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1 Introduction

Throughout this paper, we assume the spatial dimension d > 2. We report one of the inverse
scattering problems for quantum systems in a time-dependent electric field E(t) € R%, which
was obtained in Adachi-Fujiwara-I [1]. By Enss-Weder time-dependent method [5], we can
show that the high speed limit of the scattering operator determines uniquely the potential V'
belonging to the wider class than the classes given by the previous work in Adachi-Maehara
[3], Adachi-Kamada-Kazuno-Toratani [2], Nicoleau [10] and Fujiwara [6].

The free and full Hamiltonians under the consideration are given by
Ho(t)=p*/2 - E(t) -2, H(t)= Ho(t)+V (1.1)

acting as the self-adjoint operators on L?(R?), where p = —iV, is the momentum, E(t) is
the time-dependent electric field and the interaction potential V is real-valued multiplicative
operator. E(t) and V =V 4+ Vs 4+ Vlie ¥vs 4 v o t Vl},w satisfy following assumptions.

Assumption 1.1. The time-dependent electric field E(t) € R® is represented as
E(t) = Eo(1 + [t])™ + Ev(2), (1.2)

where 0 < p < 1, Eg € R\ {0} and Ey(t) € C(R,R?) such that
t ps
/ / E(7)drds
o Jo
with p < pp < 1.
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Roughly speaking about the perturbation part E;(t), we assume that |E;(t)] < C(1 +
|t])~#2 for some ps > p and take y; as follows:

p1 = plo p<pp<l
p< pr < g /1,2'—"—1 (14)
p=1 po > 1.

Such E(t) was first dealt with in Adachi-Kamada-Kazuno-Toratani [2]. For brevity’s sake,
we suppose that Ey = e; = (1,0,...,0) € R

Assumption 1.2. ¥"® is the class of real-valued multiplicative operators V¥° is satisfying
that V® is decomposed into the sum of a singular part V'* and a reqular part Vy*. V)
is compactly supported, belongs to L% (R?) and satisfies [VV}| € L2(RY). Vs € CY(RY)
satisfies that Vy® and its first derivatives are all bounded in R? and that

| 1R (el > RV @)laendR < oo (15)
0

Here q, satisfies that q; > d/2 and ¢1 = 2, g2 satisfies

1/ =1/2¢1)+2/d d =5
/g <1/2q) +1/2 d=4 (1.6)
/g2 =1/(2q) +1/2 d <3,

and F(|z| > R) is the characteristic function of {zx € R* | |z| > R}.
‘V,f,au with some oy, > 0 is the class of real-valued multiplicative operators V* is satisfying
that V* belongs to C*(R?) and satisfies

Ve(e)| < Cl)™, 08V (@) < Cpla) 7%, 1Bl =1 (1.7)

with some v and o such that 1/(2 —p) <y<1land oy < a <.
Finally, “//Mlm‘ with some v, 2 1/(2(2 — p)) is the class of real-valued multiplicative oper-

ators V! is satisfying that V' belongs to C*(R?) and satisfies
|8§V'(m)| < C(@—vp—lﬂl/(?—u)’ 18| < 2, (1.8)
with some vp such that v, < vp < 1/(2 — p).

We note that one can obtain
| 1Pl > RV (@) laudh < o0 (19)
0
by this assumption and it is equivalent to

/0 " IVY(@) (p) 2F (2] > R)llawsdR < 0o (1.10)



because V** is a multiplicative operator (see e.g. Reed-Simon [11]).
As for the class “/ﬁaw we also note that by virtue of o < v, we can treat an oscillation
part. For example, the following function belongs to 7/,?,%3

V¥(z) = (x) ™7 cos(z)7°. (1.11)

In fact, we can verify easily that |V, V5(z)| < C({(z)7}77 + (z)717*) < C(z) '~ holds with
some C' > 0.

2 Results

We first state the case where V! = 0. Then we can see the wave operators

W= = s-lim U(t,0)*U(t, 0) (2.1)

exist as this fact was shown in Adachi-Kamada-Kazuno-Toratani [2], where we denote the
propagators generated by Ho(t) and H(t) as Up(t,0) and U(t,0). The existence and unique-
ness of these propagators are guaranteed by virtue of Yajima [14]. The scattering operator
S = S(V) is defined by

S=Wryw-. (2.2)
The following obtained in [1] is one of those which we would like to report in this paper.

Theorem 2.1. (Adachi-Fujiwara-I [1]) Put

7—3u—+/(1-p)(A7 - 9p) 0< <12
&, = 42 - p) (2.3)
Lty 1/2<pu<1
2(2 - u) '
Let Vi,Va € ¥V + ¥4, If S(V1) = S(Va), then Vi = V3.

In the case where E(t) = Ey, that is, the case of the Stark effect, this theorem was
first proved by Weder [12] under the condition V® € ¥, and the additional assumption
~ > 3/4. However, as it is well-known, the short-range condition on V under the Stark effect
is v > 1/2. Later Nicoleau [9] proved this theorem for real-valued V € C®(R?) satisfying
|08V (z)| < Cp{x)~"1# with v > 1/2, under the spatial dimension d > 3. After that, this
theorem was obtained by Adachi-Maehara [3] for V* € ¥, ,. In our case where p = 0,
substitute 4 = 0 in &,. We have

7—3u— /(1 - w7 = —~
Go— T3 VA -pA7-9)  _7-VIT 1 (2.4)
42— p) 8 2
pn=0
If a < b, then ¥, C ¥;7,. Therefore this implies
Vo © Veao (2.5)
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In the time-dependent case where 0 < p < 1 and E;(t) # 0, the result corresponding to The-
orem 2.1 was also obtained by Adachi-Kamada-Kazuno-Toratani [2] under the assumption
that V € ¥** + 77, ,_,)- We can verify that &, < 1/(2 - p) and this implies that above
result is finer than the previous one:

Ve e © Vs, (2.6)

1 KOy

We next state the case where V! # 0. If V! € "i/l , the Dollard-type modified wave operators
due to White [13] (see also Adachi-Tamura [4] and Jensen-Yajima [8])

W5 = slim U(t,0)"Us(t,0)Mp(t), Mp(t) = et o Vilpre(n)dr (2.7)
can exist by virtue of the condition yp > 1/(2(2 — p)) (see [2]), where we put
o(t) = /0 “o(r)dr, b(t) = /0 "B(r)dr. (2.8)
Then the Dollard-type modified scattering operator Sp = Sp(V!, V¥® 4+ V*) is defined by
Sp = (W5)"Wp. (2.9)

Then we also report the following result.

Theorem 2.2. (Adachi-Fujiwara-I [1]) Suppose that a given V! satisfies V' € ‘//“l,;m with .

1 1—p
Ty = + . 2.10
T T aR-w (210
Put
13— 5p — /(1 — p)(41 — 25
3 —5u— /(1 —p)( 1) 0< 1< 5/
Gup = 8(2 - 1) (2.11)
"o Lrp 5/T<pu<1
22-u) He s

Let Vi,V € ¥V + ¥4 " If Sp(VL, Vi) = S(VL, V), then Vi = Vo. Moreover, any one of
the Dollard-type modzﬁed scattering operators Sp determines uniquely the total potential V.

In the case where 0 < u < 1 and E;(t) # 0, Adachi-Kamada-Kazuno-Toratani [2] proved
this theorem under the condition that

Ve, ViuVa€ ¥+ 0 (2.12)

with i = (7 — v/3 — /60 — 224/3)/4 and

+ /l+2£_L
: A O<p<i

< 2 -

1
_ u
Y
o 3= ,u p)? 2,u —Tu+7
64 42— pp

Mh—a

(2.13)




Computing straightforwardly, we can see &, p < 1/(2 — i) and %, < %,. We thus obtain

Viow G Ve Y. GV, (2.14)

H ”)&[L,D ’ /J'y:/‘u - u‘x;}‘/u ’

In particular, there was no result for the case where 4 = 0. Here we emphasize that if
5/7 < p < 1, then &, p = &, holds, although if 0 < p < 5/7, then &, p > @&, holds.

Remark 2.3. We assume that E(t) € C(R,R?) is T-periodic in time with non-zero mean
Ey, that is,

T
By = / E(r)dr/T 0, (2.15)
0
which was treated by Nicoleau [10] and Fujiwara [6]. In this case, the method in the proofs
of Theorems 2.1 and 2.2 does work well also, because we have

o) - o50l < [ " |B(r) - Boldr, (2.16)
[t}

o)~ £E/2] < [ o) = Eldr < ClHl, (217)
0
with C = fOT |E(T) — Eoldr by the periodicity of E(t). (2.17) implies p = 0 in (1.2) and
p=114n (1.3).
By virtue of this fact, we can obtain an improvement of the results of [10] and [6].

Theorem 2.4. Suppose that E(t) € C(R,R?) is T-periodic in time with non-zero mean Ej.
Then the followings hold.

1. Let Vi,Vo € ¥ + ¥gs.. If S(Vi) = S(V&), then Vi = V4.

2. Suppose that a given V' satisfies V! € ”1/01,%. Let Vi,Voe vVs+ %S,ao,D~ If Sp(VL V1) =
Sp(VL,Va), then Vi = V. Moreover, any one of the Dollard-type modified scattering
operators Sp determines uniquely the total potential V.

Nicoleau [10] proved the uniqueness assuming that |82V (x)| < Cg(x) 718 with v > 1/2
for V€ C*®(R)? and the additional condition d > 3. Fujiwara [6] assumed that V €
s 4+ Vofl J2- These two results did not treat the long-range potentials.

3 Short-range Case

By virtue of Theorem 3.1 below and the Plancherel formula associated with the Radon
transform (see Helgason [7]), Theorem 2.1 can be shown in the quite same way as in the
proof of Theorem 1.2 in [12] (see also Enss-Weder [5]).
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Theorem 3.1. (Reconstruction Formula [1]) Let © € R? be given such that |0 - ;]| < 1.
Put v = |v|o. Letn > 0 be given, and @y, ¥y € #(R?) be such that F &y, FU, € C(RY)
with supp F®o,supp FUo C {¢€ € R? | €] < n}. Put &, = P, ¥, = €V =U,. Let

VY e ¥V and V° € ¥, where &, is the same as in Theorem 2.1 and F is the Fourier

transformation. Then

o0

01615, 3180, 00) = [ (Ve -+ it)pyB0, o) — (V"(z +58) 8, %)
- +(i(0, V®)(z + 0t)@o, Vo) )dt + o(1) (3.1)
holds as |v] = oo for 1 < j < d.
To prove Theorem 3.1, the following estimate is the key.

Proposition 3.2. Let v and &, be as in Theorem 8.1 and ¢ > 0. Put

N (a—p)(l-a) N
O(a) = i ;(Ll—-—au)(z - a) mH (3.2)
=17, p/(2—p) <a<p
Then ~
V2@ = VoGt + (o)) Uate, 024l = 0|2+ (3.3)

holds as |[v| = oo for VS € ¥ iy -

In Adachi-Maehara [3], the corresponding estimate to this proposition was

| 1ve(@) = ve(ut + c0))Uo(e, 02ulldt = O(1e]*) (3.4)

—00

(see Lemma, 2.2 in [3]). When we denote the error term of (3.1) by R(v), limy—eo R(v) = 0
is equivalent to 2(—a) + 1 < 0. Therefore @ > 1/2 was required. On the other hand, in
Adachi-Kamada-Kazuno-Toratani [2], the corresponding one was

/_oo [(Ve(z) — V3(vt + c(£)))Uo(t, 0) @y ||dt = O(|v|™*), (3.5)
where 2 )
_@2-pa-p
21— p) (30

(see Lemma 3.4 in [2]) and limj,—00 R(v) = 0 is equivalent to 2(—p) + 1 < 0. Solving this
inequality for @, we see that & > 1/(2 — p) was required. In our estimate, a > @&, comes
from the inequality 2(—©(a)) + 1 < 0 which is equivalent to limjy|c R(v) = 0.



4 Long-range Case

In the case where V! # 0, the reconstruction formula is represented as follows, which also
yields the proof of Theorem 2.2.

Theorem 4.1. (Reconstruction Formula [1]) Let 9 € R? be given such that |0 - e;| < 1.
Put v = |v|0. Let n > 0 be given, and &y, ¥y € F(R?) be such that Fd, F¥, € CL(R?)
with supp F &g, supp FUo C {€ € R? | (] < n}. Put @, = V%P, ¥, = €V *Vy. Let
Ve ey, Vee ¥, and V'€ ¥).  where &, p and J, are the same as in Theorem 2.2.

0y D yYu’
Then
’Ul(i[SDapj}@m \Ij'v) = / ((Vvs(x + /Dt)pj(bo’ \IIO) - (Vvs(x + lat)q)mp]‘IIO)
+(i(8x, V®)(z + 9t) @0, Vo) + (4(0s, V') (z + 9t) D0, o))dt + o(1) (4.1)

holds as |v] — oo for 1 < j < d.
To prove Theorem 4.1, the following estimate is the key.

Proposition 4.2. Let v and ®, be as in Theorem 4.1, ¢ >0 and V' € 7/;},1/(2(2—u))' Put

1 o > 1/2
©p(1p) = 2%(3 - z) -1 > <12 (4.2)
Then o
/_ I(Vi(2) = V!(t(p — b(2)) + c(t)))Up(t)®, || dt = O(|u|~®P02)+) (4.3)

holds as |v| — oo, where Up(t) = Up(t,0)Mp(t) and Mp(t) is the same as in (2.7).

In Adachi-Kamada-Kazuno-Toratani [2], the corresponding estimate to this proposition
was

/_oo [(Vi(2) = VI(t(p = b(2)) + c(t)))Un () By ||dt = O(Jv|™™), (4.4)
where a Vi 42 )
_ — 0x)\'YD —H

= T Wontio 42— ~ 14 50) (49)

with p = (2 — p)yp and 0, = 1 — k(1 — p)/(2 — p) for 0 < k < 1 (see Lema 4.5 in
[2]). When we denote the error term of (4.1) by Rp(v), limjye Rp(v) = 0 is equivalent
to 2(—pm) +1 < 0. Therefore yp > %, was required. In our case, limj,40 Rp(v) = 0 is
equivalent to 2(—©p(yp)) + 1 < 0 and yp > 4, comes from this inequality.
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