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1 Introduction and main results

Let us consider the boundary value problem

{52um(x) + flu(z)) =0, in (0,1),

Here ¢ is a positive parameter. The corresponding parabolic PDE to (1.1) is given by

u’t(z7t) = E2sz((lf,t) + f(u(av, t))a ($>t) € (07 1) X (O’ +OO),
uz(0,t) = ug(1,t) =0, t € (0, +00), (1.2)
u(z,0) = uo(x), z € (0,1).

We are interested in the case that the function f € C! is a bistable nonlinearity:
(A1) f has exactly three zeros u- < 0 < uy with f,(0) >0, fu(us) <O.

As a typical example of f, we refer f(u) = u—u® with uy = +1. Then (1.2) is the simplest
model which describes phase transition of materials; both u+ and 0 represent two stable
states and one unstable state. Under (A1) the reaction-diffusion problem (1.2) defines a
gradient system on Sobolev space H'(0,1), and in particular, the solution u(z,t) exists
globally in time and converges to a solution of (1.1) as t — +o0.

Main interests to (1.1) and (1.2) are to understand the existence and stability of
(stationary) solutions of (1.1), and to understand the tranisient and asymptotic dynamics
in (1.2). Moreover, it is interesting to consider these problems in a situation that ¢ is
small, in view of pattern formation.

We summarize the classical results on (1.1) (see Propositions 2.1-2.3, and also [1], [3]
and [5]). Any nontrivial solution of (1.1) is characterized by the number of zeros in the
interval (0,1). We say u,. is the n-mode solution of (1.1) if u,. satisfies (1.1) and it
exactly admit n-zeros 2y,---, 2, -, 2, in the interval (0,1). Here we also assume that

(A2) f, is decreasing for u € (0, uy).
(A3) fisodd; u_ = —uy.

1This article is based on a jointwork with Shoji Yotsutani (Ryukoku Univ.).
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It is well known that for arbitrary n € N, exactly two n-mode solutions tu,. (with

un(0) > 0) exists if and only if € € (0,+/f.(0)/(

nm)). The n-mode solution u,. that

—U_ < Upe(z) < uy for every z € [0,1], and it can be extended as a periodic function
on R because of the boundary condition. Moreover, the concept of bifurcation theory is
useful to understand the solution structure of (1.1): the two bifurcation curves

SE = {(e,u) € Ry x H(0,1) | (,u) = (¢, un (7)), € € (0,1/fu(0)/nm)}

appears from the line of unstable solution u = 0 at the point (¢, u) = ((1/f.(0)/nm)1,0).

See Figs. 1 and 2.
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Figure 1: Profiles of ug(z) and f,(us,) for

f(u) = u — u® when ¢ is small.
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Figure 2: Bifurcation diagram of (1.1) for f(u) = u—
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It follows from (A3) that the set of zeros to uy, . is given by {2}}7_, and the period (resp.
anti-period) of u, ¢ is 2/n (resp. 1/n). If € is sufficiently small, then u,.(z) is close to



either u, away from zeros and the transition layers connecting between u, appears in the
neighborhoods of {z}'}. The transition layer at x = 2} is characterized by

une(3) ~ (1)U (L),
in a neighborhood of z}', where U = U(z) is the (unique) heteloclinic solution of the

rescaled problem

{ U(2) + f(U(2)) = in R,

(1.3)

U(-—o0) =u_, U(4+o0)=uy, U(0)=0.

Now we fix n € N arbitrarily and choose £ > 0 small enough (with respect to n). Let
us consider the linearized eigenvalue problem associated with u, .

2 Pae () + fultne(2))p(z) + Ap(z) =0
02(0) = 5(1) = 0.

For j € NU {0}, we denote by A\; = A} and ¢;(z) = ¢ (z), the (j + 1)-th eigenvalue
and the corresponding eigenfunction. Fig. 3 displays some profiles of eigenfunctions in
the case f(u) =u —u>.

It follows from the Sturm-Liouville theory with (A2) and (A3) that \y*° < -+ <
A <0< AN < oo < +o0 (see e.g., [1]). This fact concludes that u,. is unstable.
On the other hand, un. is known metastable in the following sense: for 0 < j < n,
A7 = O(exp(—d/e)) with some d > 0 as ¢ — 0. This fact is closely related with the
super slow dynamics arrising in (1.2) (see Carr-Pego [2], Fusco-Hale [4]).

n (0,1), (1.4)

@ 19 L

o iy N
\\‘ \\
X . X \
z. . by Ny v
) Z 5 [ 2 B AN
. \
N \

Figure 3: Profiles of ¢} (j =0,...,8) for f(u) = u—u

In this article we are interested in the e-dependence of A} and ¢} of (1.4) in the
situation that n is fixed and ¢ is given small enough. More premsely, we W111 investigate the
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asymptotic profiles ¢} with 0 < j < n as ¢ — 0. The eigenfunctions and eigenvalues are
often called as critical eigenfunctions and critical eigenvalues, and they play an essential
role for the stability of u,.. Moreover, the profiles of critical eigenfunctions give us
significant information on the dynamical behavior of (1.2) near the stationary solutions,
and it has been investigated by the previous works [2] and [4].

The purpose of this article is to show the following conjecture:

“For the case 0 < j < n, <p;"€ has spikes in neighborhoods of z} (£ =1,--- ,n),

and the height of each spike is proportional to cos jmz}”,
which is proposed by E. Yanagida. In order to justify Yanagida’s conjecture, our problems
are formulated as follows:

e to characterize the locallized patterns (spike) for the critical eigenfunctions as e — 0,
e to give some “symmetric” property arising in critical eigenfunctions.

For the principal eigenfunction ¢g**, which is chosen as positive function, some fundamen-
tal results can be easily obtained (see Proposition 2.5-2.7). In particular, it has exactly
n-spikes with the same height at z = z7.

Fix the height of ¢{* arbitrarily. Our main results are given by the following two
theorems.

Theorem 1. Assume (Al)-(A3) and the normalized condition 611_{1(1] :Z%)::Egi = cos jmzy.
For any § with 0 < § < 1/(4n),
(i) 21_1)1(1) z];:z; = cos jm2}, uniformly in [0, 7 — 4],
ne
(ii) l_l_I)I(l) cp%’e(.r) = cos jmzy, uniformly in [z} , + 6,2} — 6], £=2,...,n—1,
ne
(iii) lim ;—i%—) = cos jmz), uniformly in [z7_, + 6, 1].

Theorem 2. Suppose the assumptions in Theorem 1 holds. Then for £ =1,2,...,n—1,
p;(af +e2)
lim S + 27) =}y + dj,tanh 1/ fu(ug)z,
uniformly in any compact subset in R,

1
o= a(cosjﬁz?+1 +cosjmey), dj, = é(cosj'/rz?+1 — cos jmz}).

To this end, we remark that in the previous work in [7]-[9] we have obtained more
precise result on every eigenfunction in the two cases of typical f: f(u) = sinu and

flu) =u—ud



2 Preliminaries

2.1 n-mode solutions

We recall well known results on (1.1) under assumptions (A1)-(A3). Let us introduce

P~ [ fs)ds.

Proposition 2.1. Suppose that f € C* satisfies (A1)-(A3). Let ¢ > 0 and n € N. The

equation
°‘ 1 1
w=—, a€(0,uy) (2.1)

W V@ F@) " ne

has a solution a = ane if and only if € € (0,4/fu(0)/nm). Moreover, oy, is unigue,
decreasing with respect to €,

lim oy, . = uy, and lim ane =0.
e—0

€/ fu(0)/nm

Proposition 2.2. Suppose that f € C* satisfies (A1)-(A3). Lete > 0 andn € N. If
e € (0, £,(0)/(n)), there exists two n-mode solutions Fun(z) of (1.1) satisfying

Qn,e 1 -
dw=-— forze[0,1/n], 2.2
/un,em V2(F(ane) — F(w)) ~ ne for z €[0,1/n] (2.2)

where oy . s as in Proposition 2.1. Moreover, u, . satisfies the following properties:

(i) une is monotone decreasing in [0, 7],
. 1
(i) une |z + ~ )= —up(z) forz € R,

(iii) une (2F) = (=1)f0ome and (une)y (2F) =0 for £=0,1,...,n,

(iV) Une (—11; — :c) = —uUne(z) forz € R,

(V) Une(27) =0, for€=1,...,n.
Conversely, any n-mode solutions of (1.1) is given either un¢(z) o —Une(T).

Proposition 2.3. Assume (A1)-(A3). Let U = U(z) be the (unique) heteloclinic solution
of the rescaled problem (2.5). Then, for each £ =1,...,n,

: n —(_1\¢
limu, o (27 +€2) = (=1)U(2),

in the topology of C3.(R).

Remark 2.1. For a wider class of the bistable f, Propositions 2.1-2.3 can be generalized,;
(A2) and (A3) are to be replaced in more general assumptions

83



84

(A2) fu(u) < fw) for u € (0, u4),

(A3) / " fs)ds = 0,

respectively. Roughly speaking, (A2') coinsides with the monotonicity of o, and also
the degeneracy of the linearized oparators around u, .. The assumption (A3') proves the
existence of U(z) of (2.5); it characterizes the limiting profiles of n-mode solutions as
e —0.

2.2 Linearized eigenvalue problem

We rewrite (1.4) as follows:

&%(Pua(2) + (gne(2) + N)p(z) =0, in (0, 1),
{ pz(0) = p5(1) =0, (2.3)

where

9ne () = fulune(z))-
On the other hand, we have

{ £ (Un e )ze(2) + gn,g(:r)u:n,e(a:) =0, in (0,1), (2.4)

(’U,n,e)z(o) = (Un,e)q;(].) 0,
where
gn,e(x) = %‘?

By comparing these two problems with the Sturm-Liouville theory and (A2), (A3), it is
obtained that A < -+ < Ap; < 0 < A < -+ < 400 (see e.g., [1]). This fact concludes
that u, . is unstable.

We now summarize some fundamental properties of g, (z):

(Gl) gne is 1/n-periodic,

(G2) foreach £ =1,...,2n — 1, g, is even with respect to z = %,

(G3) gn. is monotone increasing for z € [0,1/2n],

(G4) foreach £ =1,...,n, lim Gne(T) +€2) = fu(U(2)), in the topology of CZ_(R),
(G5) 21_1)% gne(e2) = fu(us), in the topology of C? (R),

(G6) for arbitrality fixed § € (0,1/(4n)), there exists Bne, Bne € R such that 111% Bre =
_ _ £—>
1i_£1(1) Bre = fu(us), and for sufficiently small €, B, < gne(z) < By for z € [0,4] .



Roughly speaking, (G1)-(G2), (G3) and (G4)-(G6) provide the symmetic, monotone and
asymptotic properties of pg°. In particular, we see from (2.5) that

{ (U.)2:(2) + fu(U(2))U,(2) =0 in R,

U, € H(R), (25)

and hence, we can expect that Ay ~ 0 as € — 0 and

e T — 27
e~ (25)

in a neighborhood of 2.

However, we would need more precise estimates on g,.(z) than (G6) in order to
justify the above observation. Under the assumptions (A1)-(A3) one can derive from
Proposition 2.1 that as € — 0, Bne = fu(us) +O0(e™¥™) and § = f,(us)+O(e~¥™) with
some d,d > 0. They lead us to the asymptotic estimates of critical eigenvalues, which is
obtained in Carr-Pego [2] already stated as in the introduction.

Here we would like to refer the result of Carr and Pego, and prepare the following
proposition, which is an easy consequence of the result by [2].

Proposition 2.4. Assume (A1)-(A3). Let n € N and ¢ € (0, +/f.(0)/n7). Then,
(1) i% /\0’ = 0)
AT — A" B

(ii) for 0 < j < n, lim L— =0.
e—0 I

2.3 Properties of principal eigenfunction

With use of (i) of Proposition 2.4, one can easily obtain some properties of the principal
eigenfunctions.

Proposition 2.5. Assume (A1)-(A3). Let n € N and ¢ € (0, /£,(0)/n7). Then,
(i) wp*© is 1/n- periodic,
(ii) g is even w.r.t. x = 27,
(iii) @p* is monotone increasing for z € [0,1/2n).
Proof. The claims can be proved by using the properties (G1)-(G3). We omit a detail. [J
Proposition 2.6. Assume (A1)-(A3). Letn € N and € € (0, /f.(0)/n). Then, Under

a suitable normalizations on ¢y,
lim (2 +22) = (~1)90.(2) 29
e—0

and

lim 0" (3f + £2) = cosh(y/— fu(u+)z2) (2.7)

e=0  p°(0)
in the topology of C2_(R).

loc
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Proof. The claims can be proved by using the properties (G4), (G5) and (i) of Proposition
2.4. We omit a detail. O

Proposition 2.7. Assume (A1)-(A3). Letn € N and ¢ € (0, 4/ fu(0)/nm). Then for any
d € (0,1/(4n)),

lim - T ,
=0 Jo 9o (€)? —fuluz)

T ME 2

Proof. The comparison argument with (G6) and (i) of Proposition 2.4 proves the propo-
sition. We omit a detail. O

3 Symmetric Properties on eigenfunctions

Fix n € N, e € (0,/f.(0)/n7) and 0 < j < n. Let us consider the auxially problem:

{ 2Pz (x) + (gne(@) + N@(z) =0 in (0,1), (3.1)

¢(0) =0,

where ¢,(0) # 0 is to be chosen in later. When A = A}* for some 0 < j < n, we denote
the solution of (3.1) by @}~
> @) )
ne 0ic(z) g (x
M7 (z) = 'r{ € ~r{,5
)= | (o (G
The following proposition on the monodromy martiz is proved by Floquet theory with
(G1) and (G2), and by a standard linear algebra .

Proposition 3.1. Let n € N e € (0,/fu(0)/nm). For any ;° and §7° of (2.3) and
(3.1), there exists a unique ;" > 0 and a unique K" >0 such that

[ T 1 . g
1 cos — e Sin —
M™E (_)Mn,e(o)-l _ noooyon |
7 \n/ 7 Jm Jjm
- € sin — coS —
L n n
B . n,e .
T K 0
K™ cos 10 —L— sin Al
n,e n,€ I 2n ’YJ ’ 2’”1
Mj ’ M (0) = n,e .
2n Y g1 g
——mEsSinis— —Jzcos—
K; 2n  K; 2n

Remark 3.1. In the proof of Proposition 3.1, (G2) plays an essential role (see [6]). In
absense of (G2), the representation of M** seems to be complicated.

Moreover, under a suitable normalizing condition on ¢} and @;*, fine symmetric
properties are obtained.



Corollary 1. Suppose that ;"

Under the normalizing condition

(957°)2(0) = 7}""037(0)

the following (i)-(iv) hold :

T . T
) Mns(l ) [1 0 ]MMU COS% Sm%
1 = —x) = \T :
J — J m i )
n 0 -1 sin?T  —cos It
n
i) Mne( 1 ne () cos‘% sin 2%
1 i x—l——>=Mj’x no|.
n —sin?l cos T
n n
(iii) for£=0,1,...,n,
Cos 7Ty sin ymwxy

M) = 5 0)|

TH,E _+ . n n,e . n
—v; " sinjmzy ;> cos jmay

Let ¢ and @7 be as in Proposition 3.2. Then,
J J

d (@?’E) 1 .
g e ) — T,E w QDT'L’Ea SDT‘L’E) =
dz ;™) (p57)? (¥

Ve eT(0)?
S

where W denotes the Wronskian. It implies that

wit(@) o et(€)?
for sufficiently small z € [0, 2] and putting z = 1/(2n) we see
. 1 ne ne 2
Jm / 2 (0)
tan = = L. (3.2)
2n 0 ;" (€)?

4 Qutline of proofs

4.1 Quotient of eigenfunctions

Fixn € N, e € (0,/fu(0)/(n)). Suppose 0 < j < n. For the eigenfunction ¢, of (2.3)
and the eigenfunction @ of the auxially problem (3.1), set

n,e L ('07.1’8(1;) Tn,E L @Jn,e(x)
W = ey W= e

(4.1)

and /@?’E be positive numbers given in Proposition 3.1.
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respectively, A direct calculation shows us that ¢ and also zﬁ;” satisfy the following
linear differential equation

. e (e o AVE L \me i
("pj’ )zz + Q%gn,s(l(l/)’ )a: + ]6—20’1/)1 © =0 (42)

(in a subinterval in [0, 1]) with

(%7):(0) = (¥7)=(1) =0 and  $*(0) = 47*(1) =0
Without loss of generality, we can always assume that

¥7*(0) = cos jmzy.

In addition, for each ¢}, ¢} should be chosen to satisfy the normalized condition

J
(#5)=(0) = 7;"*¢5°(0)

as in Proposition 3.1; so that

. (#;°)2(0)
me) (0) = i 2B neyme gy
Proposition 4.1. Letn € N, and let 0 < j < n be fired. Suppose that 7 and 7,5?5 are
the functions defined in (4.1). Then,
lim ;" () = cos jm2t  uniformly in [0, 27].
e—0
Proof. We first remark that ¢™¢(x) > 0 for z € [0, 27") because of (G2). Hence it follows
from Sturm comparison theorem and 0 < A7 — Ag"* < An€ — Ag* that ¢° is positive and
bounded: e
cosjﬂz{‘c'oﬁe(z) <

wo(z) ~

Now we rewrite (4.2) as follows:

¥ (z) < cosjmay  for x € [0, 27].

S — 2o
(6" (@) (W] )e], + 6" ()" = 0.

By integrating the above equation from 0 to x we have

)\7?'»5 . )\nﬁe T ’n,E(g) 2
ne j 0 %o ne _ 4
) + 25 [ (B gpecegae o @3
By using (iii) of Theorem 2, we obtain

n,e )\?76 B g’s n . n
W7 )a(@)] < 220 2 cos el

Therefore, by (i) of Theorems 2

lir%(q/);’“’e)x(x) =0 uniformly in [0, 27],
and we obtain

lirr(l) Y3 (x) = cos jmzy  uniformly in [0, 27].
e—



Corollary 2. Letn € N, and let 0 < j < n be fived. Suppose v} be the number as in
Proposition 3.2. Then,

: ne __ _ jﬂ-
il_x)% ey = fu(ug) tan o
Proof. We see that for each z € [0, 27,

P e [Fooind 1407,
i@ 7 Jo 96?7 ewpt(€)?

Set z = 27 = 1/(2n) in (4.4). It follows from (3.2) with the mean value theorem that

i Sy L

o P (£)

3 (4.4)

dg,

K
tan I _ ey

20 M T rEE)? e

where &; € (0, 27).
By letting € — 0 with Propositions 4.1 and 5.1, we obtain a desired result. O

Proposition 4.2. Letn € N, 0 < j < n, ¢;° and 15;” as in Proposition 5.1. Then, for
any § with 0 < § < 1/(4n),

lim 1/3;’5(27) =sinjm2] uniformly in [9, 27].

Proof. The proof is a modification of the proof of Corollary 2. We omit a detail. O

4.2 Proof of Theorem 1

Proof of Theorem 1. Now we extend the convergence result in Proposition 5.1 to z €
[0, 27 — d]. Suppose z € [z}, 2] — §]. By (i) of Proposition 3.2 we have

n, . Tn,e n,€ 1 . Tn,e 1 il
Yo () + i) (z) = (wj (—T; - 1) — 1] (ﬁ - z))ej L,
Hence it follows from Proposition 4.1 that
. n, . Tn.e _ —ijm/(2n) ij — pigmzf
lim (47 (2) + i (2)) = &I/ CmeiImIn = iomeE (4.5)
uniformly in [27, 27 — §]. By combining Proposition 4.1 with (4.5), we obtain
lin% Y3 (z;€) = cosjmzy  uniformly in [0, z7 — 4] (4.6)
e—

and
liné zﬁfe(x, ) =sinjmz] uniformly in [J, 2T — d]. (4.7)
£

Therefore (i) of Theorem 1 follows from (4.6).
We note tha (iii) of Theorem 1 can be proved in similarly.
Finally, we suppose z € [z} _; + §,z} — d] for some £ =2,...,n. It follows from (ii) of
Proposition 3.2 that
n,e . Tn.e n,e (-1 . Tn.E -1 ijn(f—1)/n
P (@) + iy (z) = (@bj’ (:r:— —n_) + iy (:E - —*))ej (e-=1/n,

n
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Therefore (4.6) and (4.7) leads us to

' ME (o e (1 — i/ (2n) gijn(l-1)/n _ ijmzy
ll_r)% (%7 " (z;€) + i) (z;6)) = 97/ et "= e,

uniformly in [z} ; + 6,2} — 4]. In particular, we have
lim ¢ (2;€) = cos jmzg
lim Vi (25 €) Jjm2,

uniformly in [z} ; + §, 2} — d] and it proves (ii) of Theorem 1.
Thus it completes the proof of Theorem 1. O

4.3 Proofs of Theorem 2
Proof of Theorem 2. Foreach j=1,...,n—1and£=1,...,n—1 and

@3 (27 + €2)

U (z52p) =7 (2] + €2) = .
7 (Z’ xl) 1/)] ( £ ) (pg,s(l_?_i_ez)
Similarly as (4.2) we can see that \I’;-"E(-; z}) satisfy the differential equation

(" )e(77 + €2)
wo (27 + £2)

(5)ee +2 B9+ (057 - NG =0. (49)

By (iii) of Proposition 3.2 and Theorem 1 the initial condition on ®}*(-;2}) at z = 0 is
given by

1
®7°(0; x7) = cos jm2y cos jmxy = E(cos Jmag, + cos jmzy)

and
ne e . -
(®37)-(0;27) = o §(COS]7TZ£+1 — €08 jT2y).

Hence it follows from (ii) of Proposition 2.4, and Corollary 2 that

1 ? . 50 .
lim W7 (307) = U3z )
uniformly in any compact subset in R, where lIl;.”o(z; z}) is the solution of

(\I’?’O)zz +-2\/ _fu(u:t) tanh _fu(u:l:)z(q/;‘l,o)z =0 (49)

with the initial condition

1
7 0157) = Lossnsta +evs )

(¥):(0;27) = Y2

COS JTzy, 1 — COS jmzy).

By solving (4.9) with the initial condition above, we are led to

n n n n
n,0 CO82p4q +COS2Z;  COSZp,q — COSZy
Uy (2) = 5 + 5 tanh \/~ fu(us)z.

Thus it completes the proof. O
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