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Martingale approach to first passage problems of
Lévy processes over one-side moving boundaries

Shunsuke Kaji(Kyushusangyo University)

Abstract

In this note, we study first passage problems for Lévy processes over
one-side moving boundaries. We see that martingale approaches are useful
for this problem.

1 Introduction

For a one-dimensional Lévy process L; with Lo = 0 and a function f :
[0,00) = R with' f(0) > 0, the so called one-side moving boundary, set a
first passage time

¢ = inf{t > 0|Ls > f(t)}.

The classical problem for this time is to know the probability P(Tf > t)
as t — oo.

In the case when L; is a standard Brownian motion, there are many
works on the probability P(ty > t). In particular, in Gdrtner[3] and
Uchiyama[11] the last probability is motivated by a study of the Kolmogorov-
Petrovskii-Piskunov nonlinear parabolic equatlon When f(t) is bounded,
we can easily find that

1
P (Tf > t) - \/z)
where the notation z(t) < y(t) means that there are positive constants
C1 and O such that Ciy(t) < z(t) < Coy(t) for all sufficiently large ¢.
For unbounded f(t), Uchiyama[l1l] obtained the interesting result that
the last tail estimate is valid if and only if '

/oo IF (Ot 3dt < o0,

provided f(t) is increasing concave. By anther way Novikov([8] obtained
that under the assumption f(¢) is nonincrasing convex or nondecreasing
the last integral condition is valid if and only if the expectation E[L.;]
satisfies '

0< E [LTf] < o0,

and then

. 2
tl_l’rgo VtP(rs > t) = \/;E[Lff,].



In this proof he uses the tail estimates of quadratic variations of continuous
local martingales, for which there are anther works and applications(see
Elworthy, Li, and Yor[l],[2] and Takaoka[10]). On the other hand, in
the general case when positive jumps of L; are bounded and —L; has an
exponential moment, Novikov[9] also proved the same result as the above
by Novikov[8] under the additional assumption of the concave property of
the function f(t) in case of nondecreasing function.

In this note we consider the general case when positive jumps of L;
are bounded. Our question is what is a necessary and sufficient condition
for that the asymptotic behavior of P(ty > t) as t — oo is the order

\/iz. Recently, the tail estimate of quadratic variations of cadlag local

martingales was established by Lipster and Novikov(7] and Kaji[4], [5], [6].
So, by using the improved martingale approach (see Appendix) we will
~ provide the answer for the last question and extend the previous works
Novikov([8], [9] in the main theorem and its corollary.

2 Notation and Main result

On a probability space (€2, F, P) we set a one-dimensinal Lévy process
{L+}t€[0,00)- With Lo = 0 and a filtration {F:}:j0,00) by the completions
of the o-algebras generated by {L:}tc(0,00). Throughout this note, all
martingales are considered with respect to the filtered probability space
(2, F,{Ft}tel0,00), P) and we assume that the drift of {L:}¢cjo,00) is zero
and the Lévy measure v(dz) satisfies for some K > 0

v((K,0)) =0 and / 2°v(dz) < oo. 1)

(~00,K]

So, {Lt}te[0,00) can be represented by
L, = oW, +/ 2{N(dsdz) — dsv(dz)}, t € [0,00),
(0,t]x (— o0, K]

" where o > 0, {Wt}tE[O,oo) is a standard Brownian motion with Wy = 0,
and N(dsdz) is a Poisson random measure on (0, 00) X R with compensator
dsv(dz). Then, {L:¢}ie(0,00) Obeys

E[e”‘"] = PV < oo, VA >0,

.
where ®(\) = 22—/\2 +/ (e —1 = Az)v(dz).
(—o00,K]

For a continuous function f : [0,00) = R with f(0) > 0 we set a first
passage time

={ inf{t > 0|L: > f(£)}  if {}#0,
| 00 Cif {}=0.
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Theorem 2.1 Under the assumption that f(t) is nondecreasing,

/ - FOt 3dt < 0o (2)
1
holds if and only if
P(ry < 00) = 1 and (0 <)E[L,] < co. 3)
Then,
lim VEP(r; > 0) = \| == B[L, ], (4)

where p? = o* +/ 22v(dz).
(~00,K]

Corollary 2.1 If f(t) is nondecreasing, then (2) holds if and only if

limsup VtP(rs > t) < oo. (5)

t—o00

Remark 2.1 In the case when L; is a standard Brownian motion Novikov[8]

proved that under the assumption f(t) is nondecreasing (2) is equivalent to
-(3) and then (4) holds (see Theorem2 in Novikov[8]). In the general case
the equivalence of (2) and (3) is proved in Novikov[9] under the additional
assumptions of the concave property of f(t) and E[e**1] < co for some
Ax < 0 (see Theorem3 in Nowikov[9)).

3 Proof of Theorem 2.1

Lemma 3.1 If(2) holds, then there‘ exists the positive constant Co such
that

/\L-,-f/\t @()\)(Tf /\t) <Cp forallte [0 o), 0 <AL

proof; First, the assumptions (2), the nondecreasing property of f(t), and
- f(0) > 0 provides S

(03) [T resias > [T s b

> f(t)/oos_%ds
- 'f(t)-—%, t € [1,00)
and
f®) < f(1), teo,1),
and so

f) <evi+ f(1), te0,00),
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where ¢ = %/ f(s)s_gds € (0,00) and f(1) > 0. The last fact and (1)
' 1
imply
Lesne S f(mp At)+ K Sey/re AL+ f(1)+ K, te0,00).
On the other hand, by (1) there exists ¢o > 0 such that
X <®(), 0<VA<L. '

The last two inequalities imply that for all t € [0,00) and 0 < A< 1

ALrine — @(A)7r AE) < Aey/Tr AL+ A(F(1) + K) - o\ (15 A t)

2

c
< =
< HIW+K,
which gives the desired result.
Lemma 3.2
E[f(r5)] < o0 (6)
<= (2)

proof; First, suppose (6). For any integer n integration by parts provides
/ P(rs > t)df (t) = P(rs > n) f(n)—P(7s > O)f(O)—/ f(®)dP(rs > t),
0 0o

and moreover the right hand side of the last equality is
= P(rs > n)f(n) — P(rs > 0)f(0) + E[f(7s); 7 < n].

Therefore, for any integer n we have

| P> 0a0 = Plas > ) ) ~ Py > 0010+ Blstrpiy <l

0 ) ) ’
< E[f(me)] + E[f(r5); 74 < ]
< 2B[f(r)] < o0, ™

where the second line of the last inequality holds from the nondecreasing
property of f(t) and f(0) >0.
On the other hand, according to Theorem6 in Kajil],

Jim VEP(ry0) > 8) = \[ 225 ElLry o ](2 { 75.1(0) > 0)

holds, and so for some €; > 0 there exists § > 0 such that

VtP(1s0) > t) > &1 forall t > 4.



The last inequality implies from the nondecreasing property of f(t) and
f(0) > 0 that for all sufficiently large integer n

el / P(rs > t)df(t) > 1 / P(ts(0) > t)df (t)
1 Js ot

"1
0
1 1 " 1,3
= =t - 2~ [ s ha
IR SPTAONE B P
> —Z10+; [ sorte ®

where the third line of the last inequality holds by integrating by parts.
- Hence, (7) and (8) imply (2).
Conversely, suppose (2). Then we-note that we can use the inequality
in Lemma3.1. First, pick Cp in view of Lemma3.1 and fix A > 0 as below.
Applying the Chebyshev inequality we have

P(ri AA> 1) P(1 — e ®N0AD) 5 g _ o=y

I

< gy BlL - PO ©

1 — e~ 2Nt

for all 0 < A < 1 and £ > 0. On the other hand, since by Lemma3.l a
process {e)‘l”f At=®N)(ry At)}te[o,oo) is a uniformly integrable martingale
forany 0 < A < 1, ' ~

E[l _ 2N Gpna)

E[eALTf,\A—Q(,\)(ffAA)‘ _ e—@()\)FTfAA)]

Il

— E[(EALTf/\A _ l)e—@()\)(Tf(\A)]
<  E[max{0, )\LTfAA}eAL-rf/\A—‘I>(/\)(Tf/\A)]’ (10)

wh/.ere the last line of the last inequality holds by the inequality ¢® — 1 <
max{0,z}e”. It follows from (9) and (10) that forall0 < A< land¢ >0
1 AL, —®(A)(TsNA
P(Tf A A > t) S T_—mE[max{O, )\LTf/\A}e fAA A A )]
1

T——s0r e (Elf (1 A A)] + K),

where the last line of the last inequality holds from Lemma3.1 and (1).
Setting A = ®~*(3), where we note that ®() is increasing on (0, cc), we
see that for all sufficiently large ¢

, Co 1
Pir; AA> 1) < lfe_lé—l(z)(E[f(TfAA)]'+ K).
. . _®) P
On the other hand, from (1) we easily see that lxlﬂ)l Sz = g 8 valid,

and so for all sufficiently large ¢

a1 [4 _
@1(z)g St

[V
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The last two inequalities imply that there is to > 0 such that for all t > to

P(T}AA>t) < ‘%\/};t_é(E[f(thA)]-i—K). (11)

To end this proof, set a continuous nondecreasing function g(t) on
[0,00) with g(0) > 0 such that

a(t) = £(0)- (/ T fs Y E, >t

where g(t) is well-defined by (2). Then, we can easily see

/m g(t)t3dt < oo,

to

which implies from the nondecreasmg property of g(t) and integration by
parts

/oo t_%dg(tz < o0, (12)

to

and for any ¢ > 0 there is the positive constant C. such that
£(2) — eg(t) < Ce, V2 € 0,00). @)

By integrating by parts, for all sufficiently large integer n we have
/ P(tf NA>t)dg(t) = P(rr NA>n)g(n)— P(ts ANA>0)f(0)
0 .

—/ g(t)dP(ts ANA > t)
0

> —P(7; AA>0)g(0) + Elg(rs A A);Ts A A <,
and so

Elg(rs NA);7s NA<n] < P(ry AA>0)g(0)+ /" P(ts AN A > t)dg(t)

to

< g(0)+ /" P(ty NA > t)dg(t) + / P(1s A A > t)dg(t)

< 9O+ 17— \/—/ t=3dg(t) - {E[f(Tf/\A)]+K}

+ g(to) 9(0),

where the last line of the last inequality holds from (11) Going now to
the limit as n — oo, by (12) we have

Elg(ts NA)] < CLE[f(ts N A)] + C, (14)
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eCo 4 [ 1

where C1 = -I——F ;5/ t"2dg(t) < oo and Cy = C1K + g(to)-
= 7 Jiy

Choosing € < - in view of (13), it follows from (13) and (14) that

E[f(rs NA)] < Ce+eElg(rs A A)]
< Ce+€Cy + €CLE[f(15 A A)],

and so

Cc + €C2

A>0.
1= <G, <oo foranyA>0

Elf(rs NA)] <

Hence, by noting the nondecreasing property of f(t) and f(0) > 0, the
last inequality provides from the Fatou lemma that (6) is valid.

proof of Theorem2.1.; According to Lemma3d.3, to end the proof of the
equivalence of (2) and (3), it is enought to show that under (6)

P(rs < 00) =1 | (15)

holds. So, under (6) assume P(7s = oo) > 0. Then, this assumption
implies from the nondecreasing property of f(¢) and f(0) > 0 that

Elf(ry)] = / " )Py > 1yt
0

> ./Ooo F(O)P(r5 = 00)dt = o0,

where contradicts to (6). Hence, (15) is valid.

Finally, suppose (3), which is equivalent to (2). Setting M; = —L; s,
t € [0,00), {M:}ie[o,00) is a locally square integrable martingale with
a quadratic variation (M) _ < oo and {max{0, —M;,}},e7 is uniformly
integrable, where 7 is the set of all stopping times , since (1) and (3) are
assumed. Considering that a counting measure p of {M:}ic[0,c0) is

w((0,4] x U) = / | Iy(~2)N(dsdz),
(0,7 At]x (R\{0})

wheret > 0, U is the Borel subset of R\{0}, and Iy (z) is the characteristic
function of U, its predictable compensator 1 satisfies

TNAL
u((0,¢] x U) = / / Iy (—2z)dsv(dz).
0 R\{0}
So, by using (1) we can check

Tf (o ]
/ e “n(dsdz) = / / e“dsv(dz) = 0.
(0,00) X (—00,—K) 0 K

Applying Theorem4.1 for {(M),}:c[0,00), Lemma3.1 and the last result
imply the desired convergence.



4 Appendix

Let (9, F, {Ft}tc(o,00), P) be a filtered probability space with usual con-
ditions and a cadlag process {M:}icjo,00) is a locally square integrable
martingale with My = 0 defined on it. We know a decomposition

M = M+ M2, te(0,00),

where locally square integrable martingales { M };¢[0,00) and {Mtd}te[o,oo)
are continuous and purely discontinuous, respectively.
Define a measure u on [0,00)x(R\{0}) by

w0, 0x0) = Y In(AM.),
0<s<t

for té/[O,oo) and Borel subsets U of R\{0}, where AM; = M; — M,_.
Then, we denote by 1 its predictable compensator and by 1° the measure
on R\{0} such that

1(dsdz) =1 (dsdz).

(a({srx®\{0}))=0p*
Moreover, for any predictable function «(t,z) we write a stochastic inte-
gral {(ax¢):}ie(o,00)based on £ = 1 or u° by

(ax€)s = / a(s, z)¢(dsdz)
(0,t]x (R\{0})
if a(s,z) is integrable on (0,t]x (R\{0}).
For any A > 0 set
Ya(z) =e X — 142z

and
2
5()\)t_= exp{—AM; — % (M), — (Yaxp®)e — Zo<s<tlog(1 + A(rxp)s)}-

Assume that and {max{0, —M, }}¢7 is uniformly integrable, where 7
is the set of all stopping times. The assumption (M), < co a.s. implies
My < 0o a.s. and provides that for any A > 0 :

(M®) _ <0 a.s., ([Prlx)eo < © a.s., and E(A)oo < 00 a.8.
hold(The detail can be found in section 2 of Kaji[6]).

Theorem 4.1 Suppose
E (e I(—oo,—k)(z) * ﬁ)w] < oo

for some o, K > 0 and, moreover, there exists the nonnegaiz’ve integrable
random variable £ such that

EN)oo < 4.
Then, it holds that

lim ,\P( M) > )\) = —\/g E[Moo)].

and
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