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The influence of flow velocity on structural damage induced by tsunami inundation is investigated to improve
empirical fragility models considering flow velocity as explanatory hazard variable in addition to inundation
depth. The analysis is based on extensive tsunami damage data for the 2011 Tohoku earthquake collected by
theMinistry of Land, Infrastructure, and Transportation of the Japanese Government.Multivariate tsunami fragil-
ity curves are developed throughmultinomial logistic regression of un-binned data. This approach facilitates the
flexible development of various nested models considering inundation depth alone or inundation depth and ve-
locity altogether. Statistical diagnostic metrics, such as the Bayesian Information Criterion, the Akaike Informa-
tion Criterion, and the residual deviance, are used to determine which model improves the predictability of
tsunami damage. The significance and importance of including flow velocity in the vulnerability models are
assessed quantitatively by examining the influence of different spatial resolutions in elevationmodel and differ-
ent source models. Then, the effects of coastal topography have been investigated. Numerical results show that
flow velocity generally improves the fragility models, particularly for severer structural damage states, and
that it is important for sites along the coast where the inundation depth is not extremely high. Coarse digital el-
evation model and inaccurate source models have influence on the calculated values of flow velocity and thus
they affect the accuracy of fragility modeling. Finally, two different fragility models are calibrated for plain-
type and ria-type coasts by reflecting differences in hydrodynamic behavior and recorded damage on the
structures.
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1. Introduction

Tsunamis pose a significant threat to coastal communities near ac-
tive subduction zones. The events occurred in the last two decades high-
light the importance of developing vulnerability models (e.g. tsunami
fragility curves) to predict the tsunami impact on thebuilt environment.
A fragility curve evaluates the probability of reaching or exceeding spe-
cific damage states for a given hazard intensity (Porter et al., 2007). Such
relationships between hazard and potential damage play a vital role in
quantifying damage and losses associated with natural hazards. Several
empirical tsunami fragility curves can be found in literature
(e.g., Tarbotton et al., 2015). The majority of the existing studies adopt
inundation depth as intensity measure, especially more recent ones
(Reese et al., 2011; Suppasri et al., 2013; Charvet et al., 2014; De Risi
et al., 2016). Only a few tsunami fragility models consider flow velocity
(Koshimura et al., 2009; Koshimura and Kayaba, 2011; Suppasri et al.,
2011). Nevertheless, it is generally accepted that the higher the flow ve-
locity of the inundation, the greater the probability of structural damage
(Kreibich et al., 2009). This is particularly true for the case of debris im-
pact that is mainly governed by flow velocity (Ghobarah et al., 2006). In
this context, Charvet et al. (2015) proposed a multivariate fragility for-
mulation in order to take into account not only inundation depth, but
also inundation velocity and debris impact.

There aremany techniques to obtain tsunamiflowvelocity. They can
be divided into direct and indirect methods, depending on whether the
velocities aremeasured directly or are obtained frompost-processing of
other data. The direct methods include (i) the particle image
velocimetry analysis based on videos and topographic data (Fritz et al.,
2012; Hayashi and Koshimura, 2013), (ii) the coastal oceanographic
radar tsunami system based on high-frequency radar technology (Lipa
et al., 2012), and (iii) satellite altimetry based on recognition from the
space (Song et al., 2012). Indirect methods are based on hydraulic or
geological analyses. In the first case, flow velocity is estimated from
Bernoulli principle applied to inundation depth before and after an ob-
stacle or by combiningmeasures of inundation depth and Froude num-
ber. In the second case, flow velocity is calculated through the analysis
of soil sediments inland (Jaffe et al., 2011) and/or through the analysis
of boulder transport (Etienne et al., 2011).

For empirical tsunami fragilitymodeling, the precedingmethods are
not applicable because the velocity information for numerous buildings
is needed. In practice, the velocity information can be obtained through
numerical tsunami simulation based on a given initial boundary condi-
tion, and many numerical tsunami codes are available in the literature
(e.g., Dutykh et al., 2011). Generally, codes use initial tsunami condi-
tions (based on an earthquake rupture model), bathymetry and eleva-
tion data, and roughness maps as input, and return time-histories of
inundation depth and flow velocity at several locations of interest. The
key issue is to ensure that the tsunami simulation, as a whole, is a rea-
sonable representation of the actual phenomena, and for this reason,
the tsunami model needs to be calibrated using observed off-shore
wave as well as on-shore inundation data.

This study aims at providing an answer to a question: is flowvelocity
important for tsunami fragility modeling? A rigorous statistical analysis
is carried out to assess the influence of accounting for flow velocity in
tsunami vulnerability modeling systematically. The investigation is
based on the tsunami damage data recorded from extensive post-
event field surveys and tsunami damage inspections after the 2011
Tohoku, Japan tsunami. All the data are collected in the database by
the Ministry of Land, Infrastructure, and Transportation (MLIT, 2014),
containingmore than 200,000buildings; each data entry includes build-
ing type, location, tsunami damage level, and inundation depth.

To obtain the tsunami velocity data at building sites, tsunami simu-
lation is carried out using a calibrated tsunami source model by Satake
et al. (2013) and fine-resolution (10 m) elevation data for Miyagi pre-
fecture. The accuracy of the tsunami simulation model is evaluated by
comparing observed and simulated tsunami inundation data.Moreover,
to investigate the effect of different resolutions of Digital Elevation
Model (DEM) and different source models on flow velocity, three simu-
lation are considered additionally: (i) using the source model by Satake
et al. (2013) and 50-m resolution elevation data, (ii) using the source
model by Ammon et al. (2011) and 10-m resolution data, and (iii)
using the source model by Iinuma et al. (2012) and 10-m resolution
data. The source models by Satake et al. (2013), Ammon et al. (2011),
and Iinuma et al. (2012) are calibrated based on tsunami data, geodetic
and teleseismic data, and geodetic data, respectively; therefore model-
ing accuracy of flow velocities varies for the three source models
considered.

Fragility curves are obtained adopting a multinomial logistic regres-
sion (e.g. Charvet et al., 2014). In total, five nestedmodels are examined
as linear predictor functions: the simplest one considers the inundation
depth and the structural class, whereas themost complex one considers
both inundation depth and flow velocity together with interaction
terms between intensitymeasures and structural typologies. Diagnostic
analyses for fragility model selection are performed considering three
indicators: (i) the Bayesian Information Criterion, (ii) the Akaike Infor-
mation Criterion, and (iii) the residual deviance. The diagnostic analysis
for fragility model selection is carried out considering the entire MLIT
database (i.e. all available data without distinction of coastal topogra-
phy), using simulated flow velocity data based on the Satake et al.
model and 10-m resolution DEM (i.e. the reference inundation
model). Then, the diagnostic analysis is repeated considering the veloc-
ity values obtained by the three additional inundation cases to examine
the effects of accuracy of the simulated velocity data on the fragility
models. This sensitivity study of fragility curves to inundation model is
a novel result for tsunami vulnerability.

Finally, since the topographic effects are known to be important, the
influence of coastal topography on tsunami fragility is investigated via
rigorous residual analysis by distinguishing the results for plain-type
and ria-type coasts and by identifying systematic trends of the residuals.
The residual analysis shows that it is important to consider the two
coastal typologies separately when the flow velocity is incorporated in
the vulnerabilitymodels. Insights gained through such residual analyses
are valuable for improving the physical understanding of the correlation
between damage and effective inundation intensity measure, and they
are also particularly useful for developing future generations of tsunami
vulnerability models.

The paper is organized as follows. Section 2 presents the available
database for tsunami fragility analysis and the simulation procedures
to obtain the flow velocity data. Section 3 presents the mathematical
formulations for the multinomial regression analysis, and Section 4
shows the numerical results. Finally, key conclusions are drawn in
Section 5.

2. MLIT database and velocity data

The tsunami data used in this study are obtained from the MLIT
damage database (MLIT, 2014). Each building located in the affected
areas is classified according to different attributes, such as geographical
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location, structural material, tsunami inundation depth, and sustained
damage level. The total number of the buildings that are contained in
the database exceeds 200,000, and about 84% of the data are accompa-
nied by the supplementary information that are necessary for tsunami
fragility modeling. In this study, a subset of the MLIT data, which is lo-
cated in Miyagi prefecture (Fig. 1(a)), is employed for the fragility anal-
ysis. The reason for this focus is that a high resolution (10-m) DEM is
available for Miyagi prefecture and using the fine resolution data is crit-
ical in ensuring that the flow velocity data at building sites, obtained
from tsunami simulations, are accurate. It is noted that the greatest
part of the MLIT data fall in Miyagi prefecture (77.4%), thus the results
from tsunami fragility analysis are representative of the MLIT database
and the sustained tsunami damage during the 2011 Tohoku earthquake.
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Fig. 2. Municipalities considered in this study for the analysis of the influence of
topographical effect on the vulnerability model.
2.1. Recorded data in Miyagi prefecture

The MLIT database defines seven discrete levels of tsunami damage:
no damage (DS1), minor damage (DS2), moderate damage (DS3),
major damage (DS4), complete damage (DS5), collapse (DS6), and
washed away (DS7). In engineering terms, DS1, DS2, and DS3 identify
non-structural damage (i.e. minor flooding or slight damage to non-
structural components), whereasDS4 to DS7 refer to structural damage,
such as damage to frames/walls and overturning/translation of build-
ings. Fig. 1(a) shows the geographical distribution of damage states
along the Miyagi coastline. The surveyed buildings in Miyagi prefecture
experienced inundation depths ranging between 0.1 m and 27.3 m, as
depicted in Fig. 1(b). Only 2.0% of the surveyed buildings suffered no
damage, whereas many buildings (i.e. 30.3%) were washed away. The
descriptive statistics of the damage levels can be seen in Fig. 1(c). For
all damage states, wooden buildings were more affected, followed by
masonry, steel, and RC structures. This reflects the distribution of struc-
tural typologies in Miyagi prefecture, i.e. 84.1% wooden buildings, 9.4%
masonry buildings, 4.3% steel buildings, and 2.2% RC buildings.
Fig. 1. (a) Spatial distribution of theMLIT damage data inMiyagi prefecture; (b) distribution of i
From a topographical point of view, it is interesting to note that,
starting from South to North, about 57% of buildings are located along
the plain-type coast, about 31% are along ria-type coast, and the remain-
ing 12% are located around Matsushima Bay. Based on this, the Miyagi
coast can be divided into three parts (Fig. 2): municipalities of
Kesennuma, Motoyoshi, Minamisanriku, Onagawa, and part of
Ishinomaki presenting ria-type coast, municipalities of Yamamoto,
Iwanuma, Watari, Natori, Sendai, Higashimatsushima and the remain-
ing part of Ishinomaki presenting plain-type coast, and municipalities
surrounding Matsushima Bay. The data around Matsushima Bay are
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included in the tsunami fragility analysis considering the entire data-
base (Section 4.2), but are excluded from the refined vulnerability
models that account for topographical effects explicitly (Section4.3).
This is because the inner areas of Matsushima Bay are protected by nu-
merous islands that are located near the mouth of the bay and thus tsu-
nami inundation experienced in these areas is significantly less than
other areas in Miyagi prefecture.

The coastal topography has major influence on inundation depth
and velocity. For the same inundation depth, the ria-type coast leads
to a faster flow velocity in the first hundreds of meters from the shore-
line, and consequently greater damage to buildings is expected
(Suppasri et al., 2013). Therefore, in the following, the topographical as-
pect is considered explicitly and its effect on the fragilitymodeling is an-
alyzed in detail. Fig. 1(a) shows that along theplain-type coast, there is a
gradual transition from the severest damage state (i.e. red dots corre-
sponding to DS7) to no damage (i.e. green dots corresponding to
DS1), meanwhile it is difficult to observe such a trend along the ria-
type coast. This is because the plain-type coast allows a gradual inunda-
tion with similar characteristics in depth and velocity for points at the
same distance from the coast, whereas the ria-type coast experiences
different inundation depth and velocity, depending on the local ba-
thymetry and topography.

Finally, it is important to underline that the damage states must be
completely exhaustive and mutually exclusive in the multinomial re-
gression analysis for developing tsunami fragility models. Furthermore,
they should be increasing with respect to a tsunami intensity measure.
In this context, the original DS6 and DS7 are two different descriptions
of a collapse mode. For these reasons, in the following, these two dam-
age states are combined and six damage states are considered (DS6 and
DS7 are integrated into D6&7).

2.2. Simulation of flow velocity

This section summarizes a numerical procedure to obtain the simu-
lated flow velocity data at the building locations. Firstly, key features of
the tsunami input data (e.g. DEM and surface roughness) are described.
Subsequently, salient information of the tsunami sourcemodels that are
adopted in this study is given. The accuracy of the simulated tsunami in-
tensities (i.e. inundation depth and flow velocity) is evaluated by com-
paring with the inundation depth data compiled in the MLIT database.
The accuracy check of the flow velocity is done based on that of inunda-
tion depth because no reliable flow velocity data were observed at the
building locations. Several studies carried out detailed comparisons of
the calculated flow velocity and the observed flow velocity using re-
corded videos at specific locations (Fritz et al., 2012; Hayashi and
Koshimura, 2013). However, it is not feasible to extend such investiga-
tions to all building locations in the MLIT database.

2.2.1. Input data for tsunami simulation
A complete dataset of bathymetry/elevation, coastal/riverside struc-

tures (e.g. breakwater and levees), and surface roughness is obtained
from the Miyagi prefectural government. The data are provided in the
form of nested grids (1350-m–450-m–150-m–50-m–10-m), covering
the geographical regions of Tohoku. The low-lying land areas along
the coast are covered by the 10-m grids for accurate inundation
modeling.

The ocean-floor topography data are based on the 1:50,000 bathy-
metric charts and JTOPO30 database developed by Japan Hydrographic
Association and based on the nautical charts developed by Japan Coastal
Guard. The raw data are gridded using triangulated irregular network.
The land elevation data are based on the 5-m grid DEM developed by
the Geospatial Information Authority of Japan. The raw data are based
on airborne laser surveys and aerial photographic surveys. These data
have measurement errors of less than 1.0 m horizontally and of 0.3 m
to 0.7 m vertically (as standard deviation). The tidal fluctuation is not
taken into account in this study.

The elevation data of the coastal/riverside structures are primarily
provided by municipalities. In the coastal/riverside structural dataset,
structures having dimensions less than 10 m only are represented, not-
ing that those having dimensions greater than 10 m are included in the
DEM. In the tsunami simulation, the coastal/riverside structures are rep-
resented by a vertical wall at one or two sides of the computational cells.
To evaluate the volume of water that overpasses these walls, Homma's
overflowing formulae are employed.

Image of Fig. 3
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In the tsunami simulation, the bottom friction is evaluated using
Manning's formula. The Manning's coefficients are assigned to compu-
tational cells based on national land use data in Japan: 0.02 m−1/3 s
for agricultural land, 0.025m−1/3 s for ocean/water, 0.03m−1/3 s for for-
est vegetation, 0.04 m−1/3 s for low density residential areas,
0.06 m−1/3 s for moderate density residential areas, and 0.08 m−1/3 s
for high density residential areas. The Manning's coefficients depend
on the resolution of the available DEM because using refined grids
more detailed roughness conditions can be represented in the simula-
tion, resulting in more reliable intensity measure estimation can be ob-
tained (Kaiser et al., 2011).

2.2.2. Source models and tsunami simulation for the 2011 Tohoku
earthquake

Using an appropriate source model in tsunami modeling is impor-
tant as this affects the simulated tsunami results significantly (Goda
et al., 2014). This issue becomes even more critical when the simulated
flow velocity is used as input to develop tsunami fragility models in
terms of inundation depth as well as flow velocity (note: inundation
depth data are available from the MLIT database). In this study, three
inversion-based source models for the 2011 Tohoku earthquake are
considered. The base model is set to the source inversion by Satake
et al. (2013), which was developed using tsunami data. The Satake
et al. model performs best among the eleven source models for the
2011 Tohoku earthquake (Goda et al., 2014; see also Section 2.2.3). As
alternatives to the Satake et al. model, two additional models by
Ammon et al. (2011) and Iinuma et al. (2012) are considered. The
formerwas developed based on geodetic-teleseismic joint source inver-
sion, whereas the latter was developed based on geodetic source inver-
sion. The aim of using different source models is to evaluate the
robustness of conclusions obtained from the tsunami fragility analyses
regarding the accuracy of calculated flow velocity data. It is noteworthy
that the effects of biased input data have not been investigated in the lit-
erature; quantifying such biases is useful for the cases where the ob-
served inundation data are not well constrained and hence
performance assessment of different source models involves greater
uncertainty.

Kinematic rupture processes are considered for the Satake et al. and
Ammon et al. models, while instantaneous rupture process is adopted
for the Iinuma et al. model. Subsequently, vertical seafloor displace-
ments are calculated using Okada (1985) and Tanioka and Satake
(1996) formulations. Assuming incompressibility of water, the vertical
seafloor displacement is identically translated to the sea surface,
representing the initial condition of the tsunami propagation model.

Tsunami propagation is carried out using a well-tested numerical
code (Goto et al., 1997). It solves nonlinear shallow water equations
using a leap-frog staggered-grid finite difference scheme and is capable
of generating off-shore tsunami propagation and inundation/run-up.
The run-up calculation is based on a moving boundary approach,
where a dry/wet condition of a computational cell is determined
based on total water depth relative to its elevation. The numerical tsu-
nami calculation is performed for duration of 2 h, time sufficient to
model most critical phases of tsunami waves. The integration time
step is determined by satisfying the C.F.L. condition; it depends on the
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bathymetry/elevation data and their grid sizes and is typically between
0.1 s and 0.5 s.

Through the aforementioned procedure, the maximum inundation
depth and velocity are calculated for all surveyed buildings in the
MLIT database. As an example, Fig. 3 shows the results in terms of max-
imum inundation depth and maximum flow velocity (i.e. the square
root of sum of squares (SRSS) of the two velocity components) for
two areas in Miyagi prefecture; area 1 and area 2 are representative of
plain-type coast and ria-type coast, respectively. The results are based
on the Satake et al. sourcemodel and10-m resolutionDEM. It can be ob-
served that in ria-type coast, there is an evident increase of maximum
velocity with respect to the case of plain-type coast, as observed by
Suppasri et al. (2011). This increase can be justified considering that
for the same value of flow discharge, nearer to the coast, there is a re-
duction of the cross section due to the particular “V” shape of the bays.

2.2.3. Comparison of the simulated and observed tsunami intensity
parameters

The simulatedflowvelocity data at the building locations of theMLIT
database depend on the data resolutions and the source models in tsu-
nami modeling. In Section 4.2.2, the effects of the resolution and source
model on the tsunami fragility results will be investigated. Prior to
these, influence of the resolution and source model on the calculated
flow velocity (i.e. input data to the fragility analysis) is evaluated in
this section. More specifically, four cases are considered: (i) the Satake
et al. source model with 10-m resolution DEM (base case), (ii) the
Satake et al. source model with 50-m resolution DEM, (iii) the
Ammon et al. source model with 10-m resolution DEM, and (iv) the
Iinuma et al. source model with 10-m resolution DEM.

Figs. 4 and 5 show the comparisons between recorded inundation
data and maximum simulated inundation depths. For both figures, the
top two plots (i.e. a and b) represent the scatter plots between recorded
and simulated inundation depth; the 3D histogram gives a more clear
idea about the density of the scatter plot. The bottom two plots (i.e. c
and d) represent the histograms of ratio between simulated and ob-
served inundation depth. It is observed that this ratio is well fitted by
a lognormal distribution having themedian η and the logarithmic stan-
dard deviation β.

Fig. 4 shows the results based on the Satake et al. model, using 10-m
(a and c) and 50-m (b and d) resolution DEM data. The ratios between
simulated and observed inundation depths shown in Fig. 4(c and
d) indicate that the results are relatively unbiased. A high coefficient
of correlation (i.e. 0.86 and 0.84 for the two cases) suggests a general
consistency of the simulations based on the Satake et al. model with
the observations. Moreover, adopting finer resolution data, perfor-
mance of the tsunami simulationmodel is improved (i.e. less dispersion
and greater correlation). Fig. 5 shows the results based on the Ammon
et al. and Iinuma et al. source models, using 10-m resolution DEM. It
can be observed that in both cases, themedian ratios are biasedwith re-
spect to the observations, and there is a reduction of the coefficient of
correlation and an increase of dispersion with respect to those for the
Satake et al. model (Fig. 4). The model proposed by Iinuma et al.
(2012) is less correlated than the model proposed by Ammon et al.
(2011), but on average is closer to the MLIT data.
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The results show that using different input source models or differ-
ent DEM resolutions, variations with respect to the observed data
occur. These variationsmay be used to characterize probability distribu-
tions describing the input data uncertainty that can be eventually con-
sidered in fragility modeling, but this is out of the scope of this paper.
Finally, it is noted that inundation data from tsunami damage database
are not used to carry out source inversion. The sourcemodel can be fur-
ther calibrated against observed inundation data to improve the
matching between observed and calculated flow intensity measures.
Such a sourcemodel ismore suitable to obtain the simulatedflowveloc-
ity dataset required for tsunami fragility modeling.

2.2.4. Comparison of the simulated tsunami flow velocities
Results from the previous subsection suggest that the inundation

model calculated through the Satake et al. model and 10-m resolution
DEM is more reliable and thus can be used as reference. This subsection

Image of Fig. 6


Table 1
Goodness-of-fit metrics based on diagnostic analysis (Roman numbers in parenthesis in-
dicate the resulting model order according to the considered parameter).

Model AIC BIC Deviance Number of parameters

M1 183,273 (V) 183,515 (V) 183,223 (V) 25
M2 178,948 (III) 179,239 (III) 178,888 (III) 30
M3 182,142 (IV) 182,530 (IV) 182,062 (IV) 40
M4 177,983 (II) 178,419 (I) 177,893 (II) 45
M5 177,851 (I) 178,432 (II) 177,731 (I) 60

71R. De Risi et al. / Earth-Science Reviews 166 (2017) 64–82
compares the simulated flow velocity data obtained from the reference
inundation model and the three additional inundation models.

Fig. 6(a and b) compares the maximum flow velocity values obtain-
ed from the simulations carried out using the same source model, but
with different DEM datasets. Despite the high correlation between the
two sets of flow velocity data, the values obtained using the 50-m reso-
lution DEM show a larger dispersion and are on average greater than
those obtained using the more refined DEM.

Fig. 6(c–f) shows the comparisons between the simulatedmaximum
flow velocity values based on the two alternative sourcemodels and the
velocity data based on the reference model. It can be observed that in
both cases, there is a good correlation between simulated values. More-
over, there is an increase, on average, of flow velocity values and an in-
crease of dispersion. The correlation between the velocity values is
almost the same for the two cases, but the Ammon et al. case presents
a greater biaswith respect to the Iinuma et al. model, as observed for in-
undation depth in Fig. 5.
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3. Bivariate tsunami fragility modeling using flow velocity

To examine the significance of incorporating flow velocity in tsuna-
mi fragility modeling, rigorous regression analyses are carried out, de-
veloping bivariate fragility curves based on inundation depth and flow
velocity (as well as other parameters, such as structural material
type). Detailed explanations of the adopted analytical methods are
given in the following.

3.1. Fragility modeling

Empirical tsunami fragility functions relate building damage to a tsu-
nami intensity measure (i.e. inundation depth), taking into account
other explanatory variables, such as structural typology, number of
floors, and topographical indicators. In this study, multinomial logistic
regression is adopted for developing tsunami fragility models. The
method is an extension of binomial logistic regression to the case of
multiclass problems (i.e. polytomous response), belonging to the family
of Generalized Linear Models. This type of regression can handle more
than two damage states simultaneously, and does not require binning
of the data. It also allows the consideration of the ordered and hierarchi-
cal nature of damage states, avoiding inconsistent results, such as inter-
section of fragility functions. It is noted that previous studies typically
aggregate the damage data in bins having similar tsunami intensity
values, and then they fit a simple or generalized linear statistical
model to the binned data. This approach is not considered to avoid
biases in estimated regression parameters due to binning. For instance,
it is well-known that the grouping in bins can affect fragility curves
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Table 2
Deviances (G2) from all structural typologies and all damage states based onM3 andM4.

Damage state

Wood Masonry Steel RC

M3 M4 M3 M4 M3 M4 M3 M4

DS1 7935 7934 1798 1782 364 362 207 204
DS2 21,335 20,765 2496 2488 879 865 553 547
DS3 35,459 34,599 5064 5053 1854 1783 1112 1081
DS4 41,516 40,351 5545 5471 2514 2466 1512 1499
DS5 10,748 10,774 2936 2896 2520 2478 1369 1340
DS6&7 26,913 25,907 3816 3723 2427 2362 1189 1162
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especially at the tails and that bins that present extreme probabilities
(i.e. 0 and 1, which correspond to no damage and complete damage, re-
spectively) are systematically dismissed during the classical statistical
linear fitting (Charvet et al., 2014). Furthermore, the classical linear
least squares fitting is not recommended in the case of discrete and or-
dinal variables, such as tsunami damage states (Charvet et al., 2014).

Consider that the damage state (DS) that takes one of the six discrete
values, i.e. ds1, ds2, …, and ds6&7. Let

πij ¼ P DSi ¼ dsj
� � ð1Þ

denote the probability that the ith observation falls in the jth category.
As the damage states aremutually exclusive and completely exhaustive,
the sum of the damage state probabilities equals one for each observa-
tion. The probability that all buildings of the ith bin fall in the respective
damage state is given by the multinomial probability distribution:

P DSi1 ¼ ds1;…;DSi6&7 ¼ ds6&7ð Þ ¼ mi!

∏6
j¼1yij!

: ∏
6

j¼1
πyij
ij ð2Þ

where mi denotes the total number of structures corresponding to the
ith bin (always equal to 1 in this application) and yijdenotes the number
of structures from the ith bin attaining the jth damage state dsj (i.e. 1 or
0 for damage state attainment or not, respectively). The distribution
shown in Eq. (2) represents the random component of the model,
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which describes the distribution of the response around the central
value.

The systematic component of the model relates the probability πij
and a vector of explanatory variables x, and is represented by a link
function. Usually, it is a linear function of explanatory variables:

f πij
� � ¼ θ j;0 þ∑

p

k¼i
θ j;k � xk ð3Þ

where θ is the vector of themodel regression parameters θj,k, and p is the
number of explanatory variables. When the model regression parame-
ters are the same for all damage states (except for the intercept θj,0),
the resultant fragility curves having the same slope and themodel is re-
ferred to as ordered. Relaxing the previous constraint, the model is
called as partially ordered. In the following, only partially ordered
models are considered to avoid over-constraining the fitting.

Several link functions are suggested in the literature (Hosmer et al.,
2013). In this study, probit and logit models are adopted:

Probit : f πij
� � ¼ Φ−1 πij

� �
and Logit : f πij

� � ¼ log
πij

1−∑ j
k¼1πik

 !
ð4Þ

where Φ(•) represents the standard normal cumulative distribution
function. Depending on the link function, the regression procedure is
commonly known as multinomial logit or multinomial probit
regression.

The point estimates for themodel parameters are obtained based on
the maximum likelihood estimation (MLE) approach by computing the
first and second derivatives of the likelihood function that is expressed
as follows:

L θjx; yð Þ ¼ ∏
n

i¼1
∏
6

j¼1
πyij
ij ð5Þ

where n is the number of data points.
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Table 3
Regression parameters for M3 considering the entire Miyagi prefecture.

Parameter DS2 DS3 DS4 DS5 DS6&7

θ0 1.545 1.429 −0.823 −3.109 −3.251
θ1 0.053 0.951 2.079 2.666 1.716
θ2 0.224 −0.392 0.638 −2.517 0.307
θ3 −0.808 0.007 0.280 −2.231 −0.177
θ4 −0.189 0.168 0.207 −0.532 0.562
θ5 0.079 −0.025 −0.362 1.032 2.281
θ6 0.138 −0.019 0.203 1.654 1.418
θ7 −0.093 −0.128 0.261 1.061 0.499

Table 5
Regression parameters forM4 considering the entire Miyagi prefecture.

Parameter DS2 DS3 DS4 DS5 DS6&7

θ0 1.540 1.430 −0.904 −3.462 −3.722
θ1 0.105 0.924 1.650 2.299 1.557
θ2 0.186 −0.375 0.768 −2.255 0.738
θ3 −0.845 0.023 0.437 −1.989 0.215
θ4 −0.186 0.169 0.213 −0.417 0.696
θ5 0.058 −0.019 −0.257 0.906 2.023
θ6 0.108 −0.010 0.270 1.486 1.160
θ7 −0.118 −0.122 0.319 0.878 0.354
θ8 −0.137 0.062 0.698 0.848 0.696
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3.2. Model selection

Different explanatory variables (and their combinations) can be
taken into account for the systematic component, leading to several sta-
tistical models. In particular, it is necessary to identify the model that
provides the best fit in comparison with the available alternatives. A di-
agnostic analysis or model selection can be performed by assessing the
relative goodness-of-fit of the candidate models. In this study, the
model selection is conducted at two levels, identifying: 1) the best
link function for the same model (i.e. two models with the same linear
predictors but different link functions), and 2) the best model among
several candidate nested models for the same link function (i.e. the
more complex model includes at least all the parameters of its simpler
counterpart).

Herein, two criteria, i.e. the Bayesian Information Criterion (BIC;
Schwarz, 1978), and the Akaike Information Criterion (AIC; Akaike,
1974), are considered:

BIC ¼ −2 ln L x; yjθð Þ½ � þ k � lnn ð6Þ

AIC ¼ −2 ln L x; yjθð Þ½ � þ 2k ð7Þ

where L(x,y |θ) denotes the data likelihood under the MLE of a candi-
date model, k is the number of regression parameters θ, and n is the
number of observations. The model that presents the smallest value of
BIC or AIC is considered to provide a better fit to the available data. It
is noted that for selecting a suitable nested model, several statistical
tests can be used to assess the relative goodness-of-fit (e.g. the
likelihood-ratio test, the F test, and the analysis of variance). However,
these tests are unreliable for un-binned binary data (McCullagh and
Nelder, 1989; Hosmer et al., 2013). For this reason, the preceding diag-
nostic criteria are used consistently. In the context of model selection,
generally BIC tends to choose models that are more parsimonious
than those favored by AIC.

In addition, another statistic, i.e. residual deviance G2, is considered
to measure the overall model performance with respect to the data.
This measure compares the proposed model (i.e. a model with a small
number of parameters) to a saturated one (i.e. a model with parameters
equal to the number of observations), and is expressed as follows:

G2 ¼ 2∑
n

i¼1
∑
6

j¼1
yij ln

yij
πij

: ð8Þ
Table 4
Fragility statistics for all damage states and for all structural typologies based onM3.

DS

Wood Masonry Steel RC

η (m) β (−) η (m) β (−) η (m) β (−) η (m) β (−)

DS2 0.00 4.50 0.01 4.25 0.00 4.50 0.00 4.50
DS3 0.27 1.42 0.21 1.56 0.14 1.82 0.21 1.54
DS4 1.03 0.76 1.20 0.63 1.15 0.60 1.28 0.68
DS5 2.04 0.40 2.52 0.40 2.15 0.47 2.72 0.61
DS6&7 2.09 0.41 2.99 0.53 3.37 0.75 6.65 0.97
Amodel with smaller deviance is preferred (i.e. themodel is close to
the saturated one, presenting zero residual deviance). It is worth noting
that for un-binned data there are no over-dispersion issues (i.e. model
dispersion is greater than data dispersion). In fact, when over-
dispersion occurs, the overall goodness-of-fit is distorted. This problem
has never been treated rigorously in the previous studies related to tsu-
nami fragility model selection.

4. Numerical results

In this section, various tsunami vulnerability models are developed
by considering different functional forms (Section 4.1); the goodness-
of-fit of the model is evaluated based on the three diagnostic criteria.
In Section 4.2, a base vulnerability model is developed using the entire
MLIT data in Miyagi prefecture and the flow velocity data obtained
from the reference inundation model (i.e. Satake et al. model and 10-
m resolution DEM). The robustness of the vulnerability model with re-
spect to the accuracy of simulated flow velocity data using different in-
undation models is examined. Furthermore, through detailed residual
analysis, the effects due to coastal topography (plain-type versus ria-
type) are investigated in Section 4.3. Finally, based on the results of
the residual analysis, two vulnerability models accounting for coastal
topographical effects are proposed.

4.1. Functional forms

Five different models of the linear predictor function are investigat-
ed (Eq. (3)). The firstmodel (M1) considers the logarithmof inundation
depth h and structural classes only:

M1

f πij
� � ¼ θ j;0 þ θ j;1 log hið Þ þ θ j;2 � dW þ θ j;3 � dM þ θ j;4 � dS ð9Þ

where dW, dM, and dS are thedummy variables for thewooden,masonry,
and steel structures, respectively and take a value of 1 when the ith ob-
servation falls in the respective category, and 0 otherwise. There are
three dummy variables, not four (i.e. the number of structural classes),
to avoid over-parametrization. The second model (M2) expands by ac-
counting for inundation velocity v:
Table 6
Regression parameters forM4 considering plain-type coast only.

Parameter DS2 DS3 DS4 DS5 DS6&7

θ0 1.795 1.742 −1.283 −3.346 −3.826
θ1 0.307 1.355 1.925 1.564 1.701
θ2 −0.159 −0.803 1.105 −3.300 0.548
θ3 −1.352 −0.196 0.754 −1.679 0.144
θ4 −0.696 −0.089 0.406 −0.697 0.589
θ5 −0.051 −0.499 −0.819 1.415 2.001
θ6 −0.088 −0.343 −0.271 0.375 1.263
θ7 −0.332 −0.576 −0.212 1.152 0.296
θ8 −0.211 −0.037 0.782 1.604 0.850



Table 7
Regression parameters for M4 considering ria-type coast only.

Parameter DS2 DS3 DS4 DS5 DS6&7

θ0 81.396 1.685 −0.195 −2.294 −2.758
θ1 1.638 0.827 0.458 1.774 1.063
θ2 −76.758 −0.867 0.459 −3.692 0.432
θ3 105.544 −0.606 0.767 −2.403 1.039
θ4 21.370 0.223 0.486 −2.618 0.849
θ5 −2.677 0.052 0.976 1.470 2.491
θ6 −110.334 0.088 0.808 2.090 0.595
θ7 −1.709 0.776 0.702 1.730 0.304
θ8 −0.974 0.004 0.767 0.234 0.773
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M2

f πij
� � ¼ θ j;0 þ θ j;1 log hið Þ þ θ j;2 � dW þ θ j;3 � dM þ θ j;4 � dS

þ θ j;5 log við Þ: ð10Þ

The third, fourth, and fifth models (M3, M4, and M5, respectively),
are expansion of M1 and M2 and are aimed to account for
the interaction between the intensity measures and the structural
classes:

M3

f πij
� � ¼ θ j;0 þ θ j;1 log hið Þ þ θ j;2 � dW þ θ j;3 � dM þ θ j;4 � dS þ…

þ θ j;5 log hið Þ � dW þ θ j;6 log hið Þ � dM þ θ j;7 log hið Þ � dS ð11Þ
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f πij
� � ¼ θ j;0 þ θ j;1 log hið Þ þ θ j;2 � dW þ θ j;3 � dM þ θ j;4 � dS þ…

þ θ j;5 log hið Þ � dW þ θ j;6 log hið Þ � dM þ θ j;7 log hið Þ � dS þ…
þ θ j;8 log við Þ

ð12Þ

M5

f πij
� � ¼ θ j;0 þ θ j;1 log hið Þ þ θ j;2 � dW þ θ j;3 � dM þ θ j;4 � dS þ…

þ θ j;5 log hið Þ � dW þ θ j;6 log hið Þ � dM þ θ j;7 log hið Þ � dS þ…
þ θ j;8 log við Þ þ…
þ θ j;9 log við Þ � dW þ θ j;10 log við Þ � dM þ θ j;11 log við Þ � dS:

ð13Þ

In particular,M3 is a complete extension ofM1,M4 is a partial exten-
sion of M2, and M5 is a complete extension of M2. Passing from M1 to
M5, the number of model regression parameters increases. The number
of the required parameters for the five models is 25, 30, 40, 45, and 60,
respectively.

4.2. Base fragility models and their variations

4.2.1. Base models
The goodness-of-fit to different link functions is first evaluated. The

results indicate for all considered models, the smallest values of AIC
and BIC are obtained for the logit function. Therefore, only themultino-
mial logit model is considered for further analyses.
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Table 1 presents the results related to themodel selection among the
five models. The diagnostic analysis results based on AIC and deviance
indicate that M5 is the best model, followed in order by M4, M2, M3,
and M1. On the other hand, the analysis based on BIC indicates that
M4 is more informative, followed in order by M5, M2, M3, and M1. In
all considered cases, the models considering flow velocity (M2, M4,
and M5) improve the goodness-of-fit in comparison with those
neglecting flow velocity (M1 and M3). It is therefore evident that M4
and M5 perform better in this first screening.

It is considered thatM4may be preferred overM5 for three reasons:
(i) the BIC, more parsimonious among the chosen diagnostic metrics
(since it prefers models with a less number of parameters), indicates
M4 as the best choice; (ii) the differences of all considered indicators
(i.e. AIC, BIC, and deviance) between M4 and M5 are less than 1‰,
thus the potential improvement from M4 to M5 is negligible despite
the high increase in number of regression parameters (i.e. 45 versus
60); (iii) looking at the raw residuals in Fig. 7, it can be observed that re-
siduals related to M4 (green circle) and M5 (grey square) overlap, and
both are close to zero at a large inundation depth. Moreover, both M4
and M5 present residuals lower than M1, represented with red dots in
Fig. 7, for a large part of inundation depths. Note that the differences de-
crease for high values of inundation depth. Concerning structural typol-
ogies, Fig. 7 indicates that residuals related towooden structures are the
lowest (given the great amount of data) and they progressively increase
formasonry, steel, and RC structures. The latter is due to the fact that the
number of observations for these three typologies of structures is small-
er compared to the wooden buildings. It is therefore possible to con-
clude that considering the flow velocity in vulnerability modeling
results in an improvement of conventional univariate models based on
inundation depth. In addition, in this specific case, the model consider-
ing inundation depth, the interaction terms between inundation depth
and structural typologies, and flow velocity (M4), represents the best
model for the vulnerability modeling.

To understand how the flow velocity improves the vulnerability
modeling in terms of damage state and structural typology in detail, a
disaggregation of deviance for each damage state and for each structural
typology is carried out. M4 is compared with M3 which differs only in
the inclusion of flow velocity. Table 2 lists the values of deviance for
M3 and M4. It can be observed that the deviance decreases more for
damage states from DS4 to DS6&7 when the velocity is considered as
additional explanatory variable, in comparisonwith less severe damage
states. This fact can be explained by considering that the velocity affects
more structural damage states than non-structural damage states.

Fig. 8 shows the fragility curves based on M4, for all damage states,
for all structural materials, and for three velocity values obtained from
the reference inundation model; the median value is represented by a
solid line and the 16th and 84th percentiles are represented by
dashed-dotted lines. Fig. 8 also includes fragility curves based on M3
(dashed lines), neglecting flow velocity. Regression parameters accord-
ing to Eqs. 11 and 12 are given in Tables 3 and 5 forM3 andM4, respec-
tively. Given the independence ofM3 from the velocity, the statistics in
terms of inundation depth (i.e. median η and logarithmic standard devi-
ation β) are also listed in Table 4, which are useful to build the lognor-
mal approximation of M3 according to the following equation:

P DS≥dsið Þ ¼ Φ
lnh−ln η

β

� �
ð14Þ

It can be observed from Fig. 8 that for DS5 and DS6&7 fragilities cor-
responding to M3 are contained in the interval between the fragility
curves for M4 corresponding to the 16th and 84th percentiles of flow
velocity. The differences between the curves corresponding to the
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16th and 84th percentiles of flow velocity are wider for steel and RC
structures than wood and masonry structures. Thus the influence of
the flow velocity becomes more significant to steel and RC structures.
Those variations can affect significantly the risk analysis. The results ob-
tained fromM4 also suggest that despite the consideration of a partially
 = 0.67
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ordered model, the fragility curves for each building class do not inter-
sect one another.

Fig. 9 shows the fragility functions already presented in Fig. 8 sepa-
rately for the structural damage states and for each material typology;
the curves obtained for themedian velocity value are reported together
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with the 90% asymptotic confidence intervals (dotted black lines). Since
these intervals are strictly related to the number of observations and the
available sample size is large, the intervals are very close to the central
estimates. For this reason, the confidence intervals do not cross for dif-
ferent damage states. In addition, in the same figure, the red points
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are an alternative representation of the MLIT data; each point shows
the frequency of reaching or exceeding a specific damage state within
a bin having width equal to 0.1 m. These points can further help under-
stand the performance of the developed models. It is observed that the
points are well contained in the fragility intervals forM4 corresponding
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to the 16th and 84th percentiles of flow velocity, respectively (the blue
dashed lines), especially for wood and masonry structures.

4.2.2. Effects of DEM resolution and source models
In this subsection, the effects due to the simulation accuracy are an-

alyzed considering the three aforementioned tsunami simulation cases
(Section 2.2.3). First, themodel selection analysis for the three addition-
al cases indicates that models considering inundation velocity are pref-
erable with respect to the models considering inundation depth only.
More specifically,M4 is still the preferred one among the five functional
formsmentioned in Section 4.1. The regression parameters obtained for
the three additional cases are given in the supplementary electronic
data associated with the paper (Appendix A).

Figs. 10 and 11 present the comparisons between fragilities based on
the three additional variations and the basemodel. Fig. 10 compares fra-
gilities obtained considering simulation based on the Satake et al. inver-
sion model, but with different DEM resolutions. Fig. 11 shows the
comparisons among the three considered inversion models, using the
same DEM resolution. Since M4 is a function of inundation depth and
flow velocity, to facilitate the comparison, only the marginal fragility
curves, in terms of inundation depth, and for three values of flow veloc-
ity are shown, i.e. 0.1 m/s, 2 m/s, and 10 m/s, representative of low,
moderate, and high velocity values, respectively. With respect to the
base model, a less refined inundation model (both in terms of DEM
and source model) leads to lower median capacity for low values of ve-
locity, and greater median capacity for high values of velocity.
Moreover, the model dispersion for structural damage states tends to
decrease, while that for non-structural damage states tends to increase
slightly. According to these observations, these variations in terms of
fragility curves with respect to the base case lead to a potential risk un-
derestimation for low values of velocity, and to a risk overestimation for
high values of velocity. In relative terms, it is possible to conclude that
the effects of the Iinuma et al. model on fragility curves are comparable
with the effects due to the Satake et al. model with 50-m resolution
DEM. All the previous results are still valid when data points having
the supercritical flow velocity are removed in the fragility modeling.

The features of fragility functions obtainedwith the three alternative
simulations are the direct consequences of the differences in maximum
flow velocity. In fact, as observed in Fig. 6, for all the less refined cases,
there is an average increase of velocity values and an increase of disper-
sions. Such data imply large values of damage probability for the small
values of flow velocity, and then the large values of damage probability
are reached for very high values of velocity. On the other hand, the
model dispersion varies rapidly along the velocity axis for the refined
model, while it varies smoothly (over a wider range of flow velocity)
for the less refined models.

4.3. Models accounting for coastal topographical effects

TheMLIT database offers a great opportunity to analyze the effect of
different coastal topographies on the vulnerability models, since dam-
aged buildings in Miyagi prefecture are distributed along plain-type
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and ria-type coasts (Fig. 2). As in Section 4.2.1, the reference inundation
model (i.e. Satake et al. sourcemodel and 10-m resolution DEM) is con-
sidered herein for the further analysis. Fig. 12 shows the differences be-
tween the two coastal typologies. Fig. 12(a) shows that measured
inundation depths and calculated maximum flow velocities are moder-
ately correlated in plain-type coast. On the other hand, Fig. 12(b) shows
that in ria-type coast, the correlation is low and the data are spread
along the inundation depth axis. In Fig. 12, the curve representing the
flow velocity for shallow water waves; it can be observed that some
points exceed the theoretical value. Moreover, the median values of in-
undation depth and flow velocity are slightly greater for ria-type coast
with respect plain-type. Finally, the number of structures that experi-
enced large values of inundation depth in the ria-type coast is higher
than the plain-type coast. The latter aspect leads to a higher number
of structures experiencing structural damage, and has a direct influence
on the shape of fragility functions. Therefore, two distinct vulnerability
models accounting explicitly for the coastal topography could be more
detailed with respect to the base model presented in Section 4.2.1. To
demonstrate this point, residual analysis between observations and
the reference vulnerability model is carried out.

For each observation, the SRSS of raw residuals between the base
fragility model and observations is focused on. To be consistent with
Section 4.2.1,M4 is compared withM3. Fig. 13 shows the ratio between
the SRSS of raw residuals obtained with M4 and the SRSS of residuals
obtainedwithM3, for different bins of inundation depth and flowveloc-
ity, by considering the entire coast (Fig. 13(a)), the plain-type coast only
(Fig. 13(b)), and the ria-type coast only (Fig. 13(c)). The green color
indicates that the ratio is less than one, i.e. M4 is more suitable than
M3, whereas the red colors indicate the opposite. The results essentially
suggest that inclusion of flow velocity is useful when the inundation
depth is not extremely high. From a physical point of view, this can be
interpreted that the flow velocity has less influence on damage when
the inundation depth is high, especially on structures with less tsunami
resistance, such as wooden andmasonry structures. In the same figures,
continuous black lines represent the boundary of the intersection points
between the fragilities obtained with the two models, which are appli-
cable to all material types and all structural damage states. Those lines
automatically identify the separation between green and red regions.
In the red region, the fragility curves for M3 are under the fragility
curves for M4; whereas in the green region the opposite is true.

To better understand the goodness of the base model for plain-type
and ria-type cases, the residuals calculated individually with respect to
inundation depth and flow velocity are presented in Figs. 14 and 15, re-
spectively. These figures show that for the plain-type coast it is impor-
tant to consider the velocity as additional explanatory variable for the
greatest part of the inundation depth and velocity intervals (i.e. inunda-
tion depth between 0 m and 8 m and flow velocity between 0 m/s and
8 m/s). On the other hand, for the ria-type coast there are improve-
ments for inundation depth between 0 m and 2 m and for flow velocity
greater than 2m/s. The previous results can be also presented according
to the geographical distribution of the observed/calculated intensity
measures for each building location. Fig. 16 shows the spatial distribu-
tion of observations indicating the importance (green dots) or
unimportance (red dots) to consider the velocity in the fragility
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modeling. In plain-type coast, there are many locations where the con-
sideration of flow velocity is important. In ria-type coast, buildings lo-
cated very close to the shoreline (e.g. in Kesennuma) and several
buildings far from the shoreline (e.g. Minamisanriku and Ishinomaki)
only present residuals in favor of M4. Therefore, it is more appropriate
to develop vulnerability models related to a specific topographic
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and ria-type coasts, respectively. Fig. 17 presents the fragility curves for
all structural typologies, considering the entire database (red lines), the
plain-type coast data only (green lines), and the ria-type data only (blue
lines). As in the previous fragility representations, fragility curves are
represented as function of inundation depth and are given for three
values of flow velocity: 0.1 m/s (dashed lines), 2 m/s (continuous
lines), and 10 m/s (dashed-dotted lines). The fragility curves obtained
considering the entire database lie between the curves obtained consid-
ering the two sub-sets of data separately, and are closer to the fragility
curves for plain-type coast. Fragility curves related to ria-type coast
present high reduction of median values (up to about 400%) and a re-
duction of the dispersions; the steeper fragility curves for ria-type
coast can be justified by observing that for the lower values of inunda-
tion depth, the higher values of velocity lead to a faster attainment of
damage. The latter observation implies a greater damage probability
in ria-type coast than plain-type coast for the same value of inundation
depth.

The proposed separation of coastal topography improves accuracy of
vulnerability models making the velocity more crucial in vulnerability
modeling. For example, Fig. 18 represents the ratio between residuals
forM4 andM3 calibratedusing ria-type observations, versus inundation
depth and velocity only. Incorporating flow velocity improves the
model performance for almost all the values of inundation depth and
flow velocity (in comparison with Figs. 14(c) and 15(c)).

5. Summary and conclusions

The importance to consider flow velocity in multivariate empirical
fragility models was investigated through rigorous statistical analysis
based on the tsunami damage data available from the MLIT database
for the 11th March 2011 Tohoku earthquake. The analyses focused on
Miyagi prefecture, since a refined DEM (10-m resolution) was available
for this region. Given the lack of actual observations offlowvelocity, tsu-
nami simulation using calibrated source models was carried out to ob-
tain velocity data at locations of the surveyed buildings. The effects of
different inundationmodels on vulnerability modelingwere investigat-
ed by considering three source models and two DEM datasets having
different spatial resolutions. Results showed that the inundation
model based on the tsunami source inversion (Satake et al. model)
and 10-m resolutionwasmore reliable and accurate, with respect to re-
corded inundation depths data in theMLIT database, than other inunda-
tion models. Subsequently, this model was adopted as the reference.

Various fragility functions were developed through multinomial lo-
gistic regression using un-binned data by considering five nested
models: M1 considering only flow depth and structural typology; M2
considering flow velocity; M3 as extension of M1 considering also the
interaction terms between flow depth and structural typology; M4 as
extension of M2 considering the interaction terms between flow
depth and structural typology; and finally M5 as extension of M4 con-
sidering the interaction terms between flow velocity and structural ty-
pology. The diagnostic analysis indicated that M4 performed best
among the tested models; therefore, inclusion of flow velocity as addi-
tional tsunami hazard parameter improves the predictability of vulner-
ability models. The conclusion was applicable to other cases where
different inundation models were used to derive the flow velocity
data. Moreover, looking at disaggregated results, flow velocity was par-
ticularly useful for predicting the occurrence of structural damage states
rather than non-structural damage states. It was also found that using
coarse DEM or less refined source models leads to significant variations
in developed fragility functions (because of the overestimation of the
velocity data with respect to the more accurate reference case). The
conclusion can be important in assessing tsunami risks (e.g. risk under-
estimation for low values of velocity and overestimation for high values
of velocity).

The reference vulnerability model (i.e. M4) based on the reference
scenario was further scrutinized to take into account the influence of
the coastal topographic configuration via detailed residual analysis. Re-
sults showed that it was necessary to build fragility curves that reflect
the regional characteristics of coastal topography. Therefore, two more
refined vulnerability models were built for plain-type and ria-type
coasts, respectively, in addition to the referencemodel that does not dis-
tinguish coastal topography.

Finally, it is worth noting that all regression parameters for all vul-
nerability models investigated in this work were provided in the tables
of this paper or in the Supplementary electronic material. This will facil-
itate the implementation of the developed models in future tsunami
vulnerability and risk analyses.
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