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ABSTRACT. We examine the Aharonov-Bohm effect on the torus
through the light of semiclassical measures. We show how the the-
ory developed in [AM10] adapts to the case of magnetic potentials
with vanishing magnetic field and characterise the high-frequency
dynamics of positions densities corresponding to solutions to the
magnetic Schr\"odinger equation on the torus. This allows us to
give a characterisation of the highly-oscillating sequences of initial
data whose corresponding solutions are affected by the magnetic
potential in the high-frequency limit.

1. INTRODUCTION

Let $\mathbb{T}^{d}$

$:=\mathbb{R}^{d}/2\pi \mathbb{Z}^{d}$ denote the torus equipped with the standard flat
metric. Consider a smooth one-form $\theta\in\Omega^{1}(\mathbb{T}^{d})$ and a smooth real
potential $V\in C^{\infty}(\mathbb{T}^{d};\mathbb{R})$ . The Schr\"odinger operator corresponding to
a particle of mass 1 and charge $-1$ moving on $\mathbb{T}^{d}$ under the influence
of the magnetic potential $\theta$ and the electric potential $V$ is:

(1) $\hat{H}_{\theta,V}:=\frac{1}{2}\Vert D_{x}+\theta\Vert^{2}+V=\frac{1}{2}\sum_{j=1}^{d}(D_{x_{j}}+\theta_{j})^{2}+V,$

where $D_{x}$ $:=$ $(D_{x_{1}}, D_{x_{d}})$ with $D_{x_{j}}=-i\partial_{x_{j}}$ and $\theta=\sum_{j=1}^{d}\theta_{j}dx_{j}.$

The probability density of finding the particle in an infinitesimal
neighborhood of $x$ at a given time $t$ is $|u(t, x)|^{2}$ where $u$ solves the
time-dependent Schr\"odinger equation:

(2)
$i\partial_{t}u(t, x)+\hat{H}_{\theta,V}u(t, x)=0, (t, x)\in \mathbb{R}\cross \mathbb{T}^{d},$

$u(O, x)=u^{0}(x) , x\in \mathbb{T}^{d}.$

In order to simplify the discussion that follows, we have replaced in
equation (2) Planck’s constant $\hslash$ by one. This will not affect any of the
results that will follow.
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When the magnetic field associated to the magnetic potential $\theta$ is
zero, $i.e$ . if the differential form $\theta$ is closed:

$d\theta=0,$

then $\theta(x)=\theta_{0}+d\varphi(x)$ for some $\varphi\in C^{\infty}(\mathbb{T}^{d})$ and $\theta_{0}\in(\mathbb{R}^{d})^{*}$ is

constant. Write $\theta_{0}=\sum_{j=1}^{d}\theta_{0,j}dx_{j}$ , then $\theta_{0,j}$ are the magnetic fluxes
corresponding to closed curves forming a basis of the homology group of
$\mathbb{T}^{d}$ . Of course, $\theta_{0}$ is the only constant representative in the cohomology

class of $\theta$ . In this case, $\hat{H}_{\theta,V}$ can be unitarily conjugated to $\hat{H}_{\theta_{0},V}$ via
a gauge transformation:

(3) $\hat{H}_{\theta,V}=e^{-i\varphi}\hat{H}_{\theta_{0},V}e^{i\varphi}.$

In spite of the fact that the magnetic field vanishes, Aharonov and
Bohm discovered [AB59] that the magnetic potential affects the dy-
namics of the electron, provided $\theta_{0}\not\in 2\pi \mathbb{Z}^{d}$ . Rather than the torus,
they focused on the Euclidean plane with a point obstacle removed
$\mathbb{R}^{2}\backslash \{(0,0$ which destroys the simple connectivity, and showed that
the scattering cross-section is influenced by the flux modulo $2\pi \mathbb{Z},$ $[\theta_{0}]\in$

$\mathbb{R}/2\pi \mathbb{Z}$ . This prediction was confirmed experimentally by Tonomura $et$

al. $[TOM^{+}86].$

Further understanding of the Aharonov-Bohm effect as well as its
extension to more general settings than that initially studied in [AB59]
has been the object of intense research in recent years, see [RY02,
$BW09b,$ $BW09a$ , EIOIO, PRII, BWII, Esk13, $ER13|$ among many oth-
ers. In [Esk13], Eskin considered the the time-dependent Schr\"odinger
equation with vanishing magnetic field on the exterior of a bounded
obstacle in the plane. He constructed a highly oscillating sequence of
solutions $(u_{\epsilon})$ to that equation such that

$|u_{\epsilon}(t, x)|^{2}=2\sin^{2}(\theta_{0}/2)+O(\epsilon)$ ,

as $\epsilonarrow 0^{+}$ in an $\epsilon$-neighborhood of a point. Therefore, $[\theta_{0}]$ affects

the dynamics of $|u_{\epsilon}(t, \cdot)|^{2}$ in the high-frequency regime for a particular
family of oscillating solutions.

It is natural to ask how general this behavior can be, or, how is the
general structure of the solutions affected by $\theta_{0}$ . Motivated by Eskin’s
article [Esk13] we address this issue in the case of the torus $\mathbb{T}^{d}$ presented
above.

2. RESULTS

We next proceed to describe the main result of this note. As men-
tioned in the previous section, we are interested in characterising the
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high frequency behavior of position densities $|u_{\epsilon}(t, x)|^{2}$ associated to
highly oscillating solutions to (2).

We first state precisely we problem we are interested in. Consider a
sequence $(u_{\epsilon}^{0})$ in $L^{2}(\mathbb{T}^{d})$ satisfying $\Vert u_{\epsilon}^{0}\Vert_{L^{2}(\mathbb{T}^{d})}=1$ . Let $u_{\epsilon}$ denote the

corresponding solutions to (2). We want to describe the behavior of

$|u_{\epsilon}(t, x)|^{2}, as\epsilonarrow 0^{+}.$

Two remarks are in order:

$\bullet$ Due to the gauge equivalence (3), $v_{\epsilon}$

$:=e^{i\varphi}u_{\epsilon}$ is a solution to:

(4) $\{\begin{array}{l}i\partial_{t}v_{\epsilon}+\hat{H}_{\theta_{0},V}v_{\epsilon}=0,v|_{t=0}=u_{\epsilon}^{0}.\end{array}$

Since $|v_{\epsilon}|^{2}=|u_{\epsilon}|^{2}$ , we can replace, without loss of generality,
the dynamics of (2) by those of (4).

$\bullet$ Since $(u_{\epsilon}^{0})$ is highly oscillating, there is no hope in general to
describe the pointwise behavior of $|u_{\epsilon}(t, x)|^{2}$ Therefore, we are
going to analyse averages of $|u_{\epsilon}(t, x)|^{2}$ both in $t$ and $x.$

Notice that for each $t\in \mathbb{R}$ , the density $|u_{\epsilon}(t, \cdot)|^{2}$ can be identified to
an element of $\mathcal{P}(\mathbb{T}^{d})$ , the set of probability measure on $\mathbb{T}^{d}$ . Moreover,

$\mathbb{R}\ni t\mapsto|u_{\epsilon}(t, \cdot)|^{2}\in \mathcal{P}(\mathbb{T}^{d})$ ,

can be viewed as an element of $L^{\infty}(\mathbb{R};\mathcal{P}(\mathbb{T}^{d}))$ . Since $\mathbb{T}^{d}$ is compact,
we can apply Helly’s theorem to ensure that $(u_{\epsilon})$ is relatively compact
for the $weak-*$ topology on $L^{\infty}(\mathbb{R};\mathcal{P}(\mathbb{T}^{d}))$ .

This means that a subsequence $(u_{\epsilon_{n}})$ and a probability measure $\nu\in$

$L^{\infty}(\mathbb{R};\mathcal{P}(\mathbb{T}^{d}))$ exist such that, for every $a\in C(\mathbb{T}^{d})$ and every $\alpha<\beta$

the following convergence takes place:

(5) $\lim_{narrow\infty}\int_{\alpha}^{\beta}\int_{\mathbb{T}^{d}}a(x)|u_{\epsilon_{n}}(t, x)|^{2}dxdt=\int_{\alpha}^{\beta}\int_{\mathbb{T}^{d}}a(x)\nu(t, dx)dt.$

Our main result, Theorem 1, describes how $v$ is obtained in terms of
the sequence of initial data $(u_{\epsilon_{n}})$ and how $\nu(t, \cdot)$ depends on $t$ . In order
to state it we need some notations.

We denote by $\mathcal{L}$ the set of all primitive submodules of $\mathbb{Z}^{d}$ . In other
words, $\Lambda\in \mathcal{L}$ whenever the lattice A satisfies $span_{\mathbb{R}}\Lambda\cap \mathbb{Z}^{d}=\Lambda.$

Let

$e_{k}(x):= \frac{e^{ik\cdot x}}{(2\pi)^{d/2}}$ ;
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given $u\in L^{2}(\mathbb{T}^{d})$ we write the Fourier series representation of $u$ as:

$u(x)= \sum_{k\in \mathbb{Z}^{d}}\hat{u}_{k}e_{k}(x) , \hat{u}_{k}:=\int_{\mathbb{T}^{d}}u(x)e_{-k}(x)dx.$

Given $\Lambda\in \mathcal{L}$ , denote by $L^{2}(\mathbb{T}^{d}, \Lambda)$ the subspace of $L^{2}(\mathbb{T}^{d})$ consisting of
those $u$ satisfying $\hat{u}_{k}=0$ if $k\not\in\Lambda$ . Note that such an $u$ satisfies:

$u(x+v)=u(x)$ , for every $v\in\Lambda^{\perp},$

where $\Lambda^{\perp}$ is the orthogonal space to A in $\mathbb{R}^{d}.$

Let $a\in L^{\infty}(\mathbb{T}^{d})$ ; we denote by $\langle a\rangle_{\Lambda}$ the average of $a$ along the
directions in $\Lambda^{\perp}$ If $a= \sum_{k\in \mathbb{Z}^{d}}\hat{a}_{k}e_{k}$ this amounts to:

$\langle a\rangle_{\Lambda}(x):=\sum_{k\in\Lambda}\hat{a}_{k}e_{k}(x)$
.

We denote by $m_{\langle a\rangle_{\Lambda}}$ the operator acting on $L^{2}(\mathbb{T}^{d}, \Lambda)$ by multiplication
by $\langle a\rangle_{\Lambda}.$

Finally, $P_{\Lambda}$ will denote the orthogonal projection onto $\langle\Lambda\rangle$ . Note
that the operator

(6) $\hat{H}_{\theta_{0},V,\Lambda}:=\frac{1}{2}\Vert P_{\Lambda}(D_{x}+\theta_{0})\Vert^{2}+\langle V\rangle_{\Lambda},$

has a well-defined action on $L^{2}(\mathbb{T}^{d}, \Lambda)$ .
As a straightforward adaptation of the proof of Theorem 3 of [AM10]

we obtain the following result.

Theorem 1. Let $v\in L^{\infty}(\mathbb{R};\mathcal{P}(\mathbb{T}^{d}))$ be a measure obtained $a\mathcal{S}$ a weak-
$*limit(5)$ for $\mathcal{S}ome$ sequence $(u_{\epsilon_{n}})$ of solutions to (4). Then for every
$\Lambda\in \mathcal{L}$ there exist a continuous one-parameter family $\sigma_{\Lambda}(t)$ , $t\in \mathbb{R}$ , of
$p_{0\mathcal{S}}itive$, self-adjoint, trace-class operators on $L^{2}(\mathbb{T}^{d}, \Lambda)\mathcal{S}uch$ that:

(7) $\int_{\mathbb{T}^{d}}a(x)\nu(t, dx)=\sum_{\Lambda\in \mathcal{L}}tr_{L^{2}(\mathbb{T}^{d},\Lambda)}(m_{\langle a\rangle_{\Lambda}}\sigma_{\Lambda}(t))$ .

In addition, each $\sigma_{\Lambda}(t)$ satisfies a Heisenberg equation:

(8) $i\partial_{t}\sigma_{\Lambda}(t)=[\hat{H}_{\theta_{0},V,\Lambda}, \sigma_{\Lambda}(t)],$

whose initial datum $\sigma_{\Lambda}|_{t=0}=\sigma_{\Lambda}^{0}$ is completely and uniquely determined
by the sequence of initial data $(u_{\epsilon_{n}}^{0})$

The operators $\sigma_{\Lambda}^{0}$ are obtained from the sequence of initial data $(u_{\epsilon_{n}}^{0})$

as weak limits of two-microlocal semiclassical measures, see Section 3.1
in [AM10] for a definition. These objects quantify how the mass of the
sequence $(u_{\epsilon_{n}}^{0})$ concentrates on the linear subspace $\Lambda^{\perp}$ , and have their
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origin in a construction developed independently by Nier [Nie96] and
Fermanian-Kammerer $[FK00a, FK00b].$

The reader interested on general aspects of the study of limits of the
type (5) on a general compact Riemannian manifold $(M, g)$ (for the
non-magnetic case) can consult [Mac09], the survey papers (Macll,
AM12], and the references therein.

This problem is very hard to attack in its full generality; but progress
has been made when the dynamics of the geodesic flow of $(M, g)$ is (Li-
ouville) completely integrable. When $\theta_{0}=0$ , Theorem 1 was proved
for $d=2$ and $V=0$ in [MaclO]; and for arbitrary $d$ and $V$ contin-
uous outside a set of zero Lebesgue measure in [AM10]. As already
mentionend, the proof of Theorem 1 is completely identical to that of
Theorem 3 in [AM10].

Finally, the case of quantum completely integrable systems was anal-
ysed in [AFKM14]. Equation (4) fits in the framework of that article;
it should be noted though that if one applies directly the results of
(AFKM14] to the present context, on would get a different, but equiva-
lent, statement than Theorem 1, involving a different propagation law
as well as slightly different two-microlocal measures.

3. SEMICLASSICAL MEASURES AND THE AHARONOV-BOHM EFFECT

In order to obtain a better understanding of equation (7) and (8),
and connect it to the discussion presented in the introduction, let us
state some remarks.

First, in order to clarify the nature of (8), write the compact self-
adjoint operator $\sigma_{\Lambda}^{0}$ as a superposition of orthogonal projectors onto
its eigenspaces. Let $(\phi_{n}^{\Lambda})$ denote an orthonormal basis of $L^{2}(\mathbb{T}^{d}, \Lambda)$

consisting of eigenfunctions of $\sigma_{\Lambda}^{0}$ :

$\sigma_{\Lambda}^{0}\phi_{n}^{\Lambda}=\lambda_{n}^{\Lambda}\phi_{n}^{\Lambda},$

since in addition, $\sigma_{\Lambda}^{0}$ is positive and trace-class,

$\lambda_{n}^{\Lambda}\geq 0, tr_{L^{2}(\mathbb{T}^{d},\Lambda)}\sigma_{\Lambda}^{0}=\sum_{n\in \mathbb{N}}\lambda_{n}^{\Lambda}\leq 1.$

If $|\phi_{n}^{\Lambda}\rangle\langle\phi_{n}^{\Lambda}|$ denotes the orthogonal projector of $L^{2}(\mathbb{T}^{d}, \Lambda)$ onto $\mathbb{C}\phi_{n}^{\Lambda}$ we
have:

$\sigma_{\Lambda}^{0}=\sum_{n\in \mathbb{N}}\lambda_{n}^{\Lambda}|\phi_{n}^{\Lambda}\rangle\langle\phi_{n}^{\Lambda}|$

It turns out that $\sigma_{\Lambda}(t)$ is then given by:

$\sigma_{\Lambda}(t)=\sum_{n\in N}\lambda_{n}^{\Lambda}|v_{n}^{\Lambda}(t, \langle v_{n}^{\Lambda}(t, \cdot)|,$
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where $v_{n}^{\Lambda}$ solves the averaged Schr\"odinger equation:

(9) $\{\begin{array}{l}i\partial_{t}v_{n}^{\Lambda}+\hat{H}_{\theta_{0},V,\Lambda}v_{n}^{\Lambda}=0,v_{n}^{\Lambda}|_{t=0}=\phi_{n}^{\Lambda}.\end{array}$

Remark 2. Equation (9) $i_{\mathcal{S}}$ invariant by translations along directions
in $\Lambda^{\perp}$ Therefore, it can be identified to an equation on a lower dimen-
sional torus, of dimension rk $\Lambda.$

Remark 3. The magnetic potential affects the propagation law in equa-
tion (9) if and only if $P_{\Lambda}\theta_{0}\neq 0$ , i.e. whenever $\theta_{0}\not\in\Lambda^{\perp}$

Identity (7) can now be rewritten in terms of a superposition of po-
sition densities associated to averaged, lower dimensional, Schr\"odinger
evolutions:

(10) $\int_{\mathbb{T}^{d}}a(x)v(t, dx)=\sum_{\Lambda\in \mathcal{L}}\sum_{n\in N}\int_{\mathbb{T}^{d}}\langle a\rangle_{\Lambda}(x)\lambda_{n}^{\Lambda}|v_{n}^{\Lambda}(t, x)|^{2}dx,$

where $v_{n}^{\Lambda}$ solves (9).

Remark 4. It can be easily seen from (6) that $\hat{H}_{\theta_{0},V,\{0\}}=\hat{V}_{0}$ ; and
by definition, $L^{2}(\mathbb{T}^{d}, \{0\})=\mathbb{C}$ . Therefore, the term corresponding to
$\Lambda=\{O\}$ in (10) is a constant that $doe\mathcal{S}$ not propagate with respect to
$t$ . In particular, it is not affected by $\theta_{0}.$

We obtain the following consequence of Theorem 1 that clarifies the
structure of those sequences for which the magnetic potential does not
affect the high-frequency propagation of the position densities.

Corollary 5. Let $\nu\in L^{\infty}(\mathbb{R};\mathcal{P}(\mathbb{T}^{d}))$ be obtained from a sequence of
solutions $(u_{\epsilon_{n}})$ as a $weak-*limit(5)$ . Let $(\sigma_{\Lambda}^{0})_{\Lambda\in \mathcal{L}}$ be as in Theorem 1.
Then $\nu$ is is not affected by the magnetic potential $\theta_{0}$ if and only if, for
every $\Lambda\in \mathcal{L},$ $\Lambda\neq\{0\}$ :

(11) $\sigma_{\Lambda}^{0}\neq 0\Rightarrow\theta_{0}\in\Lambda^{\perp}$

Therefore, the influence $\theta_{0}$ on the dynamics is related to the vanishing
of certain operators $\sigma_{\Lambda}^{0}$ . A sufficient condition for $\sigma_{\Lambda}^{0}$ to vanish is the
following (see Proposition 7 in [MaclO]).

Lemma 6. If the sequence of initial data $(u_{\epsilon_{n}}^{0})sati\mathcal{S}fie\mathcal{S}$

(12)
$\lim_{narrow\infty}\sum_{dist(k,\Lambda^{\perp})<R}|u_{\epsilon_{n,k}}^{\hat{0}}|^{2}=0$

, for every $R>0,$

then $\sigma_{\Lambda}^{0}=0.$
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When $\Lambda=\mathbb{Z}^{d}$ (resp. $\Lambda=\{0\}$ ), condition (12) merely states that
$(u_{\epsilon_{n}}^{0})$ converges weakly (resp. strongly) to zero in $L^{2}(\mathbb{T}^{d})$ .
Corollary 5 admits the following reinterpretation. Let $(u_{\epsilon}^{0})$ a se-

quence of initial data satisfying the hypotheses of Corollary 5 and such
that (12) holds for every $\Lambda\in \mathcal{L},$ $\Lambda\neq\{0\}$ , such that $P_{\Lambda}\theta_{0}\neq 0$ . Consider
the solution of:

$\{\begin{array}{l}i\partial_{t}w_{\epsilon}+(\frac{1}{2}\triangle_{x}-V)w_{\epsilon}=0,w_{\epsilon}|_{t=0}=u_{\epsilon}^{0}.\end{array}$

Then the $weak-*$ limit ( $5)$ of $|w_{\epsilon}|^{2}$ exists and equals $v$ . In other words,
$|u_{\epsilon}|^{2}$ and $|w_{\epsilon}|^{2}$ behave identically in the high-frequency limit.

Remark 7. If $\theta_{0}\in(\mathbb{R}^{d})^{*}$ satisfies $\theta_{0}$ $k\neq 0$ for every $k\in \mathbb{Z}^{d}\backslash \{O\}$

then $P_{\Lambda}\theta_{0}\neq 0$ for every $\Lambda\in \mathcal{L}$ such that $\Lambda\neq\{0\}$ . Therefore, $a\mathcal{S}$

soon as $\sigma_{\Lambda}^{0}\neq 0$ for some $A\neq\{O\}$ , the $weak-*$ limits of $|u_{\epsilon}|^{2}$ and $|w_{\epsilon}|^{2}$

$mu\mathcal{S}l$ differ. In other words, the propagation law of $weak-*limit$ of the
position $den\mathcal{S}ities$ is affected by the magnetic potential in this case.
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