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Representations of fractional
moments and their truncations

Muneya Matsui, Nanzan University
Iosif Pinelis, Michigan Technological University

Abstract

Several results of [3] are summarized, which are thought to be useful in
applications. New expressions for fractional moments of both positive and
negative parts are given in terms of characteristic function (ch.f.). Addition-
ally, formulae to calculate truncated fractional moments by ch.f. are studied,
from which conditional fractional moments are directly calculated. Moreover,
formulae for truncated fractional moments for any real number are supplied
based on [5]. Note that in this report, we give only results and omit proofs
which are given in the former version of [3]. After the probability sympo-
sium on Dec.17~20, 2013 in Kyoto we obtained more general results which
unifies our presented results in a better way. Therefore, this report serves as
a prompt report.

1 Positive and negative parts moments
Notations and preliminary. Let p € (0,00) \N, k := [p| and A :=p -k,

so that A € (0,1). For a complex-valued function f, its fractional derivative
of order p = k + X is given by

(k) ( *®) (y
(Dpf)( ) (Dl\f k))( : F(l _/\) / f (tt)_ u)f1+A( )du

for t € R (see e.g. Eq. (2.1) of [1]).

Another tool is the following expression of zf by Corollary 2 in [4]
where z, := z Vv 0, which is obtained by the Cauchy integral theorem. Let
m € Z, := {0} UN and z € C, em( ) denotes the remainder of Maclaurin

expansion of €%, ep(2) := € — ) ;L o ), Then
L) Tp+1) [*_ ep-1(itz)
_z p [p—1]
= 5 Lipen) + —— / Re @ dt,

where |-| and [-] are floor and ceiling functions respectively. Throughout we
let f be a ch.f. of arbitrary random variable X, f(t) = E[e#X] for t € R.
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Main Results. In this report, we give only results and omit proofs which
are given in the former version of [3] (available from the author).

In the next two theorems and one proposition, we will observe that various
representations are possible for both positive and negative part of fractional
‘moments and symmetric moments.

Theorem 1.1 Letp € (0,00) \ N and assume that E|X|P < co. Then for
p € (0,00)

P (_1)k+1 D/ —p—1 [
EX? = = Re (DP(E P71 £))(0),
ex? = EV e (pre-11)) 0)
T sinwA ’
(_ )k‘+1 1
E1xXP = 2= L e 7 ) Re(D21)(0),
where, as usual, X_ = (=X),.

Theorem 1.2 Letp € (0,00)\N, k= |p| and \=p—Fk so that 0 < XA < 1.
- Assume E|X|P < oo, then EXPl = E[X? — X?] is given by

24k o :
— D? .
Exl _ ) Snh Rei " Tm (DPf)(0) if k is even,
265 BEVON if L s
Py IJmi™ Im (DPf)(0) if k is odd.
Proposition 1.1 Let p > 0 and 0 < m < |p|. Assume that E|X|P < oo,
then
“"” )
EXT = 2;1p] l{pEN} QR / 2p+1tp—m+1 dt’
exr - £700) r(p—m+ 1) g, [ () - T 05,
- 9o~ {peN} + ¢ pH1gp—m+1 t,
| oo 47 — SIP=11 £ ()&
F17(0) Pp-—m+1)_, _ = (f() - 355 fO0)%)
EIX[P = LpJ 1(peny +2—-———7;———)2R ei P! Re i tp—:n+1 L2 dt.

We see in the following theorem that the information of negative part
moments or equivalently that of negative tail probability is needed for rep-
resentations of positive part moments with its ch.f.

Theorem 1.3 Take any p € (0,00) \ N with k := |p| and any r.v. X with
EX? < 0o. Then the following three conditions are equivalent to each other:



Eex (it X)

G 4

I) E|X|* < oo and EX”=F‘T)+1 / Re

1)
(') f®(0) existsinR and EXY = ——= p+ / Re Rf)k (t) S)el) 41 here

zt p+1
(Rf)k(t) = f(t) — Z f(”(O)—
j=0

(II) P(X_ > ) = o(1/2") as z — oo.

2 Truncated fractional moments

We present truncated moments of any intervals via the corresponding ch.f.
The Fourier transform of pth moments EXZe™X are calculated from the
original ch.f. Then by applying the generalized inversion formula to these
ch.f. we obtain truncated moments EX%1 x>, for € R.

Notations. Define a transform which generalizes the inversion formula;

B(1)e) = 5o pv. [ e0F

where p.v. denotes “principal value”, so that p.v. ff‘;o := limge 10,4100} ( f__j + fEA )

Main Results. Again we only give results and omit proofs which are given
in the former version of [3] (available from the author).

Theorem 2.1 Let X be r.v. with dist. F(x) and ch.f. f. Define a measure
pp(dz) = 2PdF (z) where zP = 2 + (—1)P2® for p € (0,00) \ N and denote
the positive and negative part measures respectively by p, ,(dz) = 24 dF(z)
and p, —(dz) = 2? dF(z). Further we define |pp|(dz) = |z|PdF(z). Assume
E| X|P < o0.

(1) Fourier transforms of py +(dz) and p, _(dx) respectively have the follow-
ing expressions. For k := |p| and A:=p—k,

1

P iuX
Iun+ (u) = E[XLe T 2#TsinmA

{POPh@) - ()4 (-w) }

and

G (W) 1= E(- X)) = o A DP () = (~DH D))}
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Accordingly, Gup(u) = E[XPe™X] = g, (w) + (=1)Pg,, _(u) and g, (v) =

E[| X [Pe™X] = gy, . (1) + Gy, (w).
(2) Moreover, for z € R

E[X?10x50y] = 5EX? ~ 8(0,,)(@) + 1({2})
EIXPLpce] = SEIXP — 8(g1,,)(@) + 5l ({2D)

If we evaluate the ch.f. g, . (u) at the origin in Theorem 2.1, we obtain
other expressions for both positive and negative part of fractional moments.

Corollary 2.1 Under the same conditions of Theorem 2.1, we have
1 [ e 1Y -MTPF
T (P (O7N0) - () DPDHO)
A(D?)(0) - (-1 D )(0)}.

1
2kl sin 7w\

For p € N the counterpart of Theorem 2.1 is as follows, where we do not -

need the fractional derivative operator D”.

EX-};- = gl-‘p,+ (0) =

EX? =g, _(0)=

Theorem 2.2 Let p € N. Define a measure py(dzr) := zPdF(x) where
zf + (—1)?2" and define measures p,(dz) = 2f.dF(z) and p,_(dz) :=
2?dF(z). Further we define |up|(dz) = |z|PdF(z). Assume E|X|P < oo.
Then Fourier transforms of pp +(dz) respectively have

Gy (1) = B = 200 L / Ot = fPu—1),,

P ip+1t
. £(p) —u £(p) t— F®) (o "
g, _(u) = E[x?ex] = Q(ip .l / 7o) U>Zp+lft (—u )

Accordingly, g, (1) = G, (w) + (~17g,_() = FO@)/i and g, (u) =
Gupt (W) + Gy, _ (u). Moreover, for x € R

’ 1 1
E[XPLix2a] = 5EXT — 8(g,,)(2) + Smp({z}),
1 1 .
E[IXPLixse] = SEIXP — 8(g,)(z) + 5kl ({)).
Similarly as before, we evaluate the ch.f. g, , (u) at the origin in Theo-

rem 2.2, we obtain other expressions for both positive and negative part of
fractional moments.
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Corollary 2.2 Under the same assumptions of Theorem 2.2,

90 1 /°° fO(t) — 1 (=)
P —
EXY ==+ - A T dt,
F#(0) 1/°° fOt) - fP(-2)
P - -
EX? ===+ = A STy dt.

Notice that the inversion for ch.f. of integer valued moments in Theorem
2.2 is particularly useful since the expression is simple and does not require
- a double integral even for the general case. For convenience we further for-
mulate this.

Corollary 2.3 Let X be r.v. with dist. F. Under the same assumptions of
Theorem 2.2,

®)(0 > . poo —itz £p
E[XP1ix>q5] = szE’ ) L H (gx}) - 2"7( /_oo € i;;‘ (t)dt,

(P) . o0 —itx D
E[XP1ix<q}] = f2ﬂ(70) - “”(éz}) + —;ﬂ /_m £ Y ip’; ®) g,

3 Fractional moments of whole real line

We extend the fractional derivative operator D” for all p € R by introducing
a fractional integral of the Riemann-Liouville type as in [5], which gives both
positive and negative parts moments of negative order and their truncation,
additionally. Although only expressions of E|X|P for p € R have been inves-
tigated in [5], we find that the tool used there is applicable to our present
concern.
Let D? for p € (—o0,0] UN denote the operations,
(1) for p e N, D"f = f( and D°f = f.

(2) for p € (—1,0)
__ 1 [ fw)
D10~ 55 [

(3) for p € N_, DPf(¢) := limgy, DIf(2).
(4) for p € (—o0,0) \ N_ with £ = [p],

DP£(t) := D" *(D'f)(¢).

Definitions of D? for p < 0 bellow are called the Riemann-Liouville inte-
gral with the end point (—o0). Notice that for p € (0, 00) \ N, the definition
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of D in [5] is
d*
SPRE), k=),
'which is different from ours in the order of the derivative and the integration.
However, under E|X|? < oo, two operations are commutable.

Our main tool here is the following identity by the complex 1ntegrat10n
forpeR

DPf(t) =

DPF(t) = i / " Fetdp(z),

—00

which was obtained in [5].
Now fractional moments and their truncations for the p € R are given.

Proposition 3.1 Define y, . and Up— as those in Theorem (2.1) for any
p € R. Assume E|X|P < co. Then for u € R,

D £ (u) 1 /°° Df(utt) =D fu—1)
0

— P i Xu] _
gl‘p,+ (u) - E[X+e ] - 2Zp + 27T'l:p+1 Zt
— p _iXu ( U) 1 /oo Dpf(—u' + t) —_; Dpf('—’l.l, - t)dt
9o - (u) = E[XZET] = 2w o ), it '
Accordingly,
, o e
pxy D0, L D0 D,
21}’ 7TZp 0 ’Lt .
V2 O NP () — DP F(—
gxr =200, 1 / DPE) ~DPH () g,
2P 2miP Jo it
Proposition 3.2 Let p € R and assume E|X|P < oo, then fory < 0 <z,
oy _ (DD ‘/wwwm>
EX 1{X>‘T} 2iP ty 2 27rz1”+1 v
» _ (D)) | (=9)P * Re e“”’“(D”f)( ) du
EX Lo = T T 27r2p+1

Again we only give results and omit proofs which are given in the former
version of [3] (available from the author).

Note that after the probability symposium on Dec.17~20, 2013 in Ky-
oto, we obtain new results which unifies and generalizes obtained results.



Therefore, our stated results of this report are included in the new one which
will appear in [3]. Related examples for mostly heavy tailed cases have been
intensively studied in [2].
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