in training samples between classes. The distribution 

of these patterns in CCLR-SV is shown in Table V. It is 

observed that 75.2% of them are categorized into C1. Other 

four classes are 6.8% (C2), 6.6% (C3), 7.7% (C4) and 3.7% 

(C5), respectively. This distribution will bias training of the 

classifiers. Thus, we introduce a re-sampling technique. 

Specifically, we discarded part of samples which appear too 

frequently in C1. As a result, the calibrated distributions are as 

follows: C1: 60.3%, C2: 10.9%, C3+C5: 16.6% and C4: 12.2%.  

 

3) Incorporating data from captioned data 

 

For improved training, we also incorporate data from 

CCLR-LSV to enlarge the training data. This process is not 
straightforward, because we only have closed caption texts 

instead of faithful transcripts.  

We made a three-way character alignment among the two 

ASR hypotheses by the GMM-based system and the 

DNN-based system and also the closed caption texts. We 

regard the all-matching cases as positive samples and the 

all-mismatching cases as negative samples, and add them to the 

training data of CRF-2. 

4) Training settings of CRF classifiers 

 

In the experiment, we use a linear-chain CRF implemented 

in the CRFSuite package4. The standard Limited-memory 

BFGS (L-BFGS) [57] algorithm and L2 regularization are used 

to train the CRF models with the sparse features of a high 

dimension.  The cut-off threshold for the occurrence frequency 

of feature is 1. The maximum number of iterations for L-BFGS 

optimization is 100. To minimize the information loss in the 

quantization, these numeric values are discretized with the 
method5 described in [58]. The same kind of numeric features 

from the DNN and GMM based systems can have different 

quantization levels.  

 

B. Classification Accuracy of CRF classifiers 

Classification performance with various feature sets is 

evaluated on CCLR-DEV, as shown in Table VIII and Table IX. 

Performance is measured by precision, recall and F-score: 

 

Recall)(Precision / RecallPrecision2scoreF

FN)FPTPRecall

FPTPPrecision







/(

/

 
 

where TP is true positives (correct output), FP is false positives 

(false alarm), and FN is false negatives (miss).  

We observe the overall performance of CRF-2 (Table IX) is 

higher than that of CRF-1 (Table VIII). It suggests selection of 

the hypothesis is more difficult than verification of the 

hypothesis.  

 

 
4
 Available at http://www.chokkan.org/software/crfsuite/ 

5
 Available at http://www.irisa.fr/texmex/people/raymond/Tools/tools.html 

TABLE VIII 

FEATURE SET EVALUATION OF CRF-1 ON CCLR-DEV 

 

 CRF-1 

Select GMM (C3 + C5) Select DNN (C4) 
Feature Recall Precision F-score Recall Precision F-score 

LEX 0.504 0.498 0.501 0.711 0.716 0.713 

POS 0.458 0.449 0.453 0.681 0.689 0.685 

CLM 0.471    0.530 0.499 0.763 0.717 0.739 

BO 0.300 0.481 0.370 0.816 0.673 0.738 

All Text  0.546 0.560 0.553 0.756 0.746 0.751 

CMS 0.518 0.541 0.529 0.750 0.733 0.741 

DUR 0.491 0.511 0.501 0.733 0.717 0.725 

WLM 0.410 0.485 0.444 0.753 0.692 0.721 

AM 0.468 0.498 0.483 0.732 0.708 0.720 

NLW 0.491 0.455 0.472 0.667 0.697 0.682 

NRW 0.491 0.465 0.478 0.679 0.701 0.690 

DEN 0.483 0.458 0.470 0.677 0.697 0.687 

All ASR 0.572 0.569 0.570 0.754 0.756 0.755 

All Features 0.610 0.617 0.613 0.785 0.780 0.782 

 

TABLE IX 

FEATURE SET EVALUATION OF CRF-2 ON CCLR-DEV 

 

 CRF-2 

Discard (C2+ C3) Accept (C1+C4+C5) 
Feature Recall Precision F-score Recall Precision F-score 

LEX 0.044 0.697 0.082 0.996 0.832 0.907 

POS 0.002 0.730 0.003 0.999 0.826 0.905 

CLM 0.088 0.684 0.155 0.992 0.838 0.908 

BO 0.013 0.679 0.025 0.999 0.828 0.905 

All Text  0.237 0.662 0.350 0.975 0.859 0.913 

CMS (ASR) 0.631 0.588 0.609 0.907 0.921 0.914 

All Features 0.621 0.627 0.624 0.922 0.920 0.921 

 

Among the feature sets, the text-based features and their 

combinations are generally less effective than the ASR-based 
feature in CRF-1 and CRF-2. However, for both classifiers, 

combination of both feature sets shows further improvement. 

As an individual feature, the CMS feature is the most effective 

for CRF-1 and CRF-2.  

From these results, we adopt the complete feature set. 

Although errors by CRF-1 in the first stage of the classification 

is inevitable, part of them are detected and discarded in the 

second stage of classification by CRF-2, as shown in Fig. 2. 

 

C. Performance of Hypothesis Selection and Verification  

Next, we evaluate the performance of selection and 

verification of ASR hypotheses using CCLR-DEV and 

CCLR-TST. 

The GMM-HMM and DNN-HMM baseline systems are 

described in Section III. Other methods compared with the 

proposed method are as follows: 

 

 Combine-ROVER: the hypothesis and CMS derived 

from the ROVER-based system combination (the 

conventional method). 

 

 Combine-single-CRF: we trained a five-class CRF 

model to combine the ASR hypothesis. 

 

 Combine-CRFs: we train two classifiers for system 

combination (the proposed method). We will test 

different stages of our proposed cascade classification: 

Combine-CRFs (CRF-1) for evaluating the effectiveness 

of the selection process only and Combine-CRFs 

(CRF-1+CRF-2) to evaluate the effectiveness of the 

verification process. 

http://www.chokkan.org/software/crfsuite/
http://www.irisa.fr/texmex/people/raymond/Tools/tools.html
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We use following metrics for evaluation: 

 

 Character Error Rate (CER): ASR evaluation measure 

after the hypothesis combination. 

 

 Normalized Cross Entropy (NCE): It assigns the 

information gain to each of the hypothesis word to 

evaluate the quality of the confidence score distribution 

[59]. Higher values of NCE indicate better ASR 

confidence estimation. Perfect ASR confidence estimates 

give an NCE of 1. The definition of NCE is as follows: 

 

     

     
c2c2

max
incorrect

2
correct

2max

p1nNpnH

/Hwp1logwplogHNCE











 

loglog

ˆˆ

max

 

 

where  n is the number of correct hypothesis words, N is 

the total number of hypothesis words,
c

p  is the average 

probability that an output word is correct (=n / N),  wp̂  is 

the confidence measure output of output word w. 

 

 Equal Error Rate (EER): the false alarm rate or the miss 

rate at the confidence score threshold where the false 

alarm and miss rate get equal. Lower values of EER 

indicate better ASR confidence estimation. Perfect ASR 

confidence estimates give an EER of 0.  

 

The results are listed in Table X. The proposed method 

Combine-CRFs outperforms the other methods. We observed 

that combination of hypotheses by ROVER method 

(Combine-ROVER) can effectively reduce the recognition 

error rate (around absolute 2%) from the best single system 

(DNN-HMM), but it does not improve the confidence 

estimation. Using a single CRF classifier (single-CRF) can 

improve the confidence estimation, but it does not lead to the 

reduction of the recognition error rate. Our proposed method 

(Combine-CRFs) shows robustness to the small number of 

complementary systems and different distributions of CMS 

between the DNN-based system and GMM-based system. The 

CRF-1 improves the recognition result of the ROVER method 

(around absolute 0.3%～0.5%). Note that iROVER [63][64] is 

similar to the case using only CRF-1. Moreover, CRF-2 further 

improves the confidence estimation quality based on the 

CRF-1 classification result. 

 
TABLE X 

EVALUATION OF THE DATA SELECTION AND VERIFICATION 

 
 CCLR-DEV CCLR-TST 

CER 

(%) 

NCE EER 

(%) 
CER 

(%) 

NCE EER 

(%) 
GMM-HMM (MPE+MLLR) 24.2 0.30 18.3 27.5 0.30 18.6 

DNN-HMM (fbank) 22.7 0.32 20.7 25.7 0.28 21.8 

Combine-ROVER 20.8 0.26 22.7 24.5 0.26 23.3 

single-CRF 21.9 0.28 21.7 25.7 0.25 22.8 

Combine-CRFs (CRF-1) 20.5 0.28 18.2 24.0 0.25 19.3 

Combine-CRFs (CRF-1+CRF-2) 20.5 0.37 17.1 24.0 0.34 18.5 

 

D. ASR performance of DNN Acoustic Model Enhanced by 

Selected Data 

Then, we conduct DNN acoustic model training by adding 

the data selected from CCLR-USV to the CCLR-SV and 

CCLR-LSV.  ASR performance of the model enhanced by the 

selected data is evaluated on both of CCLR-DEV and 

CCLR-TST. The proposed data selection method is compared 

with other methods as follows: 

 

 Baseline GMM and baseline DNN: the models are 

trained by only using CCLR-SV and CCLR-LSV as 

described in Section III. 

 

 DNN (CMS): we select utterances from CCLR-USV 

using the baseline DNN system based on a threshold of 

averaged CMS score (CMS≥0.6). The optimal threshold 

was determined by using GMM (MLE) models and 

CCLR-DEV [33]. It is the most commonly used method. 

We also use all of the ASR hypotheses of CCLR-USV 

from the DNN based system without any selection (CMS≥

0.0).  

 Combine-ROVER: combine the ASR hypotheses of 

CCLR-USV from the baseline GMM and the baseline 

DNN systems using ROVER [36]. We select utterances 

according to the optimal threshold of the averaged CMS 

score (CMS ≥ 0.6). It is the conventional method for 

leveraging hypotheses and data selection. We also use all 

of the combined ASR hypotheses of CCLR-USV without 

any selection (CMS≥0.0). We derive the hypothesis and 

CMS from the ROVER-based system combination. 

 

 Combine-CRFs (CA=1.0, CA≥0.0 and CA≥0.7): combine 

the ASR hypotheses of CCLR-USV from two different 

baseline systems by using a set of CRF models. This is 

our proposed method for leveraging hypotheses and data 

selection. Effect of data selection is investigated on three 

thresholds: CA≥0.0 (no selection), CA=1.0 (use utterances 

with all characters accepted), and CA≥0.7.  

 

In this experiment, we use the same setting with the baseline 

system described in Section III for DNN acoustic model 

training and testing as well as the lexicon and the language 

model.  
TABLE XI 

ASR PERFORMANCE (CER%) OF CROSS-ENTROPY DNN MODEL BY 

UTTERANCE-LEVEL SELECTION 

 
 Amount of data (hours) CER% 

labeled unlabeled DEV TST 

Baseline GMM (MPE+MLLR) 97.2 0 24.2 27.5 

Baseline DNN (fbank) 97.2 0 22.7 25.7 

DNN (CMS≥0.0) 97.2 114.7 22.3 25.4 

DNN (CMS≥0.6) 97.2   83.9 22.0 25.1 

Combine-ROVER (CMS≥0.0) 97.2 114.7 22.0 24.9 

Combine-ROVER (CMS≥0.6) 97.2 68.7 21.9 24.9 

Combine-CRFs (CA≥0.0) 97.2 114.7 21.5 24.4 

Combine-CRFs (CA=1.0) 97.2  32.5 21.6 24.7 

Combine-CRFs (CA≥0.7) 97.2  71.5 21.3 24.2 

 

ASR performance in CER is listed in Table XI. The results 

show that our proposed semi-supervised training method 
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significantly improved the baseline DNN system. It also 

outperforms all other methods on both evaluation data sets.  

We observe that both of Combine-CRFs and 

Combine-ROVER outperform the simple CMS-based selection 

DNN (CMS ≥ 0.0 and CMS ≥ 0.6). This suggests the system 

combination effectively leverages the quality of automatically 
generated transcription. The fact that our proposed method 

Combine-CRFs (CA≥ 0.0) further outperforms the Combine- 

ROVER (CM≥0.0) demonstrates the effectiveness of the CRF 

models using many features. The Combine-ROVER (CMS≥0.6) 

and Combine-ROVER (CMS≥0.0) has no significant difference, 

while the improvement by Combine-CRFs (CA ≥ 0.7) is 

statistically significant compared with the other two models 

(CMS ≥ 0.0 and CA=1.0) among our proposed method and the 

improvement by Combine-CRFs (CA=1.0) is also statistically 

significant compared with Combine-ROVER (CMS≥0.6). This 

confirms the data selection with the verifier CRF has some 

effect for further improvement.  
It is observed during the training that the proposed method 

(CA≥0.7) results in better CE and frame accuracy than other 

methods (DNN (CMS≥0.6) and ROVER (CMS≥0.6)). 

We also conducted the proposed method with different 

threshold values (0.5～1.0) to show the relationship of the 

training data amount and the resulting model accuracy on the 

CCLR-DEV set in Fig. 4. We can see there is no significant 

difference in the range of 0.5 to 0.8. 

 
Fig. 4 Training data amount and resulting accuracy on CCLR-DEV. 

 

Finally, we conduct the frame-level verification result as 

described in Section IV-E2, where “accepted” frames are used 

for supervised learning. We implement the frame dropping and 

the multi-task training methods. We refer these two different 

methods to Combine-CRFs (multi-task) and Combine-CRFs 

(drop-frames) respectively. Their ASR performance shows no 

significant difference compared with Combine-CRFs (CA≥0.7) 

in Table XII. However, the frame-level selection methods do 

not require any threshold tuning. 

 
TABLE XII 

ASR PERFORMANCE (CER%) OF CROSS-ENTROPY DNN MODEL BY 

FRAME-LEVEL SELECTION 

 
 Amount of data (hours) CER% 

labeled unlabeled DEV TST 

Combine-CRFs (CA≥0.7) 97.2  71.5 21.3 24.2 

Combine-CRFs (multi-task) 97.2  114.7 21.3 24.3 

Combine-CRFs (drop-frames) 97.2  90.4 21.4 24.3 

 

On the other hand, utterance-level selection is advantageous 

for conducting sequence discriminative training. We train the 

sMBR DNN models by using four Cross-Entropy (CE) DNN 

models as the seed model listed in Table XI: Baseline DNN 

(fbank), Combine-CRFs (CA≥0.7, CA≥0.0 and CA=1.0). Their ASR 

performance is shown in Table XIII. We can see a significant 
improvement by Combine-CRFs (CA≥0.7) over the other three 

models (Baseline DNN, CMS≥0.0 and CA=1.0). The effectiveness of 

the proposed method is still maintained after sMBR training. 

That means our data selection method also works for sequence 

discriminative DNN training. However, the sMBR training 

based on Combine-CRFs (CA≥0.7) CE model using the labeled 

data only shows further improvement. The result suggests that 

the sMBR training is sensitive to errors in the label. 
TABLE XIII 

ASR PERFORMANCE (CER%) OF SMBR DNN MODEL 

 
 

Seed CE DNN model 

Amount of data (hours) 

for sMBR training 

        CER% 

labeled unlabeled DEV TST 

Baseline DNN (fbank) 97.2 0 21.9 24.7 

Combine-CRFs (CA≥0.0) 97.2 114.7 20.9 23.3 

Combine-CRFs (CA=1.0) 97.2 32.5 21.0 23.6 

Combine-CRFs (CA≥0.7) 97.2 71.5 20.7 23.1 

Combine-CRFs (CA≥0.7) 97.2 71.5 (CE only) 20.3 23.0 

 

VI. CONCLUSIONS 

We have proposed a new method for hypothesis leveraging 

and data selection for semi-supervised training of DNN 

acoustic model. The method uses dedicated classifiers, which 

are trained with the training database of the baseline acoustic 

model, to combine complementary ASR hypotheses and select 

usable data for model training. 

We designed a cascaded classification scheme based on a set 

of binary classifiers, which incorporates a variety of features. 

Experimental evaluations show that the proposed 

semi-supervised training method effectively filters usable data, 
and improves the ASR accuracy from the baseline model and in 

comparison with the conventional ROVER-based method and 

the CMS-based selection method.  

Since our baseline systems have large room for improvement, 

we will investigate combining different types of deep learning 

based acoustic model. We also hope we can investigate with a 

larger data set. The proposed method does not depend on the 

character/syllable level modeling. Therefore, it will hopefully 

be ported to other languages such as English.  
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