# On multidimensional inverse scattering in time－dependent electric fields ${ }^{\dagger}$ 

Atsuhide ISHIDA

Faculty of Economics，Otemon Gakuin University<br>1－15 Nishiai 2－chome，Ibaraki，Osaka 567－8502，Japan<br>E－mail：a－ishida＠res．otemon．ac．jp

## 1 Introduction

Throughout this paper，we assume the spatial dimension $d \geqslant 2$ ．We report one of the inverse scattering problems for quantum systems in a time－dependent electric field $E(t) \in \mathbb{R}^{d}$ ，which was obtained in Adachi－Fujiwara－I［1］．By Enss－Weder time－dependent method［5］，we can show that the high speed limit of the scattering operator determines uniquely the potential $V$ belonging to the wider class than the classes given by the previous work in Adachi－Maehara ［3］，Adachi－Kamada－Kazuno－Toratani［2］，Nicoleau［10］and Fujiwara［6］．

The free and full Hamiltonians under the consideration are given by

$$
\begin{equation*}
H_{0}(t)=p^{2} / 2-E(t) \cdot x, \quad H(t)=H_{0}(t)+V \tag{1.1}
\end{equation*}
$$

acting as the self－adjoint operators on $L^{2}\left(\mathbb{R}^{d}\right)$ ，where $p=-i \nabla_{x}$ is the momentum，$E(t)$ is the time－dependent electric field and the interaction potential $V$ is real－valued multiplicative operator．$E(t)$ and $V=V^{\mathrm{vs}}+V^{\mathrm{s}}+V^{\mathrm{l}} \in \mathscr{V}^{\mathrm{vs}}+\mathscr{V}_{\mu, \alpha_{\mu}}^{\mathrm{s}}+\mathscr{V}_{\mu, \gamma_{\mu}}^{1}$ satisfy following assumptions．

Assumption 1．1．The time－dependent electric field $E(t) \in \mathbb{R}^{d}$ is represented as

$$
\begin{equation*}
E(t)=E_{0}(1+|t|)^{-\mu}+E_{1}(t), \tag{1.2}
\end{equation*}
$$

where $0 \leqslant \mu<1, E_{0} \in \mathbb{R}^{d} \backslash\{0\}$ and $E_{1}(t) \in C\left(\mathbb{R}, \mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\left|\int_{0}^{t} \int_{0}^{s} E_{1}(\tau) d \tau d s\right| \leqslant C \max \left\{|t|,|t|^{2-\mu_{1}}\right\} \tag{1.3}
\end{equation*}
$$

with $\mu<\mu_{1} \leqslant 1$ ．

[^0]Roughly speaking about the perturbation part $E_{1}(t)$, we assume that $\left|E_{1}(t)\right| \leqslant C(1+$ $|t|)^{-\mu_{2}}$ for some $\mu_{2}>\mu$ and take $\mu_{1}$ as follows:

$$
\begin{cases}\mu_{1}=\mu_{2} & \mu<\mu_{2}<1  \tag{1.4}\\ \mu<\mu_{1}<\mu_{2} & \mu_{2}=1 \\ \mu_{1}=1 & \mu_{2}>1\end{cases}
$$

Such $E(t)$ was first dealt with in Adachi-Kamada-Kazuno-Toratani [2]. For brevity's sake, we suppose that $E_{0}=e_{1}=(1,0, \ldots, 0) \in \mathbb{R}^{d}$.
Assumption 1.2. $\mathscr{V}^{\mathrm{vs}}$ is the class of real-valued multiplicative operators $V^{\mathrm{vs}}$ is satisfying that $V^{\mathrm{vs}}$ is decomposed into the sum of a singular part $V_{1}^{\mathrm{vs}}$ and a regular part $V_{2}^{\mathrm{vs}} . V_{1}^{\mathrm{vs}}$ is compactly supported, belongs to $L^{q_{1}}\left(\mathbb{R}^{d}\right)$ and satisfies $\left|\nabla V_{1}^{\mathrm{vs}}\right| \in L^{q_{2}}\left(\mathbb{R}^{d}\right) . V_{2}^{\text {vs }} \in C^{1}\left(\mathbb{R}^{d}\right)$ satisfies that $V_{2}^{\mathrm{vs}}$ and its first derivatives are all bounded in $\mathbb{R}^{d}$ and that

$$
\begin{equation*}
\int_{0}^{\infty}\left\|F(|x| \geqslant R) V_{2}^{\mathrm{vs}}(x)\right\|_{\mathscr{B}\left(L^{2}\right)} d R<\infty . \tag{1.5}
\end{equation*}
$$

Here $q_{1}$ satisfies that $q_{1}>d / 2$ and $q_{1} \geqslant 2, q_{2}$ satisfies

$$
\begin{cases}1 / q_{2}=1 /\left(2 q_{1}\right)+2 / d & d \geqslant 5  \tag{1.6}\\ 1 / q_{2}<1 /\left(2 q_{1}\right)+1 / 2 & d=4 \\ 1 / q_{2}=1 /\left(2 q_{1}\right)+1 / 2 & d \leqslant 3\end{cases}
$$

and $F(|x| \geqslant R)$ is the characteristic function of $\left\{x \in \mathbb{R}^{d}| | x \mid \geqslant R\right\}$.
$\mathscr{V}_{\mu, \alpha_{\mu}}^{\mathrm{s}}$ with some $\alpha_{\mu}>0$ is the class of real-valued multiplicative operators $V^{\mathrm{s}}$ is satisfying that $V^{s}$ belongs to $C^{1}\left(\mathbb{R}^{d}\right)$ and satisfies

$$
\begin{equation*}
\left|V^{\mathbf{s}}(x)\right| \leqslant C\langle x\rangle^{-\gamma}, \quad\left|\partial_{x}^{\beta} V^{\mathbf{s}}(x)\right| \leqslant C_{\beta}\langle x\rangle^{-1-\alpha}, \quad|\beta|=1 \tag{1.7}
\end{equation*}
$$

with some $\gamma$ and $\alpha$ such that $1 /(2-\mu)<\gamma \leqslant 1$ and $\alpha_{\mu}<\alpha \leqslant \gamma$.
Finally, $\mathscr{V}_{\mu, \gamma_{\mu}}^{1}$ with some $\gamma_{\mu} \geqslant 1 /(2(2-\mu))$ is the class of real-valued multiplicative operators $V^{1}$ is satisfying that $V^{1}$ belongs to $C^{2}\left(\mathbb{R}^{d}\right)$ and satisfies

$$
\begin{equation*}
\left|\partial_{x}^{\beta} V^{1}(x)\right| \leqslant C\langle x\rangle^{-\gamma_{D}-|\beta| /(2-\mu)}, \quad|\beta| \leqslant 2, \tag{1.8}
\end{equation*}
$$

with some $\gamma_{D}$ such that $\gamma_{\mu}<\gamma_{D} \leqslant 1 /(2-\mu)$.
We note that one can obtain

$$
\begin{equation*}
\int_{0}^{\infty}\left\|F(|x| \geqslant R) V^{\mathrm{vs}}(x)\langle p\rangle^{-2}\right\|_{\mathscr{B}\left(L^{2}\right)} d R<\infty \tag{1.9}
\end{equation*}
$$

by this assumption and it is equivalent to

$$
\begin{equation*}
\int_{0}^{\infty}\left\|V^{\mathrm{vs}}(x)\langle p\rangle^{-2} F(|x| \geqslant R)\right\|_{\mathscr{B}\left(L^{2}\right)} d R<\infty \tag{1.10}
\end{equation*}
$$

because $V^{\mathrm{vs}}$ is a multiplicative operator (see e.g. Reed-Simon [11]).
As for the class $\mathscr{V}_{\mu, \alpha_{\mu}}^{\mathrm{s}}$, we also note that by virtue of $\alpha \leqslant \gamma$, we can treat an oscillation part. For example, the following function belongs to $\mathscr{V}_{\mu, \alpha_{\mu}}^{\mathrm{s}}$ :

$$
\begin{equation*}
V^{\mathrm{s}}(x)=\langle x\rangle^{-\gamma} \cos \langle x\rangle^{\gamma-\alpha} . \tag{1.11}
\end{equation*}
$$

In fact, we can verify easily that $\left|\nabla_{x} V^{\mathrm{s}}(x)\right| \leqslant C\left(\langle x\rangle^{-1-\gamma}+\langle x\rangle^{-1-\alpha}\right) \leqslant C\langle x\rangle^{-1-\alpha}$ holds with some $C>0$.

## 2 Results

We first state the case where $V^{\mathrm{l}}=0$. Then we can see the wave operators

$$
\begin{equation*}
W^{ \pm}=\underset{t \rightarrow \pm \infty}{s-\lim _{t \rightarrow \infty} U(t, 0)^{*} U_{0}(t, 0), ~} \tag{2.1}
\end{equation*}
$$

exist as this fact was shown in Adachi-Kamada-Kazuno-Toratani [2], where we denote the propagators generated by $H_{0}(t)$ and $H(t)$ as $U_{0}(t, 0)$ and $U(t, 0)$. The existence and uniqueness of these propagators are guaranteed by virtue of Yajima [14]. The scattering operator $S=S(V)$ is defined by

$$
\begin{equation*}
S=\left(W^{+}\right)^{*} W^{-} \tag{2.2}
\end{equation*}
$$

The following obtained in [1] is one of those which we would like to report in this paper.
Theorem 2.1. (Adachi-Fujiwara-I [1]) Put

$$
\tilde{\alpha}_{\mu}= \begin{cases}\frac{7-3 \mu-\sqrt{(1-\mu)(17-9 \mu)}}{4(2-\mu)} & 0 \leqslant \mu \leqslant 1 / 2  \tag{2.3}\\ \frac{1+\mu}{2(2-\mu)} & 1 / 2<\mu<1\end{cases}
$$

Let $V_{1}, V_{2} \in \mathscr{V}^{\mathrm{vs}}+\mathscr{V}_{\mu, \tilde{\alpha}_{\mu}}^{\mathrm{s}}$. If $S\left(V_{1}\right)=S\left(V_{2}\right)$, then $V_{1}=V_{2}$.
In the case where $E(t) \equiv E_{0}$, that is, the case of the Stark effect, this theorem was first proved by Weder [12] under the condition $V^{\mathbf{s}} \in \mathscr{V}_{0,0}^{\mathrm{s}}$ and the additional assumption $\gamma>3 / 4$. However, as it is well-known, the short-range condition on $V$ under the Stark effect is $\gamma>1 / 2$. Later Nicoleau [9] proved this theorem for real-valued $V \in C^{\infty}\left(\mathbb{R}^{d}\right)$ satisfying $\left|\partial_{x}^{\beta} V(x)\right| \leqslant C_{\beta}\langle x\rangle^{-\gamma-|\beta|}$ with $\gamma>1 / 2$, under the spatial dimension $d \geqslant 3$. After that, this theorem was obtained by Adachi-Maehara [3] for $V^{\mathrm{s}} \in \mathscr{V}_{0,1 / 2}^{\mathrm{s}}$. In our case where $\mu=0$, substitute $\mu=0$ in $\tilde{\alpha}_{\mu}$. We have

$$
\begin{equation*}
\tilde{\alpha}_{0}=\left.\frac{7-3 \mu-\sqrt{(1-\mu)(17-9 \mu)}}{4(2-\mu)}\right|_{\mu=0}=\frac{7-\sqrt{17}}{8}<\frac{1}{2} \tag{2.4}
\end{equation*}
$$

If $a<b$, then $\mathscr{V}_{\mu, b}^{\mathrm{s}} \subsetneq \mathscr{V}_{\mu, a}^{\mathrm{s}}$. Therefore this implies

$$
\begin{equation*}
\mathscr{V}_{0,1 / 2}^{\mathrm{s}} \subsetneq \mathscr{V}_{0, \tilde{\alpha}_{0}}^{\mathrm{s}} . \tag{2.5}
\end{equation*}
$$

In the time-dependent case where $0<\mu<1$ and $E_{1}(t) \not \equiv 0$, the result corresponding to Theorem 2.1 was also obtained by Adachi-Kamada-Kazuno-Toratani [2] under the assumption that $V \in \mathscr{V}^{\mathrm{vs}}+\mathscr{V}_{\mu, 1 /(2-\mu)}^{\mathrm{s}}$. We can verify that $\tilde{\alpha}_{\mu}<1 /(2-\mu)$ and this implies that above result is finer than the previous one:

$$
\begin{equation*}
\mathscr{V}_{\mu, 1 /(2-\mu)}^{\mathrm{s}} \subsetneq \mathscr{V}_{\mu, \tilde{\alpha}_{\mu}}^{\mathrm{s}} \tag{2.6}
\end{equation*}
$$

We next state the case where $V^{1} \neq 0$. If $V^{1} \in \mathscr{V}_{\mu, \gamma_{\mu}}^{1}$, the Dollard-type modified wave operators due to White [13] (see also Adachi-Tamura [4] and Jensen-Yajima [8])

$$
\begin{equation*}
W_{D}^{ \pm}=\operatorname{sim}_{t \rightarrow \pm \infty} U(t, 0)^{*} U_{0}(t, 0) M_{D}(t), \quad M_{D}(t)=e^{-i \int_{0}^{t} V^{1}(p \tau \tau c(\tau)) d \tau} \tag{2.7}
\end{equation*}
$$

can exist by virtue of the condition $\gamma_{D}>1 /(2(2-\mu))$ (see [2]), where we put

$$
\begin{equation*}
c(t)=\int_{0}^{t} b(\tau) d \tau, \quad b(t)=\int_{0}^{t} E(\tau) d \tau \tag{2.8}
\end{equation*}
$$

Then the Dollard-type modified scattering operator $S_{D}=S_{D}\left(V^{1}, V^{\mathrm{vs}}+V^{\mathrm{s}}\right)$ is defined by

$$
\begin{equation*}
S_{D}=\left(W_{D}^{+}\right)^{*} W_{D}^{-} \tag{2.9}
\end{equation*}
$$

Then we also report the following result.
Theorem 2.2. (Adachi-Fujiwara-I [1]) Suppose that a given $V^{1}$ satisfies $V^{1} \in \mathscr{V}_{\mu, \tilde{\gamma}_{\mu}}^{1}$ with

$$
\begin{equation*}
\tilde{\gamma}_{\mu}=\frac{1}{2(2-\mu)}+\frac{1-\mu}{4(2-\mu)} \tag{2.10}
\end{equation*}
$$

Put

$$
\tilde{\alpha}_{\mu, D}= \begin{cases}\frac{13-5 \mu-\sqrt{(1-\mu)(41-25 \mu)}}{8(2-\mu)} & 0 \leqslant \mu \leqslant 5 / 7  \tag{2.11}\\ \frac{1+\mu}{2(2-\mu)} & 5 / 7<\mu<1 .\end{cases}
$$

Let $V_{1}, V_{2} \in \mathscr{V}^{\mathrm{vs}}+\mathscr{V}_{\mu, \tilde{\alpha}_{\mu, D}}^{\mathrm{s}}$. If $S_{D}\left(V^{1}, V_{1}\right)=S\left(V^{\mathrm{1}}, V_{2}\right)$, then $V_{1}=V_{2}$. Moreover, any one of the Dollard-type modified scattering operators $S_{D}$ determines uniquely the total potential $V$.

In the case where $0<\mu<1$ and $E_{1}(t) \not \equiv 0$, Adachi-Kamada-Kazuno-Toratani [2] proved this theorem under the condition that

$$
\begin{equation*}
V^{1} \in \mathscr{V}_{\mu, \hat{\gamma}_{\mu}}^{1}, \quad V_{1}, V_{2} \in \mathscr{V}^{\mathrm{vs}}+\mathscr{V}_{\mu, 1 /(2-\mu)}^{\mathrm{s}} \tag{2.12}
\end{equation*}
$$

with $\hat{\mu}=(7-\sqrt{3}-\sqrt{60-22 \sqrt{3}}) / 4$ and

$$
\hat{\gamma}_{\mu}= \begin{cases}\frac{-\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{2(1-\mu)^{2}}{1+\mu}}}{2-\mu} & 0<\mu \leqslant \hat{\mu}  \tag{2.13}\\ -\frac{3-\mu}{8}+\sqrt{\frac{(3-\mu)^{2}}{64}+\frac{2 \mu^{2}-7 \mu+7}{4(2-\mu)^{2}}} & \hat{\mu}<\mu<1\end{cases}
$$

Computing straightforwardly, we can see $\tilde{\alpha}_{\mu, D}<1 /(2-\mu)$ and $\tilde{\gamma}_{\mu}<\hat{\gamma}_{\mu}$. We thus obtain

$$
\begin{equation*}
\mathscr{V}_{\mu, 1 /(2-\mu)}^{\mathrm{s}} \subsetneq \mathscr{V}_{\mu, \tilde{\alpha}_{\mu, D}}^{\mathrm{s}}, \quad \mathscr{V}_{\mu, \hat{\gamma}_{\mu}}^{1} \subsetneq \mathscr{V}_{\mu, \tilde{\gamma}_{\mu}}^{1} . \tag{2.14}
\end{equation*}
$$

In particular, there was no result for the case where $\mu=0$. Here we emphasize that if $5 / 7 \leqslant \mu<1$, then $\tilde{\alpha}_{\mu, D}=\tilde{\alpha}_{\mu}$ holds, although if $0 \leqslant \mu<5 / 7$, then $\tilde{\alpha}_{\mu, D}>\tilde{\alpha}_{\mu}$ holds.

Remark 2.3. We assume that $E(t) \in C\left(\mathbb{R}, \mathbb{R}^{d}\right)$ is $T$-periodic in time with non-zero mean $E_{0}$, that is,

$$
\begin{equation*}
E_{0}=\int_{0}^{T} E(\tau) d \tau / T \neq 0 \tag{2.15}
\end{equation*}
$$

which was treated by Nicoleau [10] and Fujiwara [6]. In this case, the method in the proofs of Theorems 2.1 and 2.2 does work well also, because we have

$$
\begin{align*}
\left|b(t)-t E_{0}\right| & \leqslant \int_{0}^{T}\left|E(\tau)-E_{0}\right| d \tau  \tag{2.16}\\
\left|c(t)-t^{2} E_{0} / 2\right| & \leqslant \int_{0}^{|t|}\left|b(\tau)-\tau E_{0}\right| d \tau \leqslant C|t| \tag{2.17}
\end{align*}
$$

with $C=\int_{0}^{T}\left|E(\tau)-E_{0}\right| d \tau$ by the periodicity of $E(t)$. (2.17) implies $\mu=0$ in (1.2) and $\mu_{1}=1$ in (1.3).

By virtue of this fact, we can obtain an improvement of the results of [10] and [6].
Theorem 2.4. Suppose that $E(t) \in C\left(\mathbb{R}, \mathbb{R}^{d}\right)$ is $T$-periodic in time with non-zero mean $E_{0}$. Then the followings hold.

1. Let $V_{1}, V_{2} \in \mathscr{V}^{\mathrm{vs}}+\mathscr{V}_{0, \tilde{\alpha}_{0}}^{\mathrm{s}}$. If $S\left(V_{1}\right)=S\left(V_{2}\right)$, then $V_{1}=V_{2}$.
2. Suppose that a given $V^{1}$ satisfies $V^{1} \in \mathscr{V}_{0, \tilde{\gamma}_{0}}^{1}$. Let $V_{1}, V_{2} \in \mathscr{V}^{\text {vs }}+\mathscr{V}_{0, \tilde{\alpha}_{0, D}}^{\mathrm{s}}$. If $S_{D}\left(V^{1}, V_{1}\right)=$ $S_{D}\left(V^{1}, V_{2}\right)$, then $V_{1}=V_{2}$. Moreover, any one of the Dollard-type modified scattering operators $S_{D}$ determines uniquely the total potential $V$.

Nicoleau [10] proved the uniqueness assuming that $\left|\partial_{x}^{\beta} V(x)\right| \leqslant C_{\beta}\langle x\rangle^{-\gamma-|\beta|}$ with $\gamma>1 / 2$ for $V \in C^{\infty}(\mathbb{R})^{d}$ and the additional condition $d \geqslant 3$. Fujiwara [6] assumed that $V \in$ $\mathscr{V}^{\mathrm{vs}}+\mathscr{V}_{0,1 / 2}^{\mathrm{s}}$. These two results did not treat the long-range potentials.

## 3 Short-range Case

By virtue of Theorem 3.1 below and the Plancherel formula associated with the Radon transform (see Helgason [7]), Theorem 2.1 can be shown in the quite same way as in the proof of Theorem 1.2 in [12] (see also Enss-Weder [5]).

Theorem 3.1. (Reconstruction Formula [1]) Let $\hat{v} \in \mathbb{R}^{d}$ be given such that $\left|\hat{v} \cdot e_{1}\right|<1$. Put $v=|v| \hat{v}$. Let $\eta>0$ be given, and $\Phi_{0}, \Psi_{0} \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ be such that $\mathscr{F} \Phi_{0}, \mathscr{F} \Psi_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} \mathscr{F} \Phi_{0}, \operatorname{supp} \mathscr{F} \Psi_{0} \subset\left\{\xi \in \mathbb{R}^{d}| | \xi \mid \leqslant \eta\right\}$. Put $\Phi_{v}=e^{i v \cdot x} \Phi_{0}, \Psi_{v}=e^{i v \cdot x} \Psi_{0}$. Let $V^{\mathrm{vs}} \in \mathscr{V}^{\mathrm{vs}}$ and $V^{\mathrm{s}} \in \mathscr{V}_{\mu, \tilde{\alpha}_{\mu}}^{\mathrm{s}}$, where $\tilde{\alpha}_{\mu}$ is the same as in Theorem 2.1 and $\mathscr{F}$ is the Fourier transformation. Then

$$
\begin{gather*}
|v|\left(i\left[S, p_{j}\right] \Phi_{v} ; \Psi_{v}\right)=\int_{-\infty}^{\infty}\left(\left(V^{\mathrm{vs}}(x+\hat{v} t) p_{j} \Phi_{0}, \Psi_{0}\right)-\left(V^{\mathrm{vs}}(x+\hat{v} t) \Phi_{0}, p_{j} \Psi_{0}\right)\right. \\
\left.+\left(i\left(\partial_{x_{j}} V^{\mathrm{s}}\right)(x+\hat{v} t) \Phi_{0}, \Psi_{0}\right)\right) d t+o(1) \tag{3.1}
\end{gather*}
$$

holds as $|v| \rightarrow \infty$ for $1 \leqslant j \leqslant d$.
To prove Theorem 3.1, the following estimate is the key.
Proposition 3.2. Let $v$ and $\Phi_{v}$ be as in Theorem 3.1 and $\epsilon>0$. Put

$$
\Theta(\alpha)= \begin{cases}\alpha+\frac{(\alpha-\mu)(1-\alpha)}{(1-\mu)(2-\alpha)} & \alpha>\mu  \tag{3.2}\\ \alpha-\frac{\mu-\alpha}{1-\mu} & \mu /(2-\mu)<\alpha \leqslant \mu\end{cases}
$$

Then

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left\|\left(V^{\mathrm{s}}(x)-V^{\mathrm{s}}(v t+c(t))\right) U_{0}(t, 0) \Phi_{v}\right\| d t=O\left(|v|^{-\Theta(\alpha)+\epsilon}\right) \tag{3.3}
\end{equation*}
$$

holds as $|v| \rightarrow \infty$ for $V^{\mathrm{s}} \in \mathscr{V}_{\mu, \mu /(2-\mu)}^{\mathrm{s}}$.
In Adachi-Maehara [3], the corresponding estimate to this proposition was

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left\|\left(V^{\mathrm{s}}(x)-V^{\mathrm{s}}(v t+c(t))\right) U_{0}(t, 0) \Phi_{v}\right\| d t=O\left(|v|^{-\alpha}\right) \tag{3.4}
\end{equation*}
$$

(see Lemma 2.2 in [3]). When we denote the error term of (3.1) by $R(v), \lim _{|v| \rightarrow \infty} R(v)=0$ is equivalent to $2(-\alpha)+1<0$. Therefore $\alpha>1 / 2$ was required. On the other hand, in Adachi-Kamada-Kazuno-Toratani [2], the corresponding one was

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left\|\left(V^{\mathrm{s}}(x)-V^{\mathrm{s}}(v t+c(t))\right) U_{0}(t, 0) \Phi_{v}\right\| d t=O\left(|v|^{-\rho}\right) \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho=\frac{(2-\mu) \alpha-\mu}{2(1-\mu)} \tag{3.6}
\end{equation*}
$$

(see Lemma 3.4 in [2]) and $\lim _{|v| \rightarrow \infty} R(v)=0$ is equivalent to $2(-\rho)+1<0$. Solving this inequality for $\alpha$, we see that $\alpha>1 /(2-\mu)$ was required. In our estimate, $\alpha>\tilde{\alpha}_{\mu}$ comes from the inequality $2(-\Theta(\alpha))+1<0$ which is equivalent to $\lim _{|v| \rightarrow \infty} R(v)=0$.

## 4 Long-range Case

In the case where $V^{1} \neq 0$, the reconstruction formula is represented as follows, which also yields the proof of Theorem 2.2.

Theorem 4.1. (Reconstruction Formula [1]) Let $\hat{v} \in \mathbb{R}^{d}$ be given such that $\left|\hat{v} \cdot e_{1}\right|<1$. Put $v=|v| \hat{v}$. Let $\eta>0$ be given, and $\Phi_{0}, \Psi_{0} \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ be such that $\mathscr{F} \Phi_{0}, \mathscr{F} \Psi_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\operatorname{supp} \mathscr{F} \Phi_{0}, \operatorname{supp} \mathscr{F} \Psi_{0} \subset\left\{\xi \in \mathbb{R}^{d}| | \xi \mid \leqslant \eta\right\}$. Put $\Phi_{v}=e^{i v \cdot x} \Phi_{0}, \Psi_{v}=e^{i v \cdot x} \Psi_{0}$. Let $V^{\mathrm{vs}} \in \mathscr{V}^{\mathrm{vs}}, V^{\mathrm{s}} \in \mathscr{V}_{\mu, \tilde{\alpha}_{\mu, D}}^{\mathrm{s}}$ and $V^{\mathrm{l}} \in \mathscr{V}_{\mu, \tilde{\gamma}_{\mu}}^{1}$, where $\tilde{\alpha}_{\mu, D}$ and $\tilde{\gamma}_{\mu}$ are the same as in Theorem 2.2. Then

$$
\begin{align*}
& |v|\left(i\left[S_{D}, p_{j}\right] \Phi_{v}, \Psi_{v}\right)=\int_{-\infty}^{\infty}\left(\left(V^{\mathrm{vs}}(x+\hat{v} t) p_{j} \Phi_{0}, \Psi_{0}\right)-\left(V^{\mathrm{vs}}(x+\hat{v} t) \Phi_{0}, p_{j} \Psi_{0}\right)\right. \\
& \left.\quad+\left(i\left(\partial_{x_{j}} V^{\mathrm{s}}\right)(x+\hat{v} t) \Phi_{0}, \Psi_{0}\right)+\left(i\left(\partial_{x_{j}} V^{\mathrm{l}}\right)(x+\hat{v} t) \Phi_{0}, \Psi_{0}\right)\right) d t+o(1) \tag{4.1}
\end{align*}
$$

holds as $|v| \rightarrow \infty$ for $1 \leqslant j \leqslant d$.
To prove Theorem 4.1, the following estimate is the key.
Proposition 4.2. Let $v$ and $\Phi_{v}$ be as in Theorem 4.1, $\epsilon>0$ and $V^{1} \in \mathscr{V}_{\mu, 1 /(2(2-\mu))}^{1}$. Put

$$
\Theta_{D}\left(\gamma_{D}\right)=\left\{\begin{array}{lc}
1 & \gamma_{D}>1 / 2  \tag{4.2}\\
\frac{2 \gamma_{D}(2-\mu)-1}{1-\mu} & \gamma_{D} \leqslant 1 / 2
\end{array}\right.
$$

Then

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left\|\left(V^{1}(x)-V^{1}(t(p-b(t))+c(t))\right) U_{D}(t) \Phi_{v}\right\| d t=O\left(|v|^{-\Theta_{D}\left(\gamma_{D}\right)+\epsilon}\right) \tag{4.3}
\end{equation*}
$$

holds as $|v| \rightarrow \infty$, where $U_{D}(t)=U_{0}(t, 0) M_{D}(t)$ and $M_{D}(t)$ is the same as in (2.7).
In Adachi-Kamada-Kazuno-Toratani [2], the corresponding estimate to this proposition was

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left\|\left(V^{1}(x)-V^{1}(t(p-b(t))+c(t))\right) U_{D}(t) \Phi_{v}\right\| d t=O\left(|v|^{-\rho_{1}}\right) \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{1}=\frac{\left(1-\sigma_{\kappa}\right)\left(\tilde{\gamma}_{D}+2-\mu\right)}{(1-\mu)\left(\sigma_{\kappa}\left(\tilde{\gamma}_{D}+2-\mu\right)-1+\tilde{\gamma}_{D}\right)} \tag{4.5}
\end{equation*}
$$

with $\tilde{\gamma}_{D}=(2-\mu) \gamma_{D}$ and $\sigma_{\kappa}=1-\kappa(1-\mu) /(2-\mu)$ for $0<\kappa<1$ (see Lema 4.5 in [2]). When we denote the error term of (4.1) by $R_{D}(v), \lim _{|v| \rightarrow \infty} R_{D}(v)=0$ is equivalent to $2\left(-\rho_{1}\right)+1<0$. Therefore $\gamma_{D}>\hat{\gamma}_{\mu}$ was required. In our case, $\lim _{|v| \rightarrow \infty} R_{D}(v)=0$ is equivalent to $2\left(-\Theta_{D}\left(\gamma_{D}\right)\right)+1<0$ and $\gamma_{D}>\tilde{\gamma}_{\mu}$ comes from this inequality.

## References

[1] Adachi, T., Fujiwara, Y. and Ishida, A., On multidimensional inverse scattering in timedependent electric fields, Inverse Problems 29, 085012 (2013).
[2] Adachi, T., Kamada, T., Kazuno, M. and Toratani, K., On multidimensional inverse scattering in an external electric field asymptotically zero in time, Inverse Problems 27, 065006 (2011).
[3] Adachi, T. and Maehara, K., On multidimensional inverse scattering for Stark Hamiltonians, J. Math. Phys. 48, 042101 (2007).
[4] Adachi, T. and Tamura, H., Asymptotic completeness for long-range many-particle systems with Stark effect II, Commun. Math. Phys. 174, 537-559 (1996).
[5] Enss, V. and Weder, R., The geometric approach to multidimensional inverse scattering, J. Math. Phys. 36, 3902-3921 (1995).
[6] Fujiwara, Y., On multidimensional inverse problems for short-range quantum systems in a time-periodic electric field, MS thesis, Kobe University, 2010 (in Japanese).
[7] Helgason, S., Groups and Geometric Analysis, Academic Press, 1984.
[8] Jensen, A. and Yajima, K., On the long-range scattering for Stark Hamiltonians, J. Reine Angrew. Math. 420, 179-193 (1991).
[9] Nicoleau, F., Inverse scattering for Stark Hamiltonians with short-range potentials, Asymptotic Anal. 35, 349-359 (2003).
[10] Nicoleau, F., An inverse scattering problem for short-range systems in a time-periodic electric field, Math. Res. Lett. 12, 885-896 (2005).
[11] Reed, M. and Simon, B., Methods of Modern Mathematical Physics I-IV, Academic Press, 1972-1978.
[12] Weder, R., Multidimensional inverse scattering in an electric field, J. Funct. Anal. 139, 441-465 (1996).
[13] White, D., Modified wave operators and Stark Hamiltonians, Duke Math. Phys. 68, 83-100 (1992).
[14] Yajima, K., Existence of solutions for Schrödinger evolution equations, Commun. Math. Phys. 110, 415-426 (1987).


[^0]:    ${ }^{\dagger}$ Joint work with Tadayoshi ADACHI（Kobe University）and Yuko FUJIWARA

