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Focusing on the remnant black holes after merging binary black holes, we show that ring-
down gravitational waves of Population III binary black hole mergers can be detected
at the rate of 5.9–500 events yr−1 (SFRp/(10−2.5 M� yr−1 Mpc−3)) · ([fb/(1 + fb)]/0.33) for
various parameters and functions. This rate is estimated for events with SNR > 8 for
second-generation gravitational wave detectors such as KAGRA. Here, SFRp and fb are the
peak value of the Population III star formation rate and the fraction of binaries, respec-
tively. When we consider only events with SNR > 35, the event rate becomes 0.046–
4.21 events yr−1 (SFRp/(10−2.5 M� yr−1 Mpc−3)) · ([fb/(1 + fb)]/0.33). This suggest that for a
remnant black hole spin of qf > 0.95 we have an event rate of quasinormal modes with SNR
> 35 of less than 0.037 events yr−1 (SFRp/(10−2.5 M� yr−1 Mpc−3)) ·([fb/(1 + fb)]/0.33), while
it is 3–30 events yr−1 (SFRp/(10−2.5 M� yr−1 Mpc−3)) · ([fb/(1 + fb)]/0.33) for third-generation
detectors such as the Einstein Telescope. If we detect many Population III binary black hole
mergers, it may be possible to constrain the Population III binary evolution paths not only by
the mass distribution but also by the spin distribution.
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1. Introduction

The final part of gravitational waves (GWs) from merging binary black holes (BBHs) is called the
ringdown phase. When the remnant compact object is a black hole (BH), this phase is described by
quasinormal modes (QNMs) of the BH (see, e.g., Ref. [1]). In general, the BH is expected as the
Kerr spacetime [2],

ds2 = −
(

1 − 2Mr

�

)
dt2 − 4Mar sin2θ

�
dtdφ + �

�
dr2

+ �dθ2 +
(

r2 + a2 + 2Ma2r

�
sin2 θ

)
sin2 θdφ2, (1)

where � = r2 − 2Mr + a2 and � = r2 + a2 cos2 θ , with mass M and spin a. In Eq. (1), we used
the units of c = G = 1. The detection of QNM GWs not only gives a precise estimation of the BH’s
mass and spin, but also tests Einstein’s general relativity (see the extensive review in [3]).

In our previous paper [4], using the recent population synthesis results of Population III (Pop III)
massive BBHs [5,6], we discussed the event rate of QNM GWs by second-generation gravitational
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wave detectors such as Advanced LIGO [7], Advanced Virgo [8], and KAGRA [9,10]. Since there
are various parameters and functions in the population synthesis calculation, we extensively examine
BBH binary formations in this paper. Then, we calculate the remnant BH’s mass Mf and the non-
dimensional spin qf = af /Mf via fitting formulas [11], and the event rate for each model.

This paper is organized as follows. In Sect. 2, we summarize our Pop III binary population synthesis
calculation, and prepare ten models. In Sect. 3, we show the mass ratio distributions of BBH remnants
for each model. The dependences on initial distribution functions, binary parameters, etc. are also
discussed. In Sect. 4, we obtain the spin distributions of BBH remnants for various parameters.
Using the results presented in the above sections, we calculate the mass and spin distributions of the
remnant BHs after merger in Sect. 5, and show the event rates of QNMs for each model in KAGRA.
Section 6 is devoted to discussions.

2. Population III binary population synthesis calculation

To estimate the detection rate of GWs from Pop III BBH mergers, it is necessary to know how
many Pop III binaries become BBHs which merge within the Hubble time. Here, we use the binary
population synthesis method of Monte Carlo simulation of binary evolutions. The Pop III binary
population synthesis code [4–6] has been upgraded from the binary population synthesis code [12]1

for Pop III binaries. In this paper, we calculate the same models as Ref. [6] using the same methods
as Ref. [6] in order to obtain the mass ratio distribution and the spin distribution. In this section,
we review the calculation method and models. Note that in this paper, we do not consider the kick
models and the worst model discussed in Ref. [6] for simplicity, because in these models, BBHs
have misaligned spins and the final spins after merger are too complex.

First, we need to give the initial conditions when a binary is born. The initial conditions such as
primary mass M1, mass ratio M2/M1 (where M2 is the secondary mass), separation a, and orbital
eccentricity e are decided by the Monte Carlo method with initial distribution functions such as the
initial mass function (IMF), the initial mass ratio function (IMRF), the initial separation function
(ISF), and the initial eccentricity function (IEF). For example, in our standard model, we use a flat
IMF, a flat IMRF, a logflat ISF, and an IEF with a function ∝ e. There are no observations of Pop III
binaries because they were born at the early universe. Thus, we do not know the initial distribution
functions of Pop III binaries from observations. For the IMF, however, the recent simulations [13,14]
may suggest a flat IMF, and therefore we adapt the flat IMF. For the other initial distribution functions,
we adapt those of the Pop I case, where a Pop I star is a solar-like star. The above set of initial
distribution functions is called our standard model of 140 cases with the optimistic core-merger
criterion in this paper.

Second, we calculate the evolution of each star, and if the star satisfies a condition of binary
interactions, we evaluate the effects of binary interactions and change M1, M2, a, and e. As the
binary interactions, we treat the Roche lobe overflow (RLOF), the common envelope (CE) phase,
the tidal effect, the supernova effect, and the gravitational radiation. The RLOF is stable mass transfer,
while unstable mass transfer becomes the CE phase when the donor star is a giant. Here, we need
some parameters for the calculation of the RLOF and CE phases.

In the case of the RLOF, we use the loss fraction β of transfered stellar matter defined as

Ṁ2 = −(1 − β)Ṁ1, (2)

1 http://astronomy.swin.edu.au/∼jhurley/.
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where Ṁ2 is the mass accretion rate of the receiver star and Ṁ1 is the mass loss rate of the donor
star. In our standard model, β is determined by Hurley’s function [12], which has been discussed for
the Pop I case. When the receiver star is in the main sequence phase or in the He-burning phase, we
assume that the accretion rate is described by

Ṁ2 = −min
(

10
τṀ

τKH,2
, 1
)

Ṁ1, (3)

where τṀ is the accretion time scale defined by

τṀ ≡ M2

Ṁ1
, (4)

and the Kelvin–Helmholtz timescale τKH,2 is defined by

τKH,2 = GM2(M2 − Mc,2)

L2R2
. (5)

Here, M2, Mc,2, L2, and R2 are the mass, the core mass, the luminosity, and the radius of the receiver
star, respectively. When the receiver star is in the He-shell burning phase, we assume that the receiver
star can get all the transfered matter from the donor star, i.e.,

Ṁ2 = −Ṁ1. (6)

Although we use the β function defined by Hurley et al. [12] in our standard model, we also treat
the accretion rate of the receiver star described by the constant β parameter. This is because the
accretion rate of a receiver star which is not a compact object is not understood well. Furthermore,
in our previous study [6], we have shown that the Hurley fitting formula is consistent with β = 0 in
the Pop III binary case. Thus, we also discuss the cases of β = 0.5 and β = 1. It is noted that the
stability of the mass transfer changes if the mass transfer is non-conservative (β > 0). We use the
criterion given in Ref. [15] as

ζL = dlogRL,1

dlogM1

=
[(

0.33 + 0.13
M1

M2

)(
1 + M1

M2
− β

M1

M2

)
+ (1 − β)

((
M1

M2

)2

− 1

)
− β

M1

M2

]/(
1 + M1

M2

)
,

(7)

where M1 and RL,1 are the mass and the Roche lobe radius of the donor star. If ζad =
d log Rad,1/d log M1 < ζL, where Rad,1 is the radius of the donor star, in the hydrostatic equilib-
rium of the donor star, the binary starts a dynamically unstable mass transfer such as the CE phase.
When the receiver star is a compact object such as a neutron star or a BH, we always use β = 0 and
the upper limit of the accretion rate is limited by the Eddington accretion rate defined by

ṀEdd = 4πcR2

κT

= 2.08 × 10−3 (1 + X )−1
(

R2

R�

)
M� yr−1, (8)
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Table 1. The model parameters in this paper. Each column represents the model name, the initial mass function
(IMF), the initial eccentricity function (IEF), the common envelope (CE) parameter αλ, and the loss fraction
β of the transfer of stellar matter at the Roche lobe overflow (RLOF) in each model.

Model IMF IEF αλ β

our standard flat e 1 function
IMF: logflat M −1 e 1 function
IMF: Salpeter Salpeter e 1 function
IEF: const. flat const. 1 function
IEF: e−0.5 flat e−0.5 1 function
αλ = 0.01 flat e 0.01 function
αλ = 0.1 flat e 0.1 function
αλ = 10 flat e 10 function
β = 0.5 flat e 1 0.5
β = 1 flat e 1 1

where κT = 0.2 (1 + X ) cm2 g−1 is the Thomson scattering opacity and X (= 0.76) is the H-mass
fraction for Pop III stars.

At the CE phase, the companion star plunges into the envelope of the donor star and spirals in. The
orbital separation after the CE phase af is calculated by the energy formalism [16] described by

α

(
GMc,1M2

2af
− GM1M2

2ai

)
= GM1Menv,1

λR1
, (9)

where ai, α, and λ are the orbital separation before the CE phase, the efficiency, and the binding
energy parameter, respectively. In our standard model, we adopt αλ = 1. We also calculate the
αλ = 0.01, 0.1. and 10 cases in this paper.

Finally, if a binary becomes a BBH, we calculate the merger time from the gravitational radiation
reaction, and check whether the BBH can merge within the Hubble time or not. We repeat these
calculations and take the statistics of BBH mergers.

To study the dependence of Pop III BBH properties on the initial distribution functions and binary
parameters, we calculate ten models with the Pop III binary population synthesis method [5,6] in this
paper. Table 1 shows the initial distribution functions and the binary parameters of each model. The
columns show the model name, IMF, IEF, the CE parameter αλ, and the loss fraction β of transfered
stellar matter at the RLOF in each model.

3. The mass ratio distributions of binary black hole remnants

Figures 1–5 show the initial mass ratio distributions and the mass ratio distributions of merging
BBHs. The RLOF tends to make binaries of equal mass. Thus, the BBH mass ratio distributions
depend on how many binaries evolve via the RLOF. Population III stars with mass < 50 M� evolve
as blue giants [5,17]. Thus, in the case of the IMF that light stars are in the majority, the binaries
tend to evolve only via the RLOF, not via the CE phase. Therefore, the steeper IMFs tend to derive
many equal-mass BBHs. In this calculation, since we adopt the minimum mass ratio as 10M�/M1,
the initial mass ratio distribution of models with the IMF that light stars are the majority is up to
M2/M1 = 1 ab initio (see Figs. 1 and 2).

On the other hand, if we change the IEF, the mass ratio distribution does not change much. Thus,
the dependence on the IEF is not so large (see Figs. 1 and 3).
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Fig. 1. The distribution of mass ratio M2/M1 ≤ 1 for our standard model. The distributions of the initial mass
ratio and the one when the binaries become BBHs which merge within the Hubble time are shown as red
and light blue lines, respectively. The initial mass ratio distribution is normalized by the total binary number
Ntotal = 106, while the one when the binaries become merging BBHs is normalized by the total merging binary
number Ntotal BHBH = 128897.

Fig. 2. The distributions of mass ratio M2/M1 ≤ 1 for the IMF: logflat model (left) and IMF: Salpeter model
(right). The format is the same as Fig. 1.

Fig. 3. The distributions of mass ratio M2/M1 ≤ 1 for the IEF: e = const. (left) and IEF: e−0.5 models (right).
The format is the same as Fig. 1.
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Fig. 4. The distributions of mass ratio M2/M1 ≤ 1 for the αλ = 0.01 (top left), αλ = 0.1 (top right), and
αλ = 10 (bottom) models. The format is the same as Fig. 1.

Fig. 5. The distributions of mass ratio M2/M1 ≤ 1 for the β = 0.5 (left) and β = 1 models (right). The format
is the same as Fig. 1.

For the CE parameter dependence (see Figs. 1 and 4), small mass ratio binaries in the model of
αλ = 0.001 are much fewer than those in the other models. In the αλ = 0.001 model, all the binaries
which evolve via the CE phase merge during the CE phase due to too-small αλ. Thus, the merging
BBHs in this model evolve only via the RLOF, and become of equal mass by the RLOF. The change
is not large between the models with CE parameters αλ = 0.1 and 10.

As for the mass loss fraction β (see Figs. 1 and 5), when β becomes large, there are three effects.
First, binaries tend not to enter the CE phase. Second, the mass accretion by RLOF becomes not
to be effective. Third, RLOF tends to finish early. The first effect makes binaries evolve via RLOF.
However, the second and third effects have a negative impact on the tendency to become equal mass.
Thus, the mass ratio distributions of the β = 0.5 and 1 models look similar to our standard model.
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4. The spin distributions of binary black hole remnants

We calculate the spin evolution of binaries using the tidal friction. We use the initial spin distribution
and the tidal friction calculations as in Refs. [5,12]. When the Pop III star becomes a BH, we calculate
the BH’s spin using the total angular momentum of the progenitor. If the estimated spin of the BH
is more than the Thorne limit qThorne = 0.998 [18], we assign the non-dimensional spin parameter
q = qThorne.

We ignore the spin up by the accretion during a mass transfer after the star became a BH for the
following reason. The spin up by the accretion is calculated as

δq = δJ

GM 2
BH/c

=√
12

δM

MBH
, (10)

where δJ , MBH, δM are the gain in angular momentum, the BH’s mass, and the gain of the BH’s
mass, respectively. Since the accretion rate of the BH during RLOF is the Eddington rate, the gain
of the BH’s mass is

δM ∼ ṀEdd tlife, (11)

where tlife is the lifetime of the Pop III star. The Eddington accretion rate is given by

ṀEdd ∼ 10−7
(

MBH

30 M�

)
M� yr−1, (12)

and the lifetime of the massive star is tlife ∼ 1 Myr. As a result, we have δq ∼ 0.01, and the spin
up by the accretion during RLOF is negligible. On the other hand, the accretion rate during the CE
phase is Ṁ ∼ 10−3 M� yr−1 [19], and the timescale of the CE phase is about the thermal timescale
of a red giant tKH ∼ 102 yr or less. As a result, we have δq ≤ 0.1, and the spin up by the accretion
during the CE phase is negligible, too.

Figures 6–15 show the spin distributions of merging BBHs and cross-section views of these spin
distributions. The spins of merging Pop III BBH can be roughly classified into three types: group 1,
in which both BHs have high spins q ∼ 0.998; group 2, in which both BHs have low spins; and
group 3, in which one of the pair has high spin q ∼ 0.998 and the other has low spin.

When the BH progenitor evolves via the CE phase, the Pop III BH has low spin, and vice versa.
If a Pop III star which is a giant evolves via the CE phase, the Pop III star loses the envelope and
almost all the angular momentum due to the envelope evaporation. On the other hand, if the Pop III
star evolves without the CE phase, the Pop III star can have a high angular momentum. Therefore,
group 1 progenitors evolve without the CE phase and the envelopes of the progenitors remain. In
group 2, both stars evolve via the CE phase and they lose their envelopes and almost all their angular
momentum. In group 3, the primary evolves via the CE phase and the secondary evolves without the
CE phase, or vice versa.

The IMF dependence of merging Pop III BBH spins is described as follows (see Figs. 6, 7, and 8).
Population III stars with masses < 50 M� evolve as a blue giant. Thus, in the case of an IMF that
light stars are in the majority, such as the Salpeter IMF, the binaries tend to evolve only via RLOF,
not via the CE phase. Therefore, for a steeper IMF, we have larger numbers of merging Pop III BBHs
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(a) (b)

Fig. 6. (Top) The distribution of spin parameters for our standard model when each star becomes a BH.
q1 and q2 are the spin parameters of the primary and the secondary BHs, respectively. The distribution when
the binaries become merging BBHs is normalized by the total merging BBH number Ntotal BHBH = 128897,
with the grid separation being �q1 = �q2 = 0.05. (Bottom) Cross-section views of the distribution of spin
parameters for our standard model. (a) The distribution of q2 for 0 < q1 < 0.05. We can see that the q2

distribution has bimodal peaks at 0 < q2 < 0.15 and 0.95 < q2 < 0.998. (b) The distribution of q2 for
0.95 < q1 < 0.998. We see that the large value of q2 is the majority, so that there is a group in which both q1

and q2 are large.

which have high spins. In particular, in the case of the Salpeter IMF about 40% of the BBHs have
spins q1 > 0.95 and q2 > 0.95.

As for the IEF dependence, there is no tendency like the mass ratio distribution (see Figs. 6, 9,
and 10).

The dependence on the CE parameter can be considered as follows (see Figs. 6, 11, 12, and 13).
In the αλ = 0.01 model, almost all merging Pop III BBHs have high spins. About 60% of merging
Pop III BBHs have q1 > 0.95 and q2 > 0.95 (i.e., group 1). The reason for this is that the progenitors
which evolve via the CE phase always merge during the CE phase due to too-small αλ. Thus, the
progenitors of merging Pop III BBHs in this model evolve only via RLOF and they do not lose
angular momentum via the CE phase. In the case of the αλ = 0.1 model, the fraction of group 2 is
lower than that of our standard model, like the αλ = 0.01 model. However, the fraction of group 1
is almost the same as that of our standard model, and the fraction of group 3 is larger than that of
our standard model, unlike the αλ = 0.01 model. The reason for this is that although progenitors
which enter CE phases twice merge during the CE phase due to small αλ, progenitors which enter
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(a) (b)

Fig. 7. (Top) The distribution of spin parameters for the IMF: logflat model, with Ntotal BHBH = 87596. (Bottom)
Cross-section views of the distribution of spin parameters for the IMF: logflat model. The format is the same
as Fig. 6.

(a) (b)

Fig. 8. (Top) The distribution of spin parameters for the IMF: Salpeter model, with Ntotal BHBH = 28376.
(Bottom) Cross-section views of the distribution of spin parameters for the IMF: Salpeter model. The format
is the same as Fig. 6.
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(a) (b)

Fig. 9. (Top) The distribution of spin parameters for the IEF: e = const. model, with Ntotal BHBH = 124711.
(Bottom) Cross-section views of the distribution of spin parameters for the IEF: e = const. model. The format
is the same as Fig. 6.

(a) (b)

Fig. 10. (Top) The distribution of spin parameters for the IEF: e−0.5 model, with Ntotal BHBH = 121495. (Bottom)
Cross-section views of the distribution of spin parameters for the IEF: e−0.5 model. The format is the same as
Fig. 6.
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(a) (b)

Fig. 11. (Top) The distribution of spin parameters for the αλ = 0.01 model, with Ntotal BHBH = 27790. (Bottom)
Cross-section views of the distribution of spin parameters for the αλ = 0.01 model. The format is the same as
Fig. 6.

(a) (b)

Fig. 12. (Top) The distribution of spin parameters for the αλ = 0.1 model, with Ntotal BHBH = 124834. (Bottom)
Cross-section views of the distribution of spin parameters for the αλ = 0.1 model. The format is the same as
Fig. 6.
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(a) (b)

Fig. 13. (Top) The distribution of spin parameters for the αλ = 10 model, with Ntotal BHBH = 93731. (Bottom)
Cross-section views of the distribution of spin parameters for the αλ = 10 model. The format is the same as
Fig. 6.

(a) (b)

Fig. 14. (Top) The distribution of spin parameters for the β = 0.5 model, with Ntotal BHBH = 126093. (Bottom)
Cross-section views of the distribution of spin parameters for the β = 0.5 model. The format is the same as
Fig. 6.
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(a) (b)

Fig. 15. (Top) The distribution of spin parameters for the β = 1 model, with Ntotal BHBH = 57028. (Bottom)
Cross-section views of the distribution of spin parameters for the β = 1 model. The format is the same as
Fig, 6.

the CE phase only once do not merge during the CE phase, and the Pop III BBHs which cannot
merge within the Hubble time in our standard model come to be able to merge within the Hubble
time due to small αλ. In the αλ = 10 model, the shape of the spin distribution is almost the same
as that of our standard model. The difference in this model from our standard model is the small
increase of the fraction of group 2, because the progenitors which merge during the CE phase in our
standard model come to be able to survive due to large αλ.

As for the β dependence (see Figs. 6, 14, and 15), not only the stellar mass loss during RLOF
but also the criterion of dynamically unstable mass transfer such as a CE phase are changed by β.
In the β = 0.5 model, the fraction of group 1 is larger than that of our standard model because in
this model the progenitors less frequently enter the CE phase than those of our standard model. In
the β = 1 model, the fraction of group 1 is larger than that of our standard model, like a β = 0.5
model. However, the fraction of group 1 is smaller than that of the β = 0.5 model because in this
model the progenitors lose a lot of angular momentum during the RLOF due to the high β. In this
model, since the mass transfer cannot become dynamically unstable, the evolution passes via CE
phases as follows. The progenitors of group 2 enter the CE phase when the primary and secondary
become giants at the same time, and plunge into each other. On the other hand, the progenitors of
group 3 enter the CE phase when the secondary plunges into the primary envelope due to the initial
eccentricity.
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Fig. 16. The remnant mass Mf (left) and spin qf (right) for our standard model.

Fig. 17. The remnant mass Mf (left) and spin qf (right) for the IMF: logflat model.

5. Remnant and event rate for ringdown gravitational waves
5.1. Remnant mass and spin

Based on Ref. [11] (see also Refs. [20,21]), we calculate the remnant mass Mf and spin qf from
given BH binary parameters, M1, M2, q1, and q2 (see Ref. [4] for a detailed discussion). The remnant
mass and spin for each case is shown in Figs. 16–25. Here, we have normalized the distribution, and
used binning with �Mf = 10 M� for Mf and �qf = 0.1 (thick, red) and 0.02 (thin, blue) for qf .

The IMF dependence shown in Figs. 16, 17, and 18 is described below for the remnant mass and
spin. When we treat the steeper IMF, we have a lower number of high-mass remnants. On the other
hand, the number of high-spin remnants increases slightly in the steeper IMF cases. This is because
in the steeper IMF models we have a large number of progenitors with mass smaller than 50 M�.

As for the IEF dependence, we find that in Figs. 16, 19, and 20 there is no strong tendency.
Next, from Figs. 16, 21, 22, and 23 the CE parameter dependence can be described. In the αλ = 0.01

model, the maximum of the remnant mass becomes much smaller than that of our standard model.
This is because the high-mass progenitors merge during a CE phase due to too-small αλ. As for the
remnant spin, we do not have remnant spins which are smaller than 0.55 since BBHs tend to be of
equal mass. If a light BH falls into a non-spinning massive BH, the remnant BH can have a small spin
(qf < 0.6). However, in the above model many BBHs are equal mass. In the αλ = 0.1 model, the
maximum remnant mass is smaller than that of our standard model again. In this model, the fraction
of remnant spins with 0.7 < qf < 0.8 is larger than that for our standard model because the fraction
of group 3 in this model is larger than in our standard model.
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Fig. 18. The remnant mass Mf (left) and spin qf (right) for the IMF: Salpeter model.

Fig. 19. The remnant mass Mf (left) and spin qf (right) for the IEF: e =const model.

Fig. 20. The remnant mass Mf (left) and spin qf (right) for the IEF: e−0.5 model.

As for the β dependence, we find from Figs. 16, 24, and 25 that the maximum remnant mass
becomes lower for higher β, due to the mass loss during RLOF.

5.2. Event rates for ringdown gravitational waves

To estimate the event rate for ringdown gravitational waves, it is necessary to have the merger rate
density of Pop III BBHs. The merger rate density Rm [Myr−1 Mpc−3] has been derived for various
models in Ref. [6], and can be approximated by a fitting formula for low redshift. This is summarized
in Table 2. In practice, we have considered the fitting for Rm in terms of redshift z up to z = 2, but
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Fig. 21. The remnant mass Mf (left) and spin qf (right) for the αλ = 0.01 model.

Fig. 22. The remnant mass Mf (left) and spin qf (right) for the αλ = 0.1 model.

Fig. 23. The remnant mass Mf (left) and spin qf (right) for the αλ = 10 model.

the above Rm is derived by using z ∝ D where D denotes the (luminosity) distance, because we use
it only up to z ∼ 0.2 in this paper.

Using Ref. [22], we calculate the angle-averaged signal-to-noise ratio (SNR) as

SNR =
√

8

5

4η

F(qf )

√
εrMf

Sn(fc)

Mf

D
, (13)

where we assume εr = 3% of the total mass energy radiated in the ringdown phase. Note that
for simplicity, any effect of the cosmological distance is ignored here. The symmetric mass ratio
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Fig. 24. The remnant mass Mf (left) and spin qf (right) for the β = 0.5 model.

Fig. 25. The remnant mass Mf (left) and spin qf (right) for the β = 1 model.

Table 2. Fitting formulas of the merger rate density Rm [Myr−1 Mpc−3] for low redshift in the center column.
Here, D denotes the (luminosity) distance. In the right column, the event rates [yr−1] divided by dependence
on the star formation rate SFRp and the fraction of the binary fb are shown for each model. We consider events
with SNR > 8 for the KAGRA detector here.

Model Rm [Myr−1 Mpc−3] SNR > 8

Standard 0.024 + 0.0080 (D/1 Gpc) 446
IMF: logflat 0.023 + 0.0064 (D/1 Gpc) 255
IMF: Salpeter 0.014 + 0.0034 (D/1 Gpc) 61.5
IEF: e =const 0.023 + 0.0075 (D/1 Gpc) 452
IEF: e−0.5 0.022 + 0.0071 (D/1 Gpc) 451
αλ = 0.01 0.0024 + 0.0018 (D/1 Gpc) 5.87
αλ = 0.1 0.019 + 0.0089 (D/1 Gpc) 146
αλ = 10 0.017 + 0.0066 (D/1 Gpc) 372
β = 0.5 0.030 + 0.0099 (D/1 Gpc) 499
β = 1 0.017 + 0.0029 (D/1 Gpc) 158

η = M1M2/(M1 + M2)
2 is evaluated from the inspiral phase, and

F(qf ) = 1.5251 − 1.1568(1 − qf )
0.1292, fc = 1

2πMf
F(qf ) (14)
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Fig. 26. In the (fR, fI ) plane, we show the parameter estimation in a case with SNR = 35 for the typical case
[5,6] (with Mrem = 57.0904 M� and αrem = 0.686710). The (black) thick line shows the Schwarzschild limit
and the ellipses are the contours of 1 σ , 2 σ , 3 σ , 4 σ , and 5 σ . In general relativity, the top-left side of the
thick black line is prohibited.

are obtained from the remnant BH’s mass and spin (see Ref. [23]). We evaluate the above SNR of the
QNM GWs in the expected KAGRA noise curve Sn(f ) [9,10] [bKAGRA, VRSE(D) configuration]
(see Ref. [4] for the detailed calculation). This noise curve is presented in Ref. [26], and we use the
fitting noise curve obtained in Ref. [24], based on Ref. [26]. Then, the event rate for a given SNR is
derived by using the merger rate density in Table 2. In the right column of Table 2, we present the
event rate with SNR > 8. Here, the event rates [yr−1] have been divided by dependence on the star
formation rate SFRp and the fraction of the binary fb.

In Fig. 26, based on Ref. [24], we show the parameter estimation in a case with SNR = 35 for the
typical case [5,6] (with Mrem = 57.0904 M� and αrem = 0.686710). The (black) thick line shows
the Schwarzschild limit and the ellipses are the contours of 1 σ , 2 σ , 3 σ , 4 σ , and 5 σ . In general
relativity, the top-left side of the thick black line is prohibited. Thus, using the event with SNR > 35,
we summarize various event rates in Tables 3 and 4. Table 3 shows the total event rates [yr−1] divided
by dependence on the star formation rate SFRp and the fraction of the binary fb for ten models, and
those for a remnant BH with qf > 0.7, 0.9, and 0.95.

In Table 4, we present the detection rate [yr−1] divided by dependence on the star formation rate
SFRp and the fraction of the binary fb as a function of the lower limit of the solid angle of a sphere
4πC by which we can estimate the contribution of the ergoregion. The relation between this C and
the spin parameter q was obtained in Ref. [27] (see also the recent studies in [25,27–29]). It is noted
that qf > 0.9 corresponds to C � 0.97.

6. Discussions

In this paper, we extended our previous work [4] (the standard model in this paper) by looking at the
dependence on various parameters of the Pop III binary population synthesis calculation. As shown
in the right column of Table 2, the detection rate with SNR > 8 for the second-generation GW
detectors such as KAGRA was obtained as 5.9–500 events yr−1 (SFRp/(10−2.5 M� yr−1 Mpc−3)) ·
([fb/(1 + fb)]/0.33) between ten models. Recently, Kushnir et al. [30] have discussed whether the
BH’s spin constrains the binary evolution path in the case of Pop I and Pop II binaries. If we detect a
lot of Pop III BBH mergers, we might be able to constrain the Pop III binary evolution paths not only
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Table 3. The total event rate [yr−1] divided by dependence on the star formation rate SFRp and the fraction
of the binary fb for each model and those for the final qf > 0.7, 0.9, and 0.95 BHs in the case of SNR > 35
for the KAGRA detector.

Model all 0.7 < qf 0.9 < qf 0.95 < qf

Standard 3.73 2.45 0.115 0.0260
IMF: logflat 2.17 1.41 0.0659 0.0152
IMF: Salpeter 0.530 0.337 0.0153 0.00300
IEF: e = const. 3.80 2.38 0.0943 0.0248
IEF: e−0.5 3.82 2.38 0.0800 0.0228
αλ = 0.01 0.0463 0.0411 0.00832 0.00268
αλ = 0.1 1.23 0.864 0.0377 0.0114
αλ = 10 2.96 2.16 0.243 0.0372
β = 0.5 4.21 3.29 0.0981 0.0157
β = 1 1.58 0.705 0.0185 0.0128

Table 4. The event rates [yr−1] divided by dependence on the star formation rate SFRp and the fraction of
the binary fb as a function of the lower limit of the solid angle of a sphere 4πC, where the QNM is mainly
emitted from the ergoregion, in the case of SNR > 35 for the KAGRA detector.

Model 0.5 < C 0.7 < C 0.9 < C 0.95 < C 0.97 < C 0.99 < C

Standard 2.23 1.10 0.356 0.162 0.117 0.0780
IMF: logflat 1.29 0.621 0.207 0.102 0.0683 0.0454
IMF: Salpeter 0.309 0.145 0.0489 0.0234 0.0156 0.00960
IEF: e = const. 2.18 0.998 0.288 0.132 0.0955 0.0621
IEF: e−0.5 2.15 0.936 0.237 0.115 0.0825 0.0518
αλ = 0.01 0.0399 0.0318 0.0131 0.00966 0.00839 0.00503
αλ = 0.1 0.820 0.391 0.135 0.0609 0.0390 0.0222
αλ = 10 2.01 1.09 0.470 0.307 0.246 0.187
β = 0.5 3.09 0.979 0.294 0.127 0.0990 0.0292
β = 1 0.666 0.405 0.0278 0.0218 0.0187 0.0141

by the mass distribution but also by the spin distribution. In particular, as described in Sect. 4, the
spin of a black hole depends strongly on whether the progenitor of black hole enters the CE phase
or not. Thus, we can check whether a BBH progenitor evolved via the CE phase or not by the spins
of the BBH.

One of the interesting outputs from the QNM GWs is whether we can confirm the ergoregion
of the Kerr BH. From Table 4, the event rate for the confirmation of > 50% of the ergoregion is
0.040–3.1 events yr−1 (SFRp/(10−2.5 M� yr−1 Mpc−3)) · ([fb/(1 + fb)]/0.33) with SNR > 35.

When we consider extracting the rotational energy of BHs using the Penrose process [31] or
the Blanford–Znajek process [32], for example, we want to observe highly spinning remnant
BHs. For remnant BHs with spin qf > 0.95, the event rate with SNR > 35 is 0.0027–
0.037 events yr−1 (SFRp/(10−2.5 M� yr−1 Mpc−3)) · ([fb/(1 + fb)]/0.33) in the KAGRA detector
from Table 3. A third-generation GW observatory, the Einstein Telescope [33] will have an improve-
ment in sensitivity of about a factor of ten over second-generation detectors. This means that we
have roughly 1000 times higher expected event rates, and, for example, the ringdown event rate with
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qf > 0.95 will become

3–30 events yr−1
(

SFRp

10−2.5 M� yr−1 Mpc−3

)
·
(

fb/(1 + fb)

0.33

)( εr

0.03

)1/2
. (15)

Here, we have introduced εr as the fraction of the BH mass radiated in the ringdown phase, and
assumed εr = 3% to calculate the SNR and the event rates in this paper. If εr = 0.3%, we will still
have the possibility of detecting QNM GWs from highly spinning remnant BHs.

Finally, Pop III BBH mergers can be a target for space-based GW detectors such as eLISA [34]
and DECIGO [35]. Study in this direction is one of our future works.
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