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1. Introduction

Black hole spacetime is one of the most fascinating objects in gravitational theory. In particular, it is
quite interesting that black holes can contain singularities inside their event horizons. At singularities
the spacetime curvature often diverges, and the physics breaks down because gravitational theory is
described in terms of curvature.

Observers outside black holes cannot see such breakdown because no information can come out of
black holes, at least at the classical level. However, black hole singularities may cause serious effects
on an observer inside a black hole and/or the final fate of black hole evapolation due to Hawking
radiation. Here we define a singularity that is visible for an observer inside a black hole as a “locally
naked singularity.” If a singularity is not wrapped by the horizon, it may cause serious effects on the
physics. We define this as a “globally naked singularity.”

In order to certify the predictability of physics, it is very important to ask whether they can be naked
or not. It is usually supposed that no naked singularity will appear in a physical situation. In this
context, Penrose proposed the so-called cosmic censorship conjecture (CCC) [1]. More precisely,
there are two types of CCC, strong CCC and weak CCC. Strong CCC states that no locally naked
singularities form during gravitational collapse; weak CCC states that no globally naked singularities
form during collapse.

The cosmic censorship conjecture is assumed in proving several key theorems on black hole
spacetime, such as the event horizon topology theorem, uniqueness theorem, and so on (see [2]
for the details). The conjecture has been investigated by many authors in a variety of setups,
but it is still controversial. In [3], Oppenheimer and Snyder considered a spherical collapse of
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homogeneous pressureless fluid, which is called dust; they found that no naked singularities
form. But many subsequent works, for example [4–11], reported the violation of strong CCC in
several situations. In [12], Christodoulou examined the global nakedness of singularities in four-
dimensional spacetime. He considered the spherical collapse of inhomogeneous dust and proved
that a singularity can be globally naked in some situations, i.e. violation of weak CCC occurs
in general.

Motivated by fundamental theories such as string theory, those works have been extended to
higher-dimensional spacetime [13–16]. It was shown that strong CCC always holds for the spherical
collapse of a dust cloud with smooth initial data in spacetimes with dimensions higher than five, i.e.
any observer cannot see singularities formed. One simple explanation for this fact is that, in higher
dimensions, gravity near the singularity is stronger than the lower-dimensional case and the event
horizon appears earlier. On the other hand, in general, it was also shown that the strong CCC does
not hold in five-dimensional spacetimes.

As far as we know, there has been no work on a global analysis of collapsing spacetime in five
dimensions. It is natural to ask whether the weak CCC is actually violated in five dimensions. And,
if violated, it is important to clarify in what conditions naked singularities form. In this paper we
focus on analysis of five-dimensional inhomogeneous spherically symmetric dust collapse and give
a new method to examine the nakedness of a singularity. To do so we have to know whether a
causal geodesic emanating from the singularity exists or not. So, we give a method to investigate
the existence of a solution of the null geodesic equation. Furthermore, we examine the spacetime
structure in detail, and give a necessary and sufficient condition for naked singularity formation.
We also examine the condition that a singularity is not only locally naked but also globally naked.
Finally, we will see the dependence of the global nakedness of a singularity on the initial density
distribution.

The organization of this paper is as follows. In Sect. 2, we present the setting and the fundamental
nature of inhomogeneous spherically symmetric dust collapse in five-dimensional spacetime. Then,
we derive the differential equation for the null geodesic in terms of dimensionless quantities. In
Sect. 3, we examine the existence condition for a solution to the differential equation for the null
geodesic. By virtue of the Schauder fixed-point theorem [17], we show that a solution of the differ-
ential equation for the null geodesic exists near the singularity. This means that the singularity can
be at least locally naked. In Sect. 4, we analyze the spacetime structure around the singularity. We
identify the earliest null geodesic emanating from the central singularity, and give a necessary and
sufficient condition for the singularity to be naked. In Sect. 5, we consider the global nakedness of
the singularity. We will show that a class of initial density distributions leads to a globally naked
singularity.

2. Five-dimensional Lemaître–Tolman–Bondi spacetime and the equation of the
null line

We consider spherically symmetric dust collapse in five dimensions. This is known as the Lemaître–
Tolman–Bondi (LTB) solution in higher dimensions. In the comoving coordinate of the dust, the
metric of this spacetime is written as

ds2 = −dt2 + e2ω(t,r)dr2 + R(t, r)2d�2, (1)
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where R is the area radius of the r = const. three-sphere and we set r by R(0, r) = r. Then, in this
coordinate, the Einstein equations become

ρ(t, r) = 3

2

M ′(r)
R3R′ , (2)

Ṙ2 = M (r)

R2 + E(r), (3)

e2ω = R′2

1 + E(r)
, (4)

where ρ(t, r) is the energy density of dust, which is proportional to the Ricci scalar, M (r) is an
arbitrary C1 function of r, and E(r) is an arbitrary function of r. Dot “˙” and prime “′” mean partial
derivatives with respect to t and r, respectively. M (r) corresponds to the total mass in the region
surrounded by the r = const. surface. Actually, M (r) is proportional to the Misner–Sharp quasi-local
mass [18], and E(r) is the initial energy of the dust shell.

As mentioned in the introduction, the point where spacetime curvature diverges is a singularity.
From Eq. (2), we can find the two types of singularities, i.e. R = 0 and R′ = 0. A singularity at
R = 0 (R′ = 0) is called a shell focusing singularity (a shell crossing singularity). If we introduce
pressure to the fluid, the shell crossing singularity may disappear, so they are regarded as unphysical
singularities. Throughout this paper, we only consider the shell focusing singularity, that is, we
assume R′ > 0. In addition, we also assume that the initial velocity of the shells at t = 0 is zero,
that is,

Ṙ2(0, r) = M (r)

r2 + E(r) = 0. (5)

Now we can solve Eq. (3) as

t(R, r) = −
∫ R

r
dR

1√
M (r)
(

1
R2 − 1

r2

) = r2
√

M (r)

√
1 − R2

r2 . (6)

From this equation and (2), we see that the singularity appears at

tS(r) = r2
√

M (r)
. (7)

Using Eqs. (1), (3), and (4), we can compute the expansion of outgoing null geodesics on the
r = const. surface �(r) as

�(r) ∝ dR(t, rnull(t))

dt
= Ṙ + R′ drnull

dt

= Ṙ + R′e−ω

=
√

1 − M (r)

r2 −
√

M (r)

R2 − M (r)

r2 . (8)

In the second equality we used the equation −dt2 + e2ωdr2 = 0, which holds for null geodesics
along the outer radial direction. This equation implies that the apparent horizon (� = 0) is located
at R = √

M (r). Since we are interested in naked singularity formation during the dust collapse, we
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assume that there is no apparent horizon initially. Then, Eq. (8) with the setting of R(0, r) = r tells
us that

1 − M (r)

r2 > 0 (9)

is required for all r in this coordinate patch. From Eqs. (1), (4), and (5), this is equivalent to the
condition that r is a spacelike coordinate. In addition, from Eq. (6), we also see that the apparent
horizon appears at

tAH(r) = r2
√

M (r)

√
1 − M (r)

r2 . (10)

From Eqs. (7) and (10), if r �= 0, it is easy to see that

tAH(r) < tS(r) (11)

holds. This means that the apparent horizon appears before the singularity does, and the singularity
is surrounded by the apparent horizon. So only the singularity at r = 0 could be naked, and another
singularities are covered by the event horizon [2]. In order to examine the possibility of the occurrence
of a naked singularity, we assume that the singularity at r = 0 appears within non-zero finite time
tS(0), that is,

tS(0) = lim
r→0

tS(r) = lim
r→0

r2
√

M (r)
. (12)

Therefore, using a C0 function A(r) with A(0) �= 0, we can write M (r) as

M (r) = A(r)r4. (13)

In the above, A(r) corresponds to the mean density for the region surrounded by the r = const. shell.
From Eqs. (2) and (13), we have

A(r) = 2

3

∫ 1

0
dvv3ρ(0, vr). (14)

Moreover, we assume that the initial density ρ(0, r) is a C∞ function of compact support which
monotonically decreases with respect to r, and ρ′(0, r) is continuous at r = 0 on the initial time slice
[ρ′(0, r) ≤ 0, ρ′(0, 0) = 0]. Then, we see that A(r) satisfies1

A(r) = α − β

2
r2 + O(r3) (15)

near r = 0, and

A′(r) ≤ 0, (16)

1 In this paper, f (x) = O(xa) means that the absolute value of the function f (x) is bounded by a constant
times xa as x → 0, i.e. that there exists a positive x0 and c in R

+ such that |f (x)| ≤ cxa holds for all x ∈ [0, x0].
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where α, β ∈ R are parameters satisfying α > 0, β ≥ 0. Using A(r), tS(r) and tAH(r) are rewritten as

tS(r) =
√

1

A(r)
, (17)

tAH(r) =
√

1

A(r)
(1 − A(r)r2). (18)

If β = 0 in Eq. (15), we can immediately show that the central singularity must be covered by the
apparent horizon.

THEOREM 1 If β = 0, the strong cosmic censorship holds.

Proof. β = 0 implies

A(r) − α = O(r3). (19)

Then,

tAH(r) − tS(0) =
√

1

A(r)
(1 − A(r)r2) −

√
1

α

= 1√
αA(r)

(
√

α −
√

α3

2
r2 −√A(r) + O(r3)

)

= −
√

α

2
r2 + O(r3). (20)

Thus, there exists r0 ∈ R such that

tAH(r) − tS(0) < 0 (21)

holds for arbitrary r ∈ [0, r0]. Therefore, there exists an apparent horizon around the past of the
central singularity, so null geodesics cannot emanate from the singularity and the strong cosmic
censorship holds. �

This fact is already known in Refs. [13–15]. Accordingly, in order to figure out the condition
for naked singularity formation, we suppose β > 0 in the following discussion. Let us consider
the future-directed null geodesics along the outer radial direction. Because of the spherical sym-
metry, the differential equation for future-directed null geodesics along the outer radial direction is
given by

dt

dr
= eω

= R′√
1 − A(r)r2

= 1√
(1 − A(r)r2)(1 − A(r)t2)

(
1 − A(r)t2 − A′(r)

2
rt2
)

. (22)
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We used Eq. (1) in the first line, Eqs. (4), (5), and (13) in the second line, and the explicit expression
of R′ derived from Eq. (6) in the third.

Now, we introduce the dimensionless functions and parameters to write Eq. (22) in dimensionless
form. Let a(x) be a function in C∞[0, ∞) such that

a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0) = 1 (23)

da(0)

dx
= 0 (24)

d2a(0)

dx2 = −1 (25)

da(x)

dx
≤ 0 (26)

a(x) = m

x4 (x ≥ l). (27)

In the above, m and l are dimensionless parameters that are related to the total mass of the dust and
the dust cloud radius, respectively. These conditions imply that a(x) is written as

a(x) = 1 − x2

2
+ O(x3). (28)

Using a(x), we write A(r) as

A(r) = αa

(√
β

α
r

)
. (29)

We can easily show that this A(r) satisfies the conditions (15) and (16). In the above, α and β are
non-zero positive parameters satisfying

max
0≤x≤l

a(x)x2 ≡ η <
β

α2 . (30)

This condition comes from Eq. (9). In this way, A(r) is parameterized by the two parameters α, β.
From Eq. (14), the initial density ρ(0, r) is also parameterized as

ρ(0, r) = 3α

2r3

d

dr

(
r4a

(√
β

α
r

))
. (31)

In the following, the function a(x) is given so that it satisfies Eqs. (23)–(27), and the initial density
distribution is parameterized by α and β. Using α, β, and a(x), Eq. (22) is rewritten as

dt

dr
= 1√(

1 − αa(

√
β
α

r)r2
)(

1 − αa(

√
β
α

r)t2
)
(

1 − αa
(√β

α
r
)

t2 − αrt2

2

d

dr
a
(√β

α
r
))

. (32)

Moreover, using dimensionless coordinates

x ≡
√

β

α
r (33)
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and

ζ ≡ √
α(t − tS(0)) = √

α

(
t − 1√

α

)
, (34)

we obtain the dimensionless equation for the null line

dζ

dx
= 1√

γ
(

1 − a(x)x2

γ

) (
1 − a(x)(ζ + 1)2

)
(

1 − a(x)(ζ + 1)2 − x

2
(ζ + 1)2 d

dx
a(x)

)
, (35)

where

γ ≡ β

α2 . (36)

Equation (30) is also rewritten as

γ > η. (37)

Note here that the right-hand side of Eq. (35) is not a Lipschitz continuous function in the region
that contains x = ζ = 0. If this equation has a solution that starts from x = ζ = 0, then, at least,
the singularity is locally naked. Moreover, if the solution could extend to x → ∞, the singularity
would be visible at null infinity, that is, it would be globally naked. From now on we will ask if this
differential equation has a solution. For convenience, we define the dimensionless coordinate θ as

θx2 ≡ ζ . (38)

Then Eq. (35) becomes

dθ

dx
+2θ

x
= 1

x2

√
γ
(

1 − a(x)x2

γ

) (
1 − a(x)(θx2 + 1)2

)
(

1 − a(x)(θx2 + 1)2 − x

2
(θx2 + 1)2 d

dx
a(x)

)
.

(39)
In the current expression, from Eqs. (17), (18), and the relation θ =

√
αt−1
x2 , we see that the singularity

and the apparent horizon are located at

θS(x) = 1

x2

(
1√
a(x)

− 1
)

(40)

and

θAH(x; γ ) = 1

x2

⎛
⎝ 1√

a(x)

√
1 − a(x)x2

γ
− 1

⎞
⎠, (41)
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respectively, and

θS(0) = 1

4
, (42)

θAH(0; γ ) = 1

4
− 1

2γ
. (43)

Note that, from the coordinate transformations (34) and (38), we see that the region x = 0 is
singular for arbitrary θ . But any future-directed curve does not emanate from the central singularity
located in θ < 0 because any point in the region satisfying x �= 0 and θ < 0 is not in the future time
slice of the central singularity. Then, for our purposes, we focus on the central singularity located in
θ ≥ 0.

If the differential equation (39) has a C1 solution θ(x) for x ∈ [0, l], the multiplication of x with
the right-hand side of Eq. (35) for its solution behaves around x = 0 as

lim
x→0

1

x

√
γ
(

1 − a(x)x2

γ

) (
1 − a(x)(θx2 + 1)2

)
(

1 − a(x)(θx2 + 1)2 − x

2
(θx2 + 1)2 d

dx
a(x)

)

= 1 − 2θ(0)√
γ
(1

2 − 2θ(0)
). (44)

Thus, if

2θ(0) = 1 − 2θ(0)√
γ
(1

2 − 2θ(0)
) (45)

holds, then the first-order pole of Eq. (39) is cancelled out and does not appear.As with Christodoulou
[12], let us introduce a real number λ satisfying

2λ = 1 − 2λ√
γ
(1

2 − 2λ
) . (46)

Since γ is a positive real number [see below Eqs. (29) and (36)], we have

0 < λ <
1

4
. (47)

In addition, since

d
√

γ (λ)

dλ
= d

dλ

⎛
⎜⎝ 1 − 2λ

2λ

√(1
2 − 2λ

)
⎞
⎟⎠ = −4λ2 + 6λ − 1

4λ2
(1

2 − 2λ
) 3

2

, (48)

we see

min
0<λ< 1

4

√
γ (λ) = √γ (λM ) =

√
11 + 5

√
5 ≡ √

γmin, (49)

where

λM ≡ 3 − √
5

4
, (50)
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that is, γ has the minimum at λ = λM. If γ > γmin holds, we have the two solution to Eq. (46) for
given γ , λ−(γ ), and λ+(γ ), satisfying 0 < λ−(γ ) < λM < λ+(γ ) < 1

4 . If γ = γmin, Eq. (46) has
the single solution λ±(γ ) = λM. If γ < γmin, Eq. (46) has no solution. From Eq. (46), it is easy to
see that λ−(γ ) and λ+(γ ) satisfy limγ→∞ λ−(γ ) = 0 and limγ→∞ λ+(γ ) = 1

4 .
If λ satisfying Eq. (46) exists, we rewrite Eq. (39) as

dθ

dx
− 2

(λ − θ)

x
= 1 − a(x)(θx2 + 1)2 − x

2(θx2 + 1)2 d
dx a(x)

x2

√
γ
(

1 − a(x)x2

γ

) (
1 − a(x)(θx2 + 1)2

) − 2λ

x

≡ λf (x, θ ; λ). (51)

The formal solution to this equation is given by

θ(x) = λ

(
1 + x
∫ 1

0
dvv2f (vx, θ(vx); λ)

)

≡ Tλ(θ)(x), (52)

where Tλ is a nonlinear map on a functional space. Equations (51) and (52) imply that the fixed
point of Tλ can be a solution to Eq. (51). Thus, if Tλ has a fixed point on a proper subset of C0

on a proper domain, we can prove the existence of the solution satisfying (51), which emanates
from the central singularity, and this means that the singularity is naked. In the next section, using
the fixed-point theorem for a compact operator introduced soon, we examine the condition that the
central singularity is naked.

3. Existence of null geodesics emanating from the central singularity
3.1. Preparation

In the four-dimensional case [12], the existence of null geodesics is shown by using the fixed-point
theorem for contraction mapping [19]. In the five-dimensional case, however, we cannot use the
same method (see Appendix B). Thus, we have to innovate.

First, we introduce a fixed-point theorem that is suitable for the current issue [20].

THEOREM (Schauder fixed-point theorem [17]) Let D be a nonempty, closed, bounded, convex subset
of a Banach space X , and suppose T : D → D is a compact operator. Then T has a fixed point.

In the above, a compact operator is defined as follows.

DEFINITION (Compact operator) An operator T is compact if and only if:

(1) T is continuous.
(2) T maps a bounded set into a relatively compact set.

Here, “relatively compact” means that the closure is compact. Note that T does not have to be a
linear operator.

We also use the Arzelà–Ascoli theorem to show the relative compactness of the image of T .
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THEOREM (Arzelà–Ascoli theorem) Let G be a nonempty open set in R
n. A subset M in C0(Ḡ) is

relatively compact if and only if the following two conditions hold:

(i) Uniform boundedness:

sup
f ∈M

( sup
x∈Ḡ

|f (x)| ) < ∞. (53)

(ii) Equicontinuity: For arbitrary ε > 0, there exists δ > 0, which depends only on ε, such that

sup
f ∈M

|f (x) − f (y)| < ε (54)

for each x, y ∈ Ḡ satisfying |x − y| < δ.

We apply the Schauder fixed-point theorem to the nonlinear operator Tλ defined in Eq. (52) and
ask if the equation for the null line has a solution. First of all, we introduce a domain such that Tλ

maps its domain into itself. So let us define

Dλ,b,c,d ≡ {θ | θ ∈ C0[0, d], |θ − λ| ≤ bxc}, (55)

where b, c, d ∈ R satisfy b > 0, c > 0, l ≥ d > 0, and λ + bxc < θS(x) for all x in [0, l]. The
last inequality can always be satisfied for sufficiently small d because θS is a continuous function
and λ < 1

4 = θS(0) always holds. We can control the maximum norm of the elements of Dλ,b,c,d

by parameter b and the speed of their convergence as x → 0 by parameter c, respectively. Here we
introduce the uniform norm ‖θ‖ ≡ supx∈[0,d] θ(x) such that Dλ,b,c,d becomes a subset of a Banach
space C0[0, d]. Then we can show the following lemma.

LEMMA 1 For all λ < 9−√
33

16 , there exist c(λ) ∈ (0, 1), which depend only on λ, and d̄ ∈ (0, l], such
that Tλ : Dλ,b,c,d → Dλ,b,c,d for all c ∈ [c(λ), 1) and d ∈ (0, d̄].

Proof. For θ ∈ Dλ,b,c,d , we estimate the right-hand side of Eq. (51) as

|λf (x, θ(x); λ)| =

∣∣∣∣∣∣∣∣
1 − a(x)(θ(x)x2 + 1)2 − x

2(θ(x)x2 + 1)2 d
dx a(x)

x2

√
γ
(

1 − a(x)x2

γ

) (
1 − a(x)(θ(x)x2 + 1)2

) − 2λ

x

∣∣∣∣∣∣∣∣
≤ 2λ

√
γ
(1

2 − 2λ
) 3

2

bxc−1 + O(1) + O(x2c−1), (56)

where we used (46) and (55) (the details are shown in Appendix A) and the terms O(1) and O(x2c−1)

do not depend on θ . Then we see that

|Tλ(θ) − λ| ≤ x
∫ 1

0
dvv2|λf (vx, θ(vx); λ)| = 2λ

√
γ (c + 2)

(1
2 − 2λ

) 3
2

bxc + O(x2c) + O(x). (57)

Hence, if

0 < c < 1 (58)
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and

2λ

√
γ (c + 2)

(1
2 − 2λ

) 3
2

< 1 (59)

hold and d is sufficiently small, the second and third terms in the right-hand side of Eq. (57) can be
much smaller than the first term and ignorable, and |Tλ(θ) − λ| ≤ bxc holds for all x in [0, d]. This
means that there exists a positive number d̄ such that Tλ(θ) is in Dλ,b,c,d for arbitrary d in (0, d̄], that
is, Tλ maps Dλ,b,c,d into itself for such d.

There exists c such that Eqs. (58) and (59) hold if and only if

λ <
9 − √

33

16
(60)

holds. In this case, Eqs. (58) and (59) imply

8λ2

(1 − 2λ)(1 − 4λ)
− 2 < c < 1, (61)

and then we can take the parameter c in this range so as to satisfy (58) and (59). For example, c(λ)

in Lemma 1 is a number slightly larger than 8λ2

(1−2λ)(1−4λ)
− 2. �

Remark: the restriction for c, c < 1, in Lemma 1 comes from the circumstance that one wants to
control the matter initial distribution by Eq. (15) or (28).

From (50) and (60), for all λ−(γ ), we can take some c satisfying Eqs. (58) and (59) because of
λ−(γ ) ≤ λM < 9−√

33
16 . Thus, we can choose c and d such that Tλ : Dλ,b,c,d → Dλ,b,c,d for all λ−(γ ).

Next, we evaluate Tλ(θ) and show that it is uniformly continuous on Dλ,b,c,d .

LEMMA 2 Tλ : Dλ,b,c,d → Dλ,b,c,d is uniformly continuous.

Proof. First, we evaluate the absolute value of the difference of the integrand in Tλ(θ) for different
θ1 and θ2 in Dλ,b,c,d . For convenience, let us define

gi ≡ 1 − a(x)
(
θi(x)x

2 + 1
)2

, (62)

where the index i takes 1 or 2. Since we have θi(x) < θS(x) from the definition (55), and Eq. (40)
shows us 1 − a(x)(θS(x)x2 + 1)2 = 0, gi is always positive. Then, we obtain

|λf (x, θ1(x); λ) − λf (x, θ2(x); λ)|

=
∣∣∣∣∣1 + x d

dx a(x)

2a(x)

(
1 + 1√

g1g2

)∣∣∣∣∣
∣∣√g1 − √

g2
∣∣

x2

√
γ
(

1 − a(x)x2

γ

)

≤
{

1 +
∣∣∣∣∣x

d
dx a(x)

2a(x)

∣∣∣∣∣
(

1 + 1√
g1g2

)}(
1√

g1 + √
g2

) |g1 − g2|
x2

√
γ
(

1 − a(x)x2

γ

)

≤
{

1 − x d
dx a(x)

2a(x)

(
1 + 1

1 − a(x){(λ + bxc)x2 + 1}2

)}
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× a(x){x4(λ + bxc) + x2}√
1 − a(x){(λ + bxc)x2 + 1}2

|θ1(x) − θ2(x)|
x2

√
γ
(

1 − a(x)x2

γ

)

=
(

4λ

1 − 4λ
x−1 + B1(x)x

δ−1
)

|θ1(x) − θ2(x)|, (63)

where δ = min(1, c) and B1(x) ∈ C0[0, d] is a positive function that does not depend on d, θ1, or
θ2, and we used Eqs. (26) and (46) and the fact that

|g1 − g2| = |a(x)||(θ1(x)x
2 + 1)2 − (θ2(x)x

2 + 1)2|
≤ 2|a(x)||x4(λ + bxc) + x2||θ1(x) − θ2(x)| (64)

(see Appendix A for the details). Using (63), we obtain

‖Tλ(θ1) − Tλ(θ2)‖ = sup
0≤x≤d

∣∣∣∣x
∫ 1

0
v2
{
λf (vx, θ1(vx); λ) − λf (vx, θ2(vx); λ)

}
dv

∣∣∣∣
≤ sup

0≤x≤d

1

x2

∫ x

0
y2
(

4λ

1 − 4λ
y−1 + B1(y)y

δ−1
)

|θ1(y) − θ2(y)|dy

≤ ‖θ1 − θ2‖ sup
0≤x≤d

1

x2

∫ x

0

(
4λ

1 − 4λ
y + B1(y)y

δ+1
)

dy

= ‖θ1 − θ2‖
(

2λ

1 − 4λ
+ sup

0≤x≤d

1

x2

∫ x

0
B1(y)y

δ+1dy

)
. (65)

The integral of the right-hand side of the inequality is finite because B1 ∈ C0[0, d] and δ > 0.
Therefore, Tλ : Dλ,b,c,d → Dλ,b,c,d is uniformly continuous. �

Moreover, for specific initial conditions, Tλ becomes a contraction mapping. In this case, as below,
we can immediately show the existence of a solution to Eq. (52).

THEOREM 2 For all λ < 1
6 , there exist d ∈ (0, l] (l corresponds to the surface of the dust cloud) and

a unique solution θ ∈ C∞(0, d] to the integral equation (52), which is continuous at x = 0 and
satisfies θ(0) = λ.

Proof. The last term of (65) is estimated as

1

x2

∫ x

0
B1(y)y

δ+1dy = O(xδ). (66)

Here, if

2λ

1 − 4λ
< 1, (67)

we can choose sufficiently small d such that

2λ

1 − 4λ
+ sup

0≤x≤d

1

x2

∫ x

0
B1(y)y

δ+1dy < 1, (68)
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that is, Tλ : Dλ,b,c,d → Dλ,b,c,d is contractive. Thus, by the fixed-point theorem for contraction
mapping [19], Tλ has a unique fixed point θ ∈ Dλ,b,c,d . Note that the condition (67) is equivalent to
λ < 1

6 . �

Since the integrand of the right-hand side of Eq. (52) is a C∞ function in the region except for
the singularity, the solution θ must be a C∞ function in (0, d]. On the other hand, the solution
θ(x) ∈ C0[0, d] is not differentiable at x = 0 in general. However, ζ(x) = x2θ(x) is in C1[0, d]
because ζ(x) ∈ C∞(0, d], and d

dxζ(x) is O(x) from (35). This means that the differential equation
of the null line (35) has a solution ζ(x) ∈ C1[0, d] which is a future-directed outgoing null geodesic
emanating from the central singularity for all λ < 1

6 .
For γ > 24, Eq. (46) tells us λ−(γ ) < 1

6 . Then, in this case, there exists a null line emanating
from the central singularity, that is, it is a locally naked singularity at least.

3.2. A proof of the existence of the null geodesics

In the case of γmin ≤ γ ≤ 24, that is, 1
6 ≤ λ−(γ ) holds, we cannot use Theorem 2 to show the

existence of a solution to Eq. (52). Then we have to develop another method. As we mentioned
already, we can show the existence of a solution to Eq. (52) by using the Schauder fixed-point
theorem.

THEOREM 3 For all λ < 9−√
33

16 , there exist d ∈ (0, l] and a solution θ ∈ C∞(0, d] to the integral
equation (52), which is continuous at x = 0 and satisfies θ(0) = λ.

Proof. From Schauder fixed-point theorem, if Dλ,b,c,d is a nonempty, closed, bounded, convex
subset of a Banach space, and Tλ maps Dλ,b,c,d into itself and is a compact operator, then Tλ has
a fixed point. We already showed in Lemma 1 that we can take certain numbers d ∈ (0, l] and
c ∈ (0, 1) such that Tλ maps Dλ,b,c,d into itself for all λ < 9−√

33
16 . Moreover, Lemma 2 tells us that

Tλ is continuous. By the definition (55), Dλ,b,c,d is obviously a nonempty, closed, bounded subset of
a Banach space C0[0, d]. Furthermore, for all θ1, θ2 ∈ Dλ,b,c,d and 0 < κ < 1,

λ − bxc ≤ κθ1(x) + (1 − κ)θ2(x) ≤ λ + bxc. (69)

This means that Dλ,b,c,d is convex. Then all we have to show is that Tλ(Dλ,b,c,d) is a relatively compact
set. By virtue of the Arzelà–Ascoli theorem, the remaining task is to show uniform boundedness
and equicontinuity of Tλ(Dλ,b,c,d). Uniform boundedness results from the boundedness of Dλ,b,c,d

as follows:

sup
Tλ(θ)∈Tλ(Dλ,b,c,d )

( sup
x∈[0,d]

|Tλ(θ)(x)| ) ≤ sup
Tλ(θ)∈Tλ(Dλ,b,c,d )

( sup
x∈[0,d]

λ + bxc )

= sup
Tλ(θ)∈Tλ(Dλ,b,c,d )

(λ + bdc)

= λ + bdc. (70)

Next, to show equicontinuity, we evaluate

|Tλ(θ)(x) − Tλ(θ)(y)| =
∣∣∣∣ 1

x2

∫ x

0
s2λf (s, θ(s); λ)ds − 1

y2

∫ y

0
s2λf (s, θ(s); λ)ds

∣∣∣∣
=
∣∣∣∣
(

1

x2 − 1

y2

)∫ x

0
s2λf (s, θ(s); λ)ds − 1

y2

∫ y

x
s2λf (s, θ(s); λ)ds

∣∣∣∣ . (71)
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Here, note that we can assume x < y without loss of generality. Then, using Eq. (56),

|Tλ(θ)(x) − Tλ(θ)(y)| ≤
(

1

x2 − 1

y2

)∫ x

0
s2|λf (s, θ(s); λ)|ds + 1

y2

∫ y

x
s2|λf (s, θ(s); λ)|ds

≤ h(x)|xc − yc| + yc|h(x) − h(y)| + 2n+1h(x)yc− 1
2n−1

∣∣∣∣x 1
2n−1 − y

1
2n−1

∣∣∣∣ ,
(72)

where h(x) is a C0 positive function in the range [0, d] that does not depend on θ , and n is an arbitrary
natural number (the details of the calculation are in Appendix A). So we take n such that

c − 1

2n−1 > 0. (73)

Then, since h(x), yc, and 2n+1h(x)yc− 1
2n−1 are continuous functions for (x, y) in [0, d] × [0, d], there

exist real numbers �1, �2, and �3 such that

|Tλ(θ)(x) − Tλ(θ)(y)| < �1|xc − yc| + �2|h(x) − h(y)| + �3

∣∣∣∣x 1
2n−1 − y

1
2n−1

∣∣∣∣ . (74)

Since all continuous functions on a compact set are uniformly continuous, for all ε > 0 there exist
δ1 > 0, δ2 > 0, and δ3 > 0, independent of x and y, such that �1|xc −yc| < ε

3 , �2|h(x)−h(y)| < ε
3 ,

�3

∣∣∣∣x 1
2n−1 − y

1
2n−1

∣∣∣∣ < ε
3 hold whenever |x − y| < δ1, |x − y| < δ2, |x − y| < δ3, respectively. Thus,

|Tλ(θ)(x) − Tλ(θ)(y)| < ε holds whenever |x − y| < δ ≡ min{δ1, δ2, δ3} holds. This means that
Tλ(Dλ,b,c,d) is equicontinuous. Therefore, Tλ(Dλ,b,c,d) is a relatively compact set. Since any closed
set included in a compact set is also compact, T maps any bounded set into a relatively compact set.
Thus T is a compact operator. �

In the same way as the discussion below Theorem 2, Theorem 3 means that the differential equation
for null line (35) has a solution ζ ∈ C1[0, d] which is a future-directed outgoing null geodesic
emanating from the central singularity for all λ < 9−√

33
16 . Thus, in the following, if the function that

is a solution to Eq. (51) converges to a finite value as x → 0, we consider the function as a solution
to Eq. (51) that is also defined at x = 0. Note that the solution found in Theorem 2 is unique, but it
is not necessary that the solution found in Theorem 3 is unique.

If λ satisfying Eq. (46) exists, λ−(γ ) always satisfies λ−(γ ) ≤ λM < 9−√
33

16 . From Theorem 3,
this fact means that Tλ−(γ ) has a fixed point which converges to λ−(γ ) as x → 0, that is, there exists
a null geodesic emanating from the central singularity. Thus, the central singularity must be locally
naked at least if λ satisfying Eq. (46) exists.

4. Spacetime structure around the singularity

In this section, we show the existence of the earliest null geodesic θn0 emanating from the central
singularity for all γ ≥ γmin = 11 + 5

√
5. Since such a null geodesic determines the causal structure

around the naked singularity and the global nakedness of the singularity, θn0 plays an important role
in our analysis. On the other hand, for γ < γmin, we also show that there is no causal geodesic
emanating from the central singularity.

In the case of four dimensions, we can show that grr of the LTB spacetime is a strictly monotonically
decreasing function with respect to t near the singularity. Using this nature, we can immediately
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specify θn0 (see Ref. [12]). By contrast, in the case of five dimensions, grr becomes a monotonically
increasing function with respect to t near the singularity. Therefore, we need to develop another
method to specify θn0 that is general to some extent.

First, we show that any future-directed null geodesic along the outer radial direction cannot emanate
from the central singularity located at θ < λ−(γ ).

LEMMA 3 If λ satisfying Eq. (46) exists and a future-directed null geodesic along the outer radial
direction, θ(x), converges as x → 0, then θ(0) ≥ λ−(γ ) holds. On the other hand, if λ satisfying
Eq. (46) does not exist, any future-directed outgoing causal line, θc(x), satisfies θc(x) → −∞ as
x → 0.

Proof. Let us assume that a solution to Eq. (51), θ(x), is a C0 function in the range (0, d] and is
a bounded function. Bearing Eq. (44) in mind, Eq. (51) for θ(x) can be written as

dθ(x)

dx
= 1 − a(x)(θ(x)x2 + 1)2 − x

2(θ(x)x2 + 1)2 d
dx a(x)√

γ
(

1 − a(x)x2

γ

) (
1 − a(x)(θ(x)x2 + 1)2

) − 2θ(x)

x

= 1 − 2θ(x) + O(x)

x
√

γ
(1

2 − 2θ(x) + O(x)
) − 2θ(x)

x
. (75)

Moreover, if the solution θ(x) converges as x → 0, then, for all ε > 0, there exists d0 > 0 such that

1 − 2θ(x) + O(x)

x
√

γ
(1

2 − 2θ(x) + O(x)
) − 2θ(x)

x
>

1 − 2θ(0)

x
√

γ
(1

2 − 2θ(0)
) − 2θ(0)

x
− ε

x

≡ g(θ(0); γ )

x
− ε

x
(76)

for arbitrary x ∈ (0, d0], where

g(θ ; γ ) ≡ 1 − 2θ√
γ (1

2 − 2θ)

− 2θ . (77)

In the case that λ satisfying Eq. (46) exists, g(θ ; γ ) satisfies⎧⎪⎪⎨
⎪⎪⎩

g(λ±(γ ); γ ) = 0

g(θ ; γ ) < 0 λ−(γ ) < θ < λ+(γ )

g(θ ; γ ) > 0 θ < λ−(γ ), λ+(γ ) < θ < 1
4 . (78)

In the case that λ±(γ ) does not exist, for all θ < 1
4 ,

g(θ ; γ ) > 0 (79)

and inf θ< 1
4

g(θ ; γ ) > 0 hold.
Now we assume that λ satisfying Eq. (46) exists, and a solution to Eq. (51), θ(x), satisfies

θ(0) < λ−(γ ). In this case, we can choose ε such that

g(θ(0); γ ) − ε = κ2
0 , (80)
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where κ0 is a nonzero real number. Then, if the solution θ(x) converges as x → 0, from Eqs. (75),
(76), and (80), there exists d0 > 0 such that

dθ(x)

dx
>

κ2
0

x
(81)

for arbitrary x ∈ (0, d0]. Integrating this equation, we obtain

θ(x) − θ(0) > lim
x0→0

κ2
0

[
ln x
]x

x0
. (82)

In the above, the right-hand side diverges. This contradicts the assumption that θ(x) is bounded.
Thus, θ(0) ≥ λ−(γ ), that is, any future-directed null geodesic along the outer radial direction does
not converge to the central singularity that satisfies θ < λ−(γ ).

On the other hand, in the case that λ satisfying Eq. (46) does not exist, Eqs. (75) and (79) hold for
any bounded solution θ(x) satisfying θ(x) < 1

4 . In addition, since any future-directed null geodesics
cannot emerge from the apparent horizon determined by Eq. (41), any solution that can extend
x → 0 must not enter the region θ > θAH(x; γ ) as x → 0. Then, there exist d1 > 0 and μ > 0
such that the solution satisfies θ(x) < 1

4 − μ for all x ∈ [0, d1], because θAH(x; γ ) is continuous
and θAH(0; γ ) = 1

4 − 1
2γ

holds. In this region, g(θ ; λ) is defined. Then, for all ε > 0, there exists d2

satisfying d1 ≥ d2 > 0 such that

dθ(x)

dx
= 1 − 2θ(x) + O(x)

x
√

γ
(1

2 − 2θ(x) + O(x)
) − 2θ(x)

x
>

g(θ(x); γ )

x
− ε

x

≥
inf θ< 1

4
g(θ ; γ )

x
− ε

x
(83)

for arbitrary x ∈ (0, d2]. Note that we do not assume the solution θ(x) converges as x → 0 here.
Since λ satisfying Eq. (46) does not exist, inf θ< 1

4
g(θ ; γ ) > 0. Then we can choose ε such as

inf
θ< 1

4

g(θ ; γ ) − ε = κ2
1 , (84)

where κ1 is a nonzero real number. Thus, in the same way as the case that λ satisfying Eq. (46)
exists, we can show that any solution θ(x) cannot be bounded. Therefore, any future-directed null
geodesic along the outer radial direction must diverge to −∞ as x → 0. Since the future-directed
null geodesic along the outer radial direction is obviously the earliest line that emerged from x = 0
at arbitrary time, any future-directed outgoing causal line must diverge to −∞ at x = 0. �

Thus, for the case that λ satisfying Eq. (46) does not exist, there is no causal line which emanates
from the central singularity, that is, strong cosmic censorship holds. In contrast, for the case that λ

satisfying Eq. (46) exists, we have just discussed converged null geodesics and have not yet shown
anything about other causal lines that emanate from the central singularity. To address this point, we
will first present Lemmas 4 and 5.

LEMMA 4 Let θ(x) be a future-directed outgoing null geodesic along the radial direction that oscillates
as x → 0. If λ satisfying Eq. (46) exists, then limx→0 θ(x) ≥ λ−(γ ) holds.
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Proof. We assume that λ satisfying Eq. (46) exists and a future-directed outgoing null geodesic
along the radial direction, θ(x), is a C0 function in the range (0, d] and oscillates as x → 0. If
limx→0 θ(x) < λ−(γ ) holds, we can choose μ1, μ2 ∈ R such that

lim
x→0

θ(x) < μ1 < μ2 < min{ lim
x→0

θ(x), λ−(γ )}. (85)

Here let us define

θ̃ (x) =

⎧⎪⎪⎨
⎪⎪⎩

μ1 θ(x) ≤ μ1

θ(x) μ1 < θ(x) < μ2

μ2 μ2 ≤ θ(x).

(86)

It is easy to show that θ̃ is a C0 bounded function in the range (0, d] and satisfies limx→0 θ̃ (x) = μ1,
limx→0 θ̃ (x) = μ2, and

d θ̃

dx
(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 θ(x) < μ1
1−a(x)(θ(x)x2+1)2− x

2 (θ(x)x2+1)2 d
dx a(x)√

γ
(

1− a(x)x2
γ

)
(1−a(x)(θ(x)x2+1)2)

− 2θ(x)
x μ1 < θ(x) < μ2

0 μ2 < θ(x).

(87)

For all x which satisfy μ1 < θ(x) < μ2 < λ−(γ ) < 1
4 , the function g(θ(x); γ ) exists as a real

function. Then, as with the proof of Lemma 3, for all ε > 0, there exists a d0 > 0 such that

1 − a(x)(θ(x)x2 + 1)2 − x
2(θ(x)x2 + 1)2 d

dx a(x)√
γ
(

1 − a(x)x2

γ

) (
1 − a(x)(θ(x)x2 + 1)2

) − 2θ(x)

x
>

g(θ(x); γ )

x
− ε

x

≥ inf μ1<θ<μ2 g(θ ; γ )

x
− ε

x
(88)

for arbitrary x ∈ (0, d0], which satisfy μ1 < θ(x) < μ2. Here, inf μ1<θ<μ2 g(θ ; γ ) > 0 because of
μ2 < λ−(γ ). Then we can choose ε such that

inf
μ1<θ<μ2

g(θ ; γ ) − ε = κ2, (89)

where κ is a real number. Equations (87), (88), and (89) imply

d θ̃

dx
(x) ≥

⎧⎪⎪⎨
⎪⎪⎩

0 θ(x) < μ1

κ2

x μ1 < θ(x) < μ2

0 μ2 < θ(x)

(90)

for arbitrary x ∈ (0, d0]. Thus, from Eqs. (86) and (90), θ̃ (x) is a monotonically increasing function.
This contradicts the assumption that θ(x) oscillates as x → 0. Therefore, the solution θ(x) must
satisfy limx→0 θ(x) ≥ λ−(γ ). �

Thus, from Lemmas 3 and 4, we conclude that any future-directed outgoing null geodesic along
the radial direction, θ(x), satisfies (i) limx→0 θ(x) ≥ λ−(γ ), or (ii) θ(x) diverges to −∞ as x → 0
if λ satisfying Eq. (46) exists. However, unlike the case when λ satisfying Eq. (46) does not exist, it
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does not immediately mean that any future-directed outgoing causal line comes to satisfy θ ≥ λ−(γ )

or θ → −∞ as x → 0, because a null line that converges to the central singularity exists in this
case. Hence, we have to carefully examine the geodesics in this case.

For d > 0, let us define Gλ−(γ ),d ⊂ C0[0, d] as the set of the solutions to Eq. (51) for γ that
converge to λ−(γ ) as x → 0 and do not enter the singularity at a point in (0, d]. Then, we can show
the following lemma for Gλ−(γ ),d .

LEMMA 5 If λ satisfying Eq. (46) exists, then there exists a solution to Eq. (51), θn0(x; γ ), such
that θn0(x; γ ) ≤ θ(x) for all θ ∈ Gλ−(γ ),d and x ∈ [0, d], where d is an arbitrary positive number.
Moreover, if the curve θ = θn0(x; γ ) enters the singularity at x = d1 > 0, Gλ−(γ ),d is empty for all
d satisfying d ≥ d1.

Proof. We suppose that λ satisfying Eq. (46) exists. Let us define

Gλ−(γ ),d(x) ≡ {θ(x)|θ ∈ Gλ−(γ ),d}, (91)

where x ≤ d. By Theorem 3, there exists d0 > 0 such that Gλ−(γ ),d0(d0) is not empty. If a solution
to Eq. (51) exists in [0, d0], then, for arbitrary d ∈ (0, d0], this solution also exists in [0, d]. Then,
Gλ−(γ ),d(x) is not empty for all d ∈ (0, d0] and x ∈ (0, d].

Now we suppose that Gλ−(γ ),d0(x) is not empty for all x ∈ (0, d0]. Since the right-hand side of
Eq. (51) satisfies the Lifshitz condition on an arbitrary closed set that does not contain the singularity,
all solutions to Eq. (51) do not intersect each other and can extend arbitrarily in any open set that
does not contain the singularity. This fact means that the ordering of the solution orbits with respect
to the coordinate θ is conserved.

Let us define θ(x; x0, θ0) as the solution to Eq. (51) that passes through (x0, θ0). Then, for d0 ≥ x0 >

0, Lemmas 3 and 4 and the above discussion tell us that θ(x; x0, inf Gλ−(γ ),d0(x0)) must converge to
λ−(γ ) or diverge to −∞ as x → 0, because θ(x; x0, inf Gλ−(γ ),d0(x0)) cannot intersect any element
of Gλ−(γ ),d . Let us assume that θ(x; x0, inf Gλ−(γ ),d0(x0)) diverges to −∞ as x → 0. Then, there
exists 0 < x1 < x0 such that θ(x1; x0, inf Gλ−(γ ),d0(x0)) < 0 holds. On such x1, there exists a
future-directed solution to Eq. (51), θ1(x), such that θ(x1; x0, inf Gλ−(γ ),d0(x0)) < θ1(x1) < 0. Since
the region of θ < 0 is not a future of the slice θ = 0, Lemmas 3 and 4 imply that θ1(x) must diverge
to −∞ as x → 0, that is, θ1(x) /∈ Gλ−(γ ),d0 . Since the ordering of the solution orbits with respect
to the coordinate θ is conserved, θ(x; x0, inf Gλ−(γ ),d0(x0)) < θ1(x) holds for an arbitrary point in
the domain of θ1. On the other hand, from the definition of θ(x; x0, inf Gλ−(γ ),d0(x0)), for arbitrary
ε > 0, there exits θε(x) ∈ Gλ−(γ ),d0 such that 0 ≤ θε(x0) − θ(x0; x0, inf Gλ−(γ ),d0(x0)) < ε holds.
θε(x) also satisfies θε(x) ≥ θ(x; x0, inf Gλ−(γ ),d0(x0)) for arbitrary x ∈ (0, x0].

Let us assume that θ1(x) enters the singularity at x = xS(θ1) in (x1, x0]. Since θε(x) ∈ Gλ−(γ ),d0 ,
θε(x) satisfies 0 < θε(x) < θS(x) for all x ∈ (0, x0]. Then limx→xS(θ1) θ1(x) = θS(xS(θ1)) >

θε(xS(θ1)) and θε(x1) > 0 > θ1(x1) hold, that is, θ1(x) and θε(x) intersect at a point in (x1, xS(θ1)).
This contradicts the fact that the right-hand side of Eq. (51) satisfies the Lifshitz condition. Then
θ1(x) does not enter the singularity in the range (x1, x0]. In this case, there exists ε′ > 0 such
that θ(x0; x0, inf Gλ−(γ ),d0(x0)) ≤ θε′(x0) < θ1(x0) holds. Since θε′(x1) > 0 > θ1(x1) holds, this
means that θ1(x) and θε′(x) intersect at a point in (x1, x0), and this leads to a contradiction. Thus,
θ(x; x0, inf Gλ−(γ ),d0(x0)) must converge to λ−(γ ) as x → 0, that is, θ(x; x0, inf Gλ−(γ ),d0(x0)) ∈
Gλ−(γ ),d0 .
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Since the ordering of the solution orbits with respect to the coordinate θ is conserved and the
solutions can extend arbitrarily in any open set that does not contain the singular points, for arbitrary
d, θ(x; x0, inf Gλ−(γ ),d0(x0)) must satisfy θG(x) ≥ θ(x; x0, inf Gλ−(γ ),d0(x0)) for arbitrary θG ∈
Gλ−(γ ),d and x ∈ [0, d]. This means that θ(x; x0, inf Gλ−(γ ),d0(x0)) must be θn0(x; γ ). Moreover,
if the curve θ = θn0(x; γ ) enters the singularity line θ = θS(x) at some x = d1 > 0, then all
other solution lines that emanate from the singularity are surrounded by the curve θ = θn0(x; γ )

and θ = θS(x). Since θn0(x; γ ) and any other solution line do not intersect each other except at the
singularity, all solutions must intersect with the singularity at a point in (0, d1]. Then Gλ−(γ ),d is
empty for d ≥ d1. �

Lemmas 3, 4, and 5 imply the following theorem.

THEOREM 4 (i) If λ satisfying Eq. (46) exists, then θn0(x; γ ) defined in Lemma‘5 exists and is the
earliest of all future-directed causal lines emanating from the central singularity. θn0(x; γ ) converges
to λ−(γ ) as x → 0.

(ii) If λ satisfying Eq. (46) does not exist, then strong cosmic censorship holds.
Furthermore, (i) and (ii) mean that λ satisfying Eq. (46) exists if and only if the central singularity

is naked.

Proof. We have already shown (ii) below Lemma 3. Then we will focus on (i). We suppose that a
future-directed causal line θc(x) satisfies θc(x0) < θn0(x0, γ ) at a point x = x0 > 0. From Lemmas 3,
4, and 5, θ(x; x0, θc(x0)) must diverge to −∞ as x → 0. Since θ(x; x0, θc(x0)) corresponds to a future-
directed outgoing null geodesic along the radial direction, θc(x) also diverges to −∞ as x → 0, that
is, the line with θc(x) must emanate from the regular center. Then there is no future-directed causal
line that emanates from the central singularity before θn0(x; γ ). �

From Theorem 4, if θn0(x; γ ) can extend to x = l and θn0(l; γ ) < θAH(l; γ ) holds, the central
singularity must be globally naked. Using this fact, in the next section we consider the global structure
of this spacetime.

5. Global spacetime structure and the globally naked singularity

In this section, we consider global properties of a singularity. We will see the dependence of the
nakedness of the central singularity on the initial density distribution characterized by γ and a(x)
(see Eq. (31) for the definitions). The discussion in this section is similar to the four-dimensional
case [12].

LEMMA 6 For any initial density distribution parameterized as (31), there exists γ0 such that the
solution θn0(x; γ ) can extend to x = l (corresponding to the surface of the dust cloud) and θn0(l; γ ) <

θAH(l; γ ) holds for all γ ∈ [γ0, ∞]. θn0 is defined in Lemma 5.

Proof. Since the outer region of the x = l surface is the Schwarzschild spacetime and the event
horizon is identical to the apparent horizon in the Schwarzschild spacetime, θn0(l; γ ) < θAH(l; γ )

means that the null line corresponding to θn0(x; γ ) arrives at the outer region of the event horizon
of the Schwarzschild spacetime, that is, the null line θn0(x; γ ) will attain the future null infinity and
then the central singularity is globally naked.
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To prove this lemma, by virtue of Theorem 3, it is enough to show that, for sufficiently large γ , there
exist b and c such that (i)λ−(γ )+bxc < θS(x)holds for all x in [0, l]; (ii) |Tλ−(γ )(θ)(x)−λ−(γ )| ≤ bxc

holds for all x in [0, l] and all θ in C0[0, l] that satisfy |θ(x) − λ−(γ )| ≤ bxc; and (iii) θn0(l; γ ) <

θAH(l; γ ) holds (see the proof of Theorem 3 for the details).
The conditions (23), (25), and (26) imply a(x) < 1 for all x in (0, l]. Since θS is continuous in the

range [0, l], we see

min
0≤x≤l

θS(x) = min
0≤x≤l

1

x2

(
1√
a(x)

− 1
)

≡ θS,min > 0. (92)

Since λ−(γ ) is a monotonically decreasing function such that it satisfies limγ→∞ λ−(γ ) = 0, there
exists γ1 such that λ−(γ ) < θS,min holds for all γ ∈ [γ1, ∞). Then we can take a positive real number
b(γ1) such that λ−(γ1) + b(γ1)lc < θS,min holds. For such b(γ1),

λ−(γ ) + b(γ1)x
c ≤ λ−(γ1) + b(γ1)l

c < θS,min ≤ θS(x) (93)

holds for all γ in [γ1, ∞). This means that the condition (i) for all γ in [γ1, ∞) holds for this b(γ1).
Next, we confirm that the condition (ii) holds for sufficiently large γ . For θ ∈ Dλ−(γ ),b(γ1),c,l , we

evaluate

|λ−(γ )f (x, θ(x); λ−(γ ))| ≤

∣∣∣∣∣∣∣∣
1 − a(x)(θ(x)x2 + 1)2 − x

2(θ(x)x2 + 1)2 d
dx a(x)

x2

√
γ
(

1 − a(x)x2

γ

) (
1 − a(x)(θ(x)x2 + 1)2

) − 2λ−(γ )

x

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
C3(x, θ(x)) − 2λ−(γ )

√
γ
(

1 − a(x)x2

γ

)√
C4(x, θ(x))

x

√
γ
(

1 − a(x)x2

γ

)
C4(x, θ(x))

∣∣∣∣∣∣∣∣
≤ F1(x, θ(x), λ−(γ ))|θ(x) − λ−(γ )| + xF2(x, θ(x), λ−(γ ))√

γ xF3(x, θ , λ−(γ ))
, (94)

where

x2C3(x, θ) ≡ x2 − 2θx2 + x3C1(x, θ)

≡ 1 − a(x)(θx2 + 1)2 − x

2
(θx2 + 1)2 d

dx
a(x), (95)

x2C4(x, θ) ≡ x2

2
− 2θx2 + x3C2(x, θ) ≡ 1 − a(x)(θx2 + 1)2, (96)

F1(x, θ , λ−(γ )) ≡ 4
∣∣∣(θ − λ−(γ )) − 1 + 2λ−(γ ) − xC1(x, θ) + 2λ2−(γ )γ

∣∣∣, (97)

F2(x, θ , λ−(γ )) ≡
∣∣∣2(1 − 2λ−(γ ))C1(x, θ) + C2

1 (x, θ) − 4λ2−(γ )γ C2(x, θ)

+ 4λ2−(γ )a(x)x2
(

1

2
− 2θ + xC2(x, θ)

) ∣∣∣, (98)
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and

F3(x, θ , λ−(γ )) ≡
√(

1 − a(x)x2

γ

)
C4(x, θ(x))

×
⎛
⎝C3(x, θ(x)) + 2λ−(γ )

√
γ

(
1 − a(x)x2

γ

)√
C4(x, θ(x))

⎞
⎠, (99)

respectively (see Appendix A for the details of the above evaluations). From Eq. (28), C1(x, θ),
C2(x, θ), C3(x, θ), and C4(x, θ) defined in the above equations are C∞ functions in any region. Here
let us define

D̃γ1,b(γ1),c,l ≡
⋃

λ∈[0,λ−(γ1)]
{(x, θ(x)) | x ∈ [0, l], θ ∈ Dλ,b(γ1),c,l}, (100)

where b(γ1) is introduced just before Eq. (93). Note that D̃γ1,b(γ1),c,l is a closed compact subset
and does not contain the singular line θ = θS(x). Since (26) and 1 − a(x)(θx2 + 1)2 > 0 hold in
D̃γ1,b(γ1),c,l except for x = 0, x2C3(x, θ) and x2C4(x, θ) can be zero only at x = 0 in D̃γ1,b(γ1),c,l .
On the other hand, C3(0, θ) = 1

2 − 2θ and C4(0, θ) = 1 − 2θ do not vanish in D̃γ1,b(γ1),c,l . Then,
C3(x, θ) > 0 and C4(x, θ) > 0 hold in D̃γ1,b(γ1),c,l . In addition, from definition (46), the 2λ−(γ )

√
γ

appearing in F1(x, θ , λ−(γ )), F2(x, θ , λ−(γ )), and F3(x, θ , λ−(γ )) above are strictly positive and
bounded for γ such that λ−(γ ) is in [0, λ−(γ1)], and, using condition (30), we can see easily that
1 − a(x)x2

γ
is also strictly positive and bounded for γ such that λ−(γ ) is in [0, λ−(γ1)]. Thus, we

conclude that there exist the strictly positive values ν1, ν2, and ν3 defined by

ν1 ≡ max
λ−(γ )∈[0,λ−(γ1)]

{
max

(x,θ)∈D̃γ1,b(γ1),c,l

F1(x, θ , λ−(γ ))
}

, (101)

ν2 ≡ max
λ−(γ )∈[0,λ−(γ1)]

{
max

(x,θ)∈D̃γ1,b(γ1),c,l

F2(x, θ , λ−(γ ))
}

(102)

and

ν3 ≡ min
λ−(γ )∈[0,λ−(γ1)]

{
min

(x,θ)∈D̃γ1,b(γ1),c,l

F3(x, θ , λ−(γ ))
}

, (103)

respectively. Using these values, for arbitrary x ∈ [0, l], θ ∈ Dλ−(γ ),b(γ1),c,l , and λ−(γ ) ∈ [0, λ−(γ1)],
we see

|λ−(γ )f (x, θ(x); λ−(γ ))| ≤ ν1|θ(x) − λ−(γ )| + ν2x√
γ ν3x

≤ ν1b(γ1)xc + ν2x√
γ ν3x

. (104)

Then, we have

|Tλ−(γ )(θ) − λ−(γ )| ≤ ν1b(γ1)

(c + 2)
√

γ ν3
xc + ν2

3
√

γ ν3
x. (105)
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Since the right-hand side of this equation converges to 0 as γ → 0, there exists γ2 in [γ1, ∞) such
that, for arbitrary γ ∈ [γ2, ∞),

ν1b(γ1)

(c + 2)
√

γ ν3
+ ν2

3
√

γ ν3
l1−c ≤ b(γ1) (106)

holds. Thus, for a c ∈ (0, 1) and arbitrary γ ∈ [γ2, ∞), we obtain

|Tλ−(γ )(θ) − λ−(γ )| ≤ ν1b(γ1)

(c + 2)
√

γ ν3
xc + ν2

3
√

γ ν3
x

≤ ν1b(γ1)

(c + 2)
√

γ ν3
xc + ν2

3
√

γ ν3
l1−cxc

≤ b(γ1)x
c. (107)

This means that Tλ−(γ ) maps Dλ−(γ ),b(γ1),c,l into itself, that is, the condition (ii) holds for a c ∈ (0, 1)

and arbitrary γ ∈ [γ2, ∞). Therefore, from Theorems 3 and 4, θn0(x; γ ), which is the earliest of all
future-directed causal lines emanating from the central singularity, exists in the range [0, l].

Finally, we will examine the condition (iii) for sufficiently large γ . For arbitrary ε > 0, there exists
γ3 such that

θAH(l; γ ) = 1

l2

⎛
⎝ 1√

a(l)

√
1 − a(l)l2

γ
− 1

⎞
⎠

>
1

l2

(
1√
a(l)

− 1
)

− ε

≥ θS,min − ε (108)

holds for arbitrary γ in [γ3, ∞). In the above, we used Eqs. (40) and (41) and definition (92) for
θS,min. Now we choose ε > 0 such that θS,min − ε > λ−(γ1) + b(γ1)lc holds. Then, we have

θAH(l; γ ) > θS,min − ε > λ−(γ1) + b(γ1)l
c ≥ λ−(γ ) + b(γ1)l

c ≥ θn0(l; γ ) (109)

for any γ in [γ0, ∞), where γ0 ≡ max{γ1, γ2, γ3}. For the last inequality, we used the fact that there
is a solution in Dλ−(γ ),b(γ1),c,l and θn0(x; γ ) is the earliest of all future-directed causal lines emanating
from the central singularity. �

Therefore, for all γ ∈ [γ0, ∞), θn0(x; γ ) arrives at the surface of the dust cloud before the event
horizon appears there; that is, the central singularity is globally naked in this case.

On the other hand, for γ sufficiently close to η defined by (30), we show that the central singularity
is surrounded by the event horizon, that is, the central singularity is only locally naked.

LEMMA 7 (i) For any initial density distribution which is parameterized by Eq. (31) and satisfies
η ≥ γmin =

√
11 + 5

√
5 [γmin is defined by Eq. (49)], there exists γ1 such that γ1 → ∞ for

a(l) → 1 and the central singularity is only locally naked for arbitrary γ ∈ (η, γ1].
(ii) For any initial density distribution which is parameterized by eq. (31) and satisfies η < γmin,

if there exists x0 in [0, l] that satisfies γmin
γmin+x2

0
< a(x0), then there exists γ2 such that γ2 → ∞ for

a(l) → 1 and the central singularity is only locally naked for arbitrary γ ∈ [γmin, γ2].
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Proof. We suppose that λ satisfying Eq. (46) exists. In this case, from Theorem 3, the central
singularity is locally naked at least. Let us define xη as

a(xη)x
2
η ≡ max

x∈[0,l]
a(x)x2 = η. (110)

Note that xη �= 0 because a(0) is finite and a(x)x2 > 0 except for x = 0. At x = xη, the apparent
horizon appears at

θAH(xη; γ ) = 1

x2
η

(
1√

a(xη)

√
1 − η

γ
− 1

)
. (111)

If η ≥ γmin holds, there exists γ1 such that the right-hand side of this equation becomes negative for
arbitrary γ in (η, γ1]. Additionally, since

√
1 − η

γ
< 1 always holds, θAH(xη; γ ) would be negative

if a(xη) were equal to 1. This fact and a(l) ≤ a(xη) ≤ 1 tell us that γ1 → ∞ for a(l) → 1. Since
θAH(xη; γ ) < 0 means that the apparent horizon can exist at an earlier timeslice than the central
singularity appears, null geodesics emanating from the central singularity cannot arrive at future null
infinity for arbitrary γ in (η, γ1]; that is, the central singularity is only locally naked.

On the other hand, for η < γmin, γ cannot approach η because of the condition (37). But if there
exists x0 in [0, l] that satisfies γmin

γmin+x2
0

< a(x0), then θAH(x0; γmin) < 0 holds from Eq. (111). Since

θAH(x; γ ) is continuous with respect to γ , there exists γ2 such that θAH(x0; γ ) < 0 holds for arbitrary
γ ∈ [γmin, γ2], that is, the central singularity is only locally naked in these cases. In addition, since

γmin
γmin+x2

0
< 1 and a(l) ≤ a(x0) ≤ 1 always hold, we have γ2 → ∞ for a(l) → 1. �

Furthermore, we can show the monotonicity of θn0(x; γ ) with respect to γ at each x. Let us define
θ(x; γ ) as a solution to Eq. (51) for γ , which converges to λ−(γ ) as x → 0.

LEMMA 8 For any initial density distribution parameterized as (31), θ(x; γs) > θ(x; γl) holds for γs

and γl such that γs < γl , and all x such that θ(x; γs) exists. In particular, θn0(x; γ ) defined in Lemma 5
is a monotonically decreasing function of γ at each x.

Proof. We suppose that γs < γl and θ(x; γs) exists in the range [0, ds). Now let us define

I ≡ {x | θ(x; γs) > θ(x; γl)}. (112)

I is the union of intervals and not empty because θ(x; γs) and θ(x; γl) are continuous and θ(0; γs) =
λ−(γs) > λ−(γl) = θ(0; γl). We shall show that [0, d0) ⊂ I implies d0 ∈ I for arbitrary d0 < ds

in the following. This implies I = [0, ds) because any interval contained in I must not be a closed
proper subset in [0, ds) by definition.

Now we suppose that [0, d0) ⊂ I and 0 < x1 < x2 < d0 < ds. Let us define

f0(x, θ) ≡ 1 − a(x)(θx2 + 1)2 − x
2(θx2 + 1)2 d

dx a(x)

x
√

1 − a(x)(θx2 + 1)2
. (113)
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From (26) and the fact that f0(x, θ) is differentiable except for the singularity, it is positive and ∂f0(x,θ)
∂θ

is finite for arbitrary x ∈ [x1, d0] and θ ∈ [θ(x; γl), θ(x; γs)]. Then, from Eq. (51), we have

θ(x1; γs) − θ(x1; γl)

= θ(x2; γs) − θ(x2; γl) +
∫ x2

x1

2

x
(θ(x; γs) − θ(x; γl))dx

−
∫ x2

x1

(
1√

γs − a(x)x2
− 1√

γl − a(x)x2

)
f0(x, θ(x; γs))

x
dx

−
∫ x2

x1

(
f0(x, θ(x; γs)) − f0(x, θ(x; γl))

) 1

x
√

γl − a(x)x2
dx.

< θ(x2; γs) − θ(x2; γl) +
∫ x2

x1

2

x
(θ(x; γs) − θ(x; γl))dx

+
∫ x2

x1

|f0(x, θ(x; γs)) − f0(x, θ(x; γl))| 1

x
√

γl − a(x)x2
dx.

≤ θ(x2; γs) − θ(x2; γl) +
∫ x2

x1

2

x
(θ(x; γs) − θ(x; γl))dx

+
∫ x2

x1

sup
θ(x;γl)≤θ≤θ(x;γs)

∣∣∣∣∂f0(x, θ)

∂θ

∣∣∣∣ (θ(x; γs) − θ(x; γl))
1

x
√

γl − a(x)x2
dx.

= θ(x2; γs) − θ(x2; γl) +
∫ x2

x1

F(x)(θ(x; γs) − θ(x; γl))dx, (114)

where F(x) is the positive function defined as

F(x) ≡ 2

x
+ sup

θ(x;γl)≤θ≤θ(x;γs)

∣∣∣∣∂f0(x, θ)

∂θ

∣∣∣∣ 1

x
√

γl − a(x)x2
. (115)

For the first inequality in the above, we used the fact that 1√
γs−a(x)x2

− 1√
γl−a(x)x2

is positive because

of γs < γl . Thus, we obtain

θ(x2; γs) − θ(x2; γl) > (θ(x1; γs) − θ(x1; γl)) exp
(
−
∫ x2

x1

F(x)dx
)

. (116)

As x2 → d0, this inequality becomes

θ(d0; γs) − θ(d0; γl) > (θ(x1; γs) − θ(x1; γl)) exp
(
−
∫ d0

x1

F(x)dx
)

> 0 (117)

because F(x) is bounded in the range [x1, d0] and we supposed θ(x1; γs) > θ(x1; γl). This means
d0 ∈ I . �
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Here let us define N as the set of real numbers λ−(γ ) such that Gλ−(γ ),d contains more than one
element for some d. Then, from Lemma 8, we have the following corollary:

COROLLARY 1 N is countable.

Proof. We suppose γs < γl again. From Lemma 8, θ(x; γs) > θ(x; γl) holds for arbitrary θ(x; γs)

and θ(x; γl) at arbitrary x such that θ(x; γs) exists. So the geodesics θ(x; γs) and θ(x; γl) do not
intersect in the domain of θ(x; γs). This means that Gλ−(γs),d(x)

⋂
Gλ−(γl),d(x) is an empty set for

arbitrary d and x in the domain of θ(x; γs). In addition, since Eq. (51) satisfies the Lifshitz condition
on an arbitrary compact set which does not contain the singularity, the elements in Gλ−(γ ),d do not
intersect each other in the region which does not contain the singularity. So if Gλ−(γ ),d contains two
different functions θ1(x; γ ) and θ2(x; γ ) which satisfy θ1(x0; γ ) < θ2(x0; γ ) for an x0, an arbitrary
solution to Eq. (51), θ(x), which satisfies θ1(x0; γ ) < θ(x0) < θ2(x0; γ ) must be contained in
Gλ−(γ ),d . Thus, for nonzero x, Gλ−(γ ),d(x) is always an interval in R if Gλ−(γ ),d contains more than
one element.

Now we assume that N is uncountable. From Theorem 3, a solution θ(x; γ (λM)) exists in the
range [0, dM], where dM is a positive number. From Lemma 8, for arbitrary λ satisfying λ < λM, all
solutions θ(x; γ (λ)) also exist in [0, dM] because the region θ < θ(x; γ (λM)) does not contain the
singularity at θ = θS(x). Thus, Gλ,dM(dM) is an interval for all λ in N . Here we define |Gλ,d(x)| as
the Lebesgue measure of Gλ,d(x). |Gλ,dM(dM)| is nonzero for arbitrary λ in N . We can evaluate the
sum of |Gλ,dM(dM)| for λ in N as

∑
λ∈N

∣∣Gλ,dM(dM)
∣∣ ≤
∣∣∣∣∣
⋃
λ∈N

Gλ,dM(dM)

∣∣∣∣∣
≤ |[0, θS(dM)]| = θS(dM). (118)

For the first inequality, we used the fact that Gλ,dM(dM) is an interval for all λ in N and does not
have a common part with each other for different λ. For the second one, we used the fact that the line
θ = θ(x; γ (λ)) does not enter the noncentral singularity in the range [0, dM] for all λ in N and the
region θ < 0 at x = dM, which is not in the future of the central singularity. However, since the sum
of uncountable infinite numbers of strictly positive real numbers must diverge,

∑
λ∈N |Gλ,dM(dM)|

must diverge. This contradicts the inequality (118). Thus, N is countable. �

Since the existence theorem is based on the fixed-point theorem for contraction mapping in the
four-dimensional case [12], one could immediately see that the solution to the differential equation
for the null geodesic that has a certain initial value at the central singularity is unique. By contrast, in
the five-dimensional case, it is not necessary that the solution found in Theorem 3 is unique because
we use the Schauder fixed-point theorem for the proof of the existence of the solution. However, this
corollary guarantees that the solution which converges λ−(γ ) as x → 0 is unique for almost every
γ at least.

In Lemma 8, we proved the monotonicity of the solutions to Eq. (51) with respect to γ . In addition,
we can easily show the monotonicity of θAH(x; γ ) with respect to γ at each x.

LEMMA 9 For any initial density distribution parameterized as (31), θAH(x; γ ) is a monotonically
increasing function of γ at each x.
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Proof. It is obvious from Eq. (41). �

From Lemmas 6, 7, 8, and 9, we obtain the following theorem.

THEOREM 5 (i) For any initial density distribution which is parameterized as (31) and satisfies η ≥
γmin, there exists γC which satisfies η < γC and γC → ∞ for a(l) → 1 such that (a) for arbitrary
γ ∈ (γC, ∞), θn0(x; γ ) defined in Lemma 5 goes to future null infinity, that is, the central singularity
is globally naked and weak CCC does not hold, and (b) for all γ ∈ (η, γC), the central singularity is
only locally naked, that is, weak CCC holds and the outer region of the event horizon is regular.

(ii) For any initial density distribution which is parameterized as (31) and satisfies η < γmin =
11 + 5

√
5, if there exists x0 in [0, l] such that γmin

γmin+x2
0

< a(x0) holds, then there exists γC which

satisfies η < γC and γC → ∞ for a(l) → 1 such that the above (a) and (b) hold. Otherwise, there
exists γ0 satisfying η < γ0, such that, for all γ ∈ [γ0, ∞), θn0(x; γ ) goes to future null infinity, that
is, the central singularity is globally naked.

Proof. (i) Let us assume that the initial density distribution is parameterized as (31) and satisfies
η ≥ γmin. Then, from Lemmas 8 and 9, θn0(x; γ ) is a decreasing function of γ and θAH(x; γ ) is a
continuous increasing function of γ for each x. In addition, from Lemma 6, there exists γ0 such that
the solution θn0(x; γ ) can extend to x = l and θ = θn0(x; γ ) does not intersect with θ = θAH(x; γ )

for all γ ∈ [γ0, ∞], while from Lemma 7, if η ≥ γmin holds, there exists γ1 such that γ1 → ∞ for
a(l) → 1 and θ = θn0(x; γ ) intersects with θ = θAH(x; γ ) somewhere in the dust cloud for arbitrary
γ ∈ (η, γ1]. Thus there exists γC such that γ0 ≥ γC ≥ γ1 and θ = θn0(x; γ ) does not intersect with
θ = θAH(x; γ ) for all γ ∈ (γC, ∞) and θ = θn0(x; γ ) intersects with θ = θAH(x; γ ) somewhere in
the dust cloud for arbitrary γ ∈ (η, γC). If θ = θn0(x; γ ) does not intersect with θ = θAH(x; γ ), then
θ = θn0(x; γ ) can extend to future null infinity because the outer region of the x = l surface is the
Schwarzschild spacetime. Thus, in this case, the central singularity is globally naked. If θ = θn0(x; γ )

intersects with θ = θAH(x; γ ) somewhere in the dust cloud, then θ = θn0(x; γ ) cannot extend to
future null infinity and will enter the singularity. This means that the central singularity is only locally
naked and the outer region of the event horizon is regular because θ = θn0(x; γ ) is the earliest line
in all future-directed causal lines emanating from the central singularity.

(ii) Let us assume that the initial density distribution is parameterized as (31) and satisfies η <

γmin = 11 + 5
√

5. If there exists x0 in [0, l] such that γmin
γmin+x2

0
< a(x0) holds, in the same way as in

the proof of (i), we can show that (ii) holds. On the other hand, if such x0 does not exist in [0, l], we
cannot use Lemma 7. Then all we could show in this regard is Lemma 6 only. �

6. Conclusion and discussion

In this paper, we analyzed five-dimensional inhomogeneous spherically symmetric dust collapse.
By virtue of the Schauder fixed-point theorem, we proved an existence theorem for null geodesics
in singular spacetime. Moreover, by using it, we showed a necessary and sufficient condition for the
singularity to be naked and saw the dependence of the global nakedness of the central singularity on
the initial density distribution.

In Sect. 2, we fixed the initial energy distribution of the dust so that the initial velocity of the shells
is zero. This assumption is not critical for our method. Therefore, we can also discuss the nakedness
of the singularity without this assumption. To prove the existence of a null geodesic emanating from
the central singularity in this general case, we have to find an appropriate domain such that the
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operator Tλ maps its domain into itself. We expect that, for some class of energy distribution, Dλ,b,c,d

defined by (55) can be such domain for certain b, c, and d, and the argument will follow in a similar
manner to this paper.

In specific dimensional spherically symmetric dust collapse in Lovelock gravity, or particularly
in nine-dimensional spherically symmetric dust collapse in Einstein–Gauss–Bonnet gravity [21],2

we cannot use Christodoulou’s method and discussion to show the existence of null geodesics
emanating from the central singularity because the singular term in the differential equation for the
null geodesic does not take the form of a simple function. In contrast, our method may be used to
examine the nakedness of a singularity for the above cases because our existence theorem improved
Christodoulou’s method [12].
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Appendix A. The evaluation details for equations (56), (63), (72), and (94)
Appendix A.1. Equation (56)

|λf (x, θ(x); λ)| =

∣∣∣∣∣∣∣∣
1 − a(x)(θ(x)x2 + 1)2 − x

2(θ(x)x2 + 1)2 d
dx a(x)

x2

√
γ
(

1 − a(x)x2

γ

) (
1 − a(x)(θ(x)x2 + 1)2

) − 2λ

x

∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
1 − 2θ(x) + O(x) − 2λ

√
γ

√
1
2 − 2θ(x) + O(x)

√
γ x
√

1
2 − 2θ(x) + O(x)

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
(1 − 2θ(x) + O(x))2 − 4λ2γ

(1
2 − 2θ(x) + O(x)

)
√

γ x
√

1
2 − 2θ(x) + O(x)

(
1 − 2θ(x) + O(x) + 2λ

√
γ

√
1
2 − 2θ(x) + O(x)

)
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

2 {−2(θ(x) − λ) + O(x)} (1 − 2λ) + {−2(θ(x) − λ) + O(x)}2

−4λ2γ {−2(θ(x) − λ) + O(x)}
√

γ x
√

1
2 − 2θ(x) + O(x)

(
1 − 2θ(x) + O(x) + 2λ

√
γ

√
1
2 − 2θ(x) + O(x)

)
∣∣∣∣∣∣∣∣∣

≤ | − 4(1 − 2λ) + 8λ2γ ||θ(x) − λ| + O(|θ(x) − λ|2) + O(x)

√
γ x
√

1
2 − 2λ + O(xc) + O(x)

(
1 − 2λ + 2λ

√
γ

√
1
2 − 2λ + O(xc) + O(x)

)

2 In the Lovelock gravity case, by employing the analysis in [21], it is easy to find that we cannot apply the
Christodoulou theorem in D = 4k + 1-dimensional spacetime, where k is the highest order of nonvanishing
Lovelock coefficients [22].
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≤ | − 4(1 − 2λ) + 8λ2γ |bxc−1

√
γ

√
1
2 − 2λ

(
1 − 2λ + 2λ

√
γ

√
1
2 − 2λ

) + O(x2c) + O(x)

x

≤ 2λ

√
γ
(1

2 − 2λ
) 3

2

bxc−1 + O(1) + O(x2c−1). (A.1)

In the right-hand side of theh first inequality, we can choose functions O that are independent of θ

because θ(x) in Dλ,b,c,d is uniformly bounded by the constants λ+ blc and λ− blc. In the same way,
we can choose functions O that are independent of θ .

Appendix A.2. Equation (63)

|λf (x, θ1(x); λ) − λf (x, θ2(x); λ)|

= 1

x2

√
γ
(

1 − a(x)x2

γ

)
∣∣∣∣∣√g1 − √

g2 − x d
dx a(x)

2a(x)

(
1 − g1√

g1
− 1 − g2√

g2

)∣∣∣∣∣

= 1

x2

√
γ
(

1 − a(x)x2

γ

)
∣∣∣∣∣1 + x d

dx a(x)

2a(x)

(
1 + 1√

g1g2

)∣∣∣∣∣ ∣∣√g1 − √
g2
∣∣

≤ 1

x2

√
γ
(

1 − a(x)x2

γ

)
{

1 +
∣∣∣∣∣x

d
dx a(x)

2a(x)

∣∣∣∣∣
(

1 + 1√
g1g2

)}(
1√

g1 + √
g2

)
|g1 − g2|

≤ |θ1(x) − θ2(x)|
x2

√
γ
(

1 − a(x)x2

γ

)
{

1 − x d
dx a(x)

2a(x)

(
1 + 1

1 − a(x)((λ + bxc)x2 + 1)

)}

× a(x){x4(λ + bxc) + x2}√
(1 − a(x)((λ + bxc)x2 + 1)2

= |θ1(x) − θ2(x)|
x2√γ

{
1 + x2

x2 − 4λx2

}
x2√

x2

2 − 2λx2
+ B1(x)x

δ−1|θ1(x) − θ2(x)|

= 1 − 2λ√
γ (1

2 − 2λ)3
x−1|θ1(x) − θ2(x)| + B1(x)x

δ−1|θ1(x) − θ2(x)|

=
(

4λ

1 − 4λ
x−1 + B1(x)x

δ−1
)

|θ1(x) − θ2(x)|, (A.2)

where B1(x) is introduced as in the text.

Appendix A.3. Equation (72)

|Tλ(θ)(x) − Tλ(θ)(y)| ≤
(

1

x2 − 1

y2

)∫ x

0
s2|λf (s, θ(s); λ)|ds + 1

y2

∫ y

x
s2|λf (s, θ(s); λ)|ds
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≤
(

1

x2 − 1

y2

)∫ x

0
s2

⎧⎨
⎩ 2λ

√
γ
(1

2 − 2λ
) 3

2

bsc−1 + O(1) + O(s2c−1)

⎫⎬
⎭ ds

+ 1

y2

∫ y

x
s2

⎧⎨
⎩ 2λ

√
γ
(1

2 − 2λ
) 3

2

bsc−1 + O(1) + O(s2c−1)

⎫⎬
⎭ ds

=
(

1

x2 − 1

y2

)
h(x)x2+c + 1

y2 (h(y)y2+c − h(x)x2+c)

≤ h(x)|xc − yc| + yc|h(y) − h(x)| + 2h(x)

y2 |y2+c − x2+c|

< h(x)|xc − yc| + yc|h(y) − h(x)| + 2h(x)yc
∣∣∣∣y2 − x2

y2

∣∣∣∣
≤ h(x)|xc − yc| + yc|h(y) − h(x)| + 2n+1h(x)yc− 1

2n−1

∣∣∣∣y 1
2n−1 − x

1
2n−1

∣∣∣∣ .
(A.3)

Appendix A.4. Equation (94)

|λ−(γ )f (x, θ(x); λ−(γ ))|

≤

∣∣∣∣∣∣∣∣
1 − a(x)(θ(x)x2 + 1)2 − x

2(θ(x)x2 + 1)2 d
dx a(x)

x2

√
γ
(

1 − a(x)x2

γ

) (
1 − a(x)(θ(x)x2 + 1)2

) − 2λ−(γ )

x

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
1 − 2θ(x) + xC1(x, θ(x)) − 2λ−(γ )

√
γ
(

1 − a(x)x2

γ

)√
1
2 − 2θ(x) + xC2(x, θ(x))

x

√
γ
(

1 − a(x)x2

γ

) (1
2 − 2θ(x) + xC2(x, θ(x))

)
∣∣∣∣∣∣∣∣

≡

∣∣∣∣∣∣∣∣
C3(x, θ(x)) − 2λ−(γ )

√
γ
(

1 − a(x)x2

γ

)√
C4(x, θ(x))

x

√
γ
(

1 − a(x)x2

γ

)
C4(x, θ(x))

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
(C3(x, θ(x)))2 − 4λ2−(γ )γ

(
1 − a(x)x2

γ

)
C4(x, θ(x))

x

√
γ
(

1 − a(x)x2

γ

)
C4(x, θ(x))

(
C3(x, θ(x)) + 2λ−(γ )

√
γ
(

1 − a(x)x2

γ

)√
C4(x, θ(x))

)
∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣
{
(θ(x) − λ−(γ )) − 1 + 2λ−(γ ) − xC1(x, θ(x)) + 2λ2−(γ )γ

}
4(θ(x) − λ−(γ ))

x

√
γ
(

1 − a(x)x2

γ

)
C4(x, θ(x))

(
C3(x, θ(x)) + 2λ−(γ )

√
γ
(

1 − a(x)x2

γ

)√
C4(x, θ(x))

)
∣∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣∣∣∣
H (x, θ(x))√

γ
(

1 − a(x)x2

γ

)
C4(x, θ(x))

(
C3(x, θ(x)) + 2λ−(γ )

√
γ
(

1 − a(x)x2

γ

)√
C4(x, θ(x))

)
∣∣∣∣∣∣∣∣∣

= F1(x, θ(x), λ−(γ ))|θ(x) − λ−(γ )| + xF2(x, θ(x), λ−(γ ))√
γ xF3(x, θ(x), λ−(γ ))

, (A.4)

where C1, . . . ,C4, F1, F2, and F3 are defined as in the text.

Appendix B. Four-dimensional case

In this appendix, we give an overview of Christodolou’s paper [12] which examined the global
nakedness of a singularity in four-dimensional LTB spacetime, and see the difference between
Christodoulou’s and our discussions on the existence of null geodesics near the singuality. In the
four-dimensional case, after change of variables, the dimensionless differential equation for future-
directed null geodesics along the outer radial direction is given as

d θ̂

dx̂
+ 7θ̂

x̂
= 7λ̂

x̂
+ λ̂f4(x̂, θ̂ ; λ̂), (B.1)

where θ̂ and x̂ are dimensionless coordinates, which correspond to θ and x defined by (38) and (33)
respectively, λ̂ is a certain constant, and f4 is a C∞ function. λ̂ and f4 are also the variables that
correspond to λ and f defined in (46) and (51) in the five-dimensional case, respectively. In order
not to contain a noncentral singularity, θ̂ is restricted in the range 0 ≤ θ̂ < σ(x̂), where σ is a certain
function which satisfies σ(x̂) ≥ ε4

x̂ for a positive constant ε4.
The formal solution to this differential equation is given by

θ̂ (x̂) = λ

(
1 + x̂
∫ 1

0
dvv7f4(vx̂, θ̂ (vx̂); λ̂)

)

≡ T4,λ(θ̂)(x̂). (B.2)

Let us define

Dd̂,μ ≡ {θ̂ | θ̂ ∈ C0[0, d̂], 0 ≤ θ̂ ≤ μ}, (B.3)

where μ is a positive real number satisfying μ < σ(x̂) for all x̂ ∈ [0, d̂]. Dd̂,μ becomes a subset of a
Banach space by the uniform norm.

After some discussion on the nature of T4,λ, as with the five-dimensional case, we can conclude
that T4,λ maps Dd̂,μ into itself for sufficiently small d̂. Furthermore, we obtain

‖T4,λ̂(θ̂1) − T4,λ̂(θ̂2)‖ = sup
0≤x̂≤d̂

∣∣∣∣x̂
∫ 1

0
v7λ̂
{

f4(vx̂, θ̂1(vx̂); λ̂) − f4(vx̂, θ̂2(vx̂); λ̂)
}

dv

∣∣∣∣
≤ d̂λ̂�

8
‖θ̂1 − θ̂2‖, (B.4)

30/32



PTEP 2016, 103E01 R. Mizuno et al.

where � is defined as

� ≡ sup
0≤x̂≤d̂

{
sup

0≤θ̂≤μ

∣∣∣∣∂f4

∂θ̂
(x̂, θ̂ ; λ̂)

∣∣∣∣
}

. (B.5)

� is finite because f4 is a C∞ function in [0, d̂] × [0, μ]. Here we choose d̂0 so that it satisfies
d̂0 ≤ d̂ and

d̂0 <
8

λ̂�
; (B.6)

then T4,λ̂ becomes a contraction mapping from Dd̂0,μ into itself. Therefore, by the fixed-point theorem
for contraction mappings [19], we can conclude that T4,λ̂ has a unique fixed point, that is, a null
geodesic emanating from the central singularity exists and the singularity is naked.

By contrast, in the five-dimensional case, what we can do is only to deform the differential equation
for the null geodesic near the central singularity like

dθ

dx
+ 2θ

x
= 2λ

x
+ 2 (g(θ ; γ ) + θ − λ)

x
+ λf5(x, θ ; γ )

≡ 2λ

x
+ 2λg5(θ ; γ )

x
+ λf5(x, θ ; γ ), (B.7)

where g(θ ; γ ) is defined by (77) and f5 is a function such that xf5(x, θ ; γ ) converges to 0 as x → 0 in
the region θ < θS(x). In the four-dimensional case, the right-hand side of the differential equation for
the null geodesic has a constant coefficient pole at first order only. However, in the five-dimensional
case, the coefficient of the pole of the right-hand side of (B.7) is a function with respect to θ . Thus,
the variable that corresponds to � in (B.4) is not finite in five dimensions and we cannot directly use
the method employed for the four-dimensional case [12].

As above, we can apply the method in [12] to the case that the geodesic equation has a constant
coefficient pole at first order only. On the other hand, our method can be applied to the more general
case that the geodesic equation can be deformed to an expression having a general pole at first order.
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