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Local risk-minimization for Lévy markets
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1 Introduction

The purpose of this paper is to announce the results of our paper ([1]). Locally risk-minimizing (LRM,
for short) is a very well-known hedging method for contingent claims in a quadratic way. Theoretical as-
pects of LRM has been developed to a high degree (see e.g., [5] and [6]). On the other hand, the necessity
of researches on its explicit representations has been increasing. From this insight, we aim to obtain ex-
plicit representations of LRM by using Malliavin calculus for Lévy processes, based on [7]. Espeacially,
we will formulate representations of LRM including Malliavin derivatives of the claim to hedge by using
the Clark-Ocone type formula under change of measure (COCM) shown by Suzuki ([8] and [9]). We also
derive formulas on representations of LRM for three typical options such as call options, Asian options and
lookback options.

2 Preliminaries

2.1 Model description

We begin with preparation of the probabilistic framework and the underlying Lévy process X under which
we discuss Malliavin calculus in the sequel. Let T > 0 be a finite time horizon, (Qw, Fw,Pw) a one-
dimensional Wiener space on [0, T]; and W its coordinate mapping process, that is, a one-dimensional
standard Brownian motion with Wy = 0. Let (£);, 7}, IPj) be the canonical Lévy space (see [7] and [3]) for a
pure jump Lévy process J on [0, T] with Lévy measure v, that is, for wy = {(t1,21),..., (tn,2n)} € ([0, T] x
Ro)", Je(wy) = LiLq ziljy,<y for t € [0, T], where Ry := R\ {0}. Now, we assume that fRo 22v(dz) < oo;
and denote (Q, F,P) = (Qw x Q), Fw x F),Pw X Pj). Let F = {Fi}4c(o ) be the canonical filtration
completed for IP. Let X be a square integrable centered Lévy process on (), F, P) represented as

Xp = Wi+ — ¢t /RO w(dz), @.1)

where ¢ > 0. Now, we denote by N the Poisson random measure defined by N(t, A) = Y ,<;14(AX;),
A € B(Rp) and ¢ € [0, T], where AX; := X; — X;—. Thus, we have J; = fot fRo zN(ds,dz). In addition, we
define its compensated measure as N (dt, dz) := N(dt,dz) — v(dz)dt.

We consider, throughout this paper, a financial market being composed of one risk-free asset and one
risky asset with finite time horizon T. For simplicity, we assume that the interest rate of the market is given



by 0. The fluctuation of the risky asset is assumed to be given by a solution to the following stochastic
differential equation (SDE, for short):

dS; = S [lxtdt + BedW: + /Ro ’)’t,zN(dt, dz)] , Sp>0, (2.2)

where &, B and 7 are predictable processes. Recall that v is a stochastic process measurable with respect
to the o-algebra generated by A x (s,u] x B, A € 5,0 < s < u < T, B € B(Rp). Now, we assume the
following:

Assumption 2.1 1. (2.2) has a solution S satisfying the so-called structure condition (SC, for short). That is, S is a
special semimartingale with the canonical decomposition S = Sy + M + A such that
T
H (M)Y/%+ / |dA| < x, 2.3)
0 L2(P)

where dM; = S;_ (ﬁtdwt + flRo YN (dt, dz)) and dA; = S;_adt. Moreover, defining a process

Ag = , we can rewrite the canonical decomposition as S = So + M + [ Ad(M). Thirdly,

S+ fmo )
the mean-variance trade-off process K; := fot A2d (M), is finite, that is, K7 is finite P-a.s.

2.1z > -1, (t,z,w)-ae., thatis, E [fOT f]Ro l{ms_l}v(dz)dtJ =0.

Remark 2.2 (1) The SC is closely related to the no-arbitrage condition. For more details on the SC, see [5] and [6].
(2) The process K as well as A is continuous.

(3) (2.3) implies that sup,po 1 |St| € L?(PP) by Theorem V.2 of Protter [4].

(4) Condition 2 ensures that S; > 0 forany t € [0, T).

2.2 Locally risk-minimizing

We define locally risk-minimizing (LRM, for short) for a contingent claim F € L2(P). The following defini-
tion is based on Theorem 1.6 of [6].

Definition 2.3 (1) Og denotes the space of all R-valued predictable processes ¢ satisfying
T2 T 2
B| [ cami+ ([ 1] <o

(2) An L2-strategy is given by a pair ¢ = (&, 1), where & € ©g and 1] is an adapted process such that V(@) := &S +7
is a right continuous process with E[V?(p)] < oo for every t € [0, T]. Note that &; (resp. n;) represents the amount
of units of the risky asset (resp. the risk-free asset) an investor holds at time t.

(3) For F € L?(IP), the process CF (@) defined by CF (¢) := F1 =1y + Ve(o) — f(; €sdSs is called the cost process of
= (§,17) for F.

(4) AnL Z-strategy ¢ is said locally risk-minimizing for F if V() = 0 and CF (@) is a martingale orthogonal to M,
that is, CF (p) M is a martingale.

The above definition of LRM is a simplified version, since the original one, introduced in [5] and [6], is
rather complicated
Now, we focus on a representation of LRM. To this end, we define Féllmer-Schweizer decomposition

(FS decomposition, for short).
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Definition 2.4 An F € L2(IP) admits a Follmer-Schweizer decomposition if it can be described by
T
F=F+ /0 &Fas; + LE, 2.4)

where Fy € R, & € Og and LF is a square-integrable martingale orthogonal to M with L§ = 0.

Proposition 5.2 of [6] shows the following:

Proposition 2.5 (Proposition 5.2 of [6]) Under Assumption 2.1, an LRM ¢ = (&, n) for F exists if and only if F
admits an FS decomposition, and its relationship is given by

t
&= m=F+ /0 gFdS; + Lf — Fly_qy — &S,

As a result, it suffices to obtain a representation of ¢F in (24) in order to obtain LRM. Henceforth, we
identify ¢& with LRM. To this end, we consider the process Z := £(— [ AdM), where £(Y) represents the
stochastic exponential of Y, that is, Z is a solution to the SDE dZ; = —A+Z; dM;. In addition to Assumption
2.1, we suppose the following: :

Assumption 2.6 Z is a positive square integrable martingale; and ZrF € L2(P).

A martingale measure P* ~ P is called minimal if any square-integrable IP-martingale orthogonal to M re-
mains a martingale under P*. Under Assumption 2.1, it is easy to show that a minimal martingale measure
P> exists with dIP* = ZdP if Z is a positive square integrable martingale.

Example 2.7 We assume the following three conditions:
1L vz > —lae.
2. supye(o.r)(lael + B + [, 77,v(d2)) < C for some C > 0.

3. armz < B+ Jg, V2v(2), (4z,w)-ae., and there exists an € > O such that B} + [ 7,v(dz) > ¢
(t,z,w)-a.e.

Then, all conditions of Assumption 2.1 are satisfied. On the other hand, the above condition 3 guarantees the positivity
of Z.

3 Representation results for LRM

In this section, we focus on representations of LRM ¢&F for claim F. First of all, we study it through the
martingale representation theorem.

3.1 Approach based on the martingale representation theorem

Throughout this subsection, we assume that Assumptions 2.1 and 2.6. Let IP* be a minimal martingale
measure, that is, dP* = ZrdP holds. The martingale representation theorem (see, e.g. Proposition 9.4 of
[2]) provides

T T ~
ZF = Ep-[F] + /0 SPAW, + /0 /RO gL N(at, dz)



for some predictable processes g and g}’z. By the same sort of calculations as the proof of Theorem 4.4 of
[8], we have

T ¢ + E[Z7F|Fi-]u T 1+]EZF1.75_}0 ok ‘
— 8t [Z7F|Fi—Juy P* / / 8tz [ T t— |0tz
F = EpF +/ AWy + N* (dt,dz
[ ] 0 Zt— t 0 ]Ro Zt_(]. '—et,z) ( )

T T
— Ee 0 WF” 1 R
. Epe[F]+ /0 HAWF' + /0 /]R LR (dtd2)

where u; := A1S¢_By, 01, := MSi—y1,, AWE™ := dW; + u,dt and N¥* (dt, dz) := N(dt,dz) + 6; ;v(dz)dt. Gir-
sanov’s theorem implies that WF™ and N¥" are a Brownian motion and the compensated Poisson random
measure of N under P, respectively. Additionally, we assume that

T
E [ / {(h?)2+ /Ro(h},z)%(dz)}dt] < co. 3.1)
Denoting ¥ := h — &S B4, i, :=h}, = &St—v1z and

= SO0+ [, Woman(a), 62

we can see
0B + /R il y2v(dz) =0 (3.3)
0

for any ¢ € [0, T], which implies {u; + [g i} ,6:,v(dz) = 0. We have then
T T . T o
F— Ep[F] - / &S, = / DAWE" + / / iL,N¥" (dt, dz)
0 0 0 Jry
Toaw+ [ [ i Nt
= ) i t,dz).
/0 1,aW + /0 /Ro i ,N( )

By the following lemma, together with (3.3), we obtain that L := E[F — Ep:[F] — fOT £sdSs|Fy] is a square
integrable martingale orthogonal to M with L§ = 0. Under Assumptions 2.1 and 2.6, and (3.1), we can

show that
[/T('O)zdt /T/ (i1 )ZV(dZ)dt} <o
E i + .
0 t 0 JRy t2

Consequently, we can conclude the following:

Theorem 3.1 Assume that Assumptions 2.1, 2.6; and (3.1). We have then gP = § defined in (3.2).

In the above theorem, a representation of LRM ¢ is obtained under a mild setting. Since the processes h°
and h! appeared in (3.2) are induced by the martingale representation theorem, it is almost impossible to
calculate them explicitly. In the rest of this section, we aim to get concrete expressions for h° and k! by using
Malliavin calculus.

3.2 Malliavin calculus

We introduce some definitions and terminologies with respect to Malliavin calculus, in particular, a COCM
(under P*).

We adapt the canonical Lévy space framework undertaken by [7]. Remark that Malliavin calculus is
discussed based on the underlying Lévy process X. First of all, we define measures 4 and Q on [0, T] x R

as
4(E) := o? /E So(dz)dt + /E 22v(dz)dt,
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and

Q(E) =0 /E So(dz)dW; + /E N(dt, dz),

where E € B([0, T] x R) and & is the Dirac measure at 0. Denote by L%’ qn the set of product measurable,
deterministic functions  : ([0, T] x R)" — R satisfying

2 e 2
”h“bznm = '/([O,T]xR)" [h((t1,21), -+ (tn,20) ) °q(dt1, d21) - - G(tn, 2n) < c0.
Forn € Nand h € L}, we define
ILn(h) := /([,O,T]xR)" h((t1,z1), -+, (tn 2n))Q(dt1, dz1) - - - Q(dtn, dzn).

Under this setting, any F € L2(PP) has the unique representation F = Y% I,(h,,) with functions h, € L2 an
that are symmetric in the n pairs (f;,2;),1 < i < n, and we have E[F?| = L on!|/fs|?, . We prepare
Tan
some notations. *
Definition 3.2 (1) Let D12 denote the set of random variables F € L2(P) with F = Y2, In(h) satisfying
Lo ""!”hnHizT < o0,
Aan

(2) Forany F € D2, DF : [0, T} x R x Q — R is defined by
00
Dt,z-F = Z nIn—l(hn((trZ)r'))'
n=1

(3) IL(I,’2 denotes the space of G : [0, T] x Q) — R satisfying
(a) Gs € D2 forae. s € [0, T),

®) E [ fi7) 1G5 2ds] < oo,
(©)E { Jiomr Jo |DezGsldsq(at, dz)] < .
4) ]L%'2 is defined as the space of G : [0, T] x Ry x Q2 — R such that
(@) Gsx € D' for g-ae. (s,x) € [0, T] xR,
®)E [ fio1ixry |Gs,x|2v(dx)ds] <,
@ E | fio11xR Jjo )y |DezGox Pv(@x)dsq(dt, dz)] < .
(5) ]E}'z is defined as the space of G € ]L}'2 such that

2
@ E ( Some |Gs,xlv(dx)ds) } < o0,

(b)E Lflo,r]xx (f[(meo | Dt G x

Theorem 3.4 below is a Clark-Ocone type formula under P*, which is concerned about an integral
representation of F € L?(P). The assumptions needed to see it are given in Assumption 3.3. Note that
Assumption 2.1 is unrelated.

v(dx)ds)zq(dt, dz)] < o0,

Assumption 3.3 (1) u, u? € L}?; and 2usDy ,us + z(Dy zus)? € L2(q x P) fora.e. s € [0, T).
(2) 6 +log{(1 — 0) € L1?, and log(1 - 0) € L}~
(3) For g-a.e. (s,x) € [0, T} x Ry, there is an &5 € (0,1) such that 05, < 1 — €.
2Dy , log Z:
(4) Zr {Dt,O log Zr1g) (2) + €2 2T 1R, (z)} € L*(g x P).
(5) F € D'2; and ZyDy,F + FDy Zy + 2Dy F - Dy Zr € L2(q x P). (6) FH,, H,DyoF € LY(P*) for g-ae.
(t,2) € [0, T] x R, where H, := exp{zD;;log Zr — log(1 — 6;2) }.



Theorem 3.4 (Theorem 3.4 of [9]) Under Assumptions 2.6 and 3.3, we have, for any F € L2(P),

T T . T - .
F = Ep[Fl+c / Ep- D,OF—F[ / Dy gusdWE + / / Dt.0%s.x gy (ds,dx)] ‘]’t-]dwt
0 ’ 0 0 JRg 1- Gs,x

T T P*
+ /Ro Ep-[F(H;, — 1) + zH;, Dy F| Fi_|NF" (dt, d2).

3.3 Main results

Under the above preparations, we calculate 1% and h! by using Theorem 3.4. Together with Theorem 3.1,
we obtain the following:

Theorem 3.5 Under Assumptions 2.1, 2.6 and 3.3, H0 and h! are described as

T . T e
1 = oEp- [DtoF—F [ | Doousawt”+ [ [ Drobox e (ds,dx)] j.rt_], (3.4)
! 0 . 0 JRy1—06sx
hi, = Ep+[F(H}, — 1) + zH}, D F| Fi- ). (3.5)

Moreover, LRM &F is given by substituting (3.4) and (3.5) for kO and h! in (3.2) respectively, if (3.1) holds.

When we try to calculate LRM concretely through Theorem 3.5, we need to confirm if all the assump-
tions in Theorem 3.5 are satisfied for a given model. But, it seems to be a hard work. So that, we introduce
a simple framework satisfying all the assumptions.

Example 3.6 We consider the case where a, B, and vy in (2.2) are deterministic functions satisfying the three condi-
tions in Example 2.7. Additionally, we assume that

Z1F € L2(P), and condition 5 in Assumption 3.3. (3.6)
Then, all the conditions in Theorem 3.5 are satisfied; and &F is given by
F BEp« D oF | Fe-] + fRo Ep+ [2Ds 2 F| Fi_ |71 ,.v(dz)

(3.7)
¢ Si (ﬁ% + fRo 'y,z’zv(dz))

4 Call options

In this section, we deal with call options as common examples of contingent claims. The payoff of the call
option with strike price K > 0 is expressed by (St — K)* where x* = x Vv 0. First of all, we calculate the.
Malliavin derivatives of (F — K)* for F ¢ D and K € R.

Theorem 4.1 Forany F € D'?, K € Rand g-a.e. (t,z) € [0, T] x R, we have (F — K)* € D2 and

L (F+2DyF - K)* — (F-K)*
z

Dyz(F — K)* = 1{p 53 DyoF - 10y (2) 1R, (z).

We shall give an explicit representation of LRM for the deterministic coefficients case discussed in Ex-
ample 3.6. Here after, we consider the case where #, § and v in (2.2) are deterministic functions satisfying
the three conditions in Examples 2.7. Additionally, we assume the following condition:

/lRo {7, + [log(1 + 7:2)[2}v(dz) < C for some C > 0. 4.1)

As seen in Example 3.6, this model satisfies all the conditions in Theorem 3.5, if the call option (S — K)*
satisfies (3.6). First of all, we calculate the Malliavin derivatives of St.
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Proposition 4.2 We have St € ID; and
Dyt = P10y (2) + T 1y, (2) «2)
forg-ae. (t,2z) € [0,T] xR.
Remark 4.3 A similar arqgument with Proposition 4.2, together with Example 3.6, yields
Dy Zr = —Z1 (%1{0}@) + 0*7‘1120@)) .
Moreover, note that Condition (3.6) in Example 3.6 is satisfied.

We can calculate an explicit representation of LRM for call options as follows:

Proposition 4.4 Forany K > Oand t € [0, T), we have

_K)* 1
‘:t(sr Kr {ﬁ%Ep* [1{5 >K}5T|-7'-t—]
St (ﬁ% + Jr, 'Ytz,zv(dz)) '

+ /Ro Ep- [(ST(14 112) —K)* — (ST - K)+|ft—]’n,z1/(dz)}-
4.3)

5 Asian Options

In this section, we study Asian options, which are options whose payoff is depending on 11- fOT Ssds. By
Lemma 3.2 in [3], we first derive the following proposition:

Proposition 5.1 Besides Assumption 2.1, we assume the following two conditions:

1. S; e D2 forae. s € [0,T).
2. E [ Jomr Jom |D,,zss|2dsq(dt,dz)] < 0.

We have then % [ Sods € D2 and Dy, 3 [} Seds = + [} Dy2Ssds for gae. (1,z) € [0,T) x R.

Next, we calculate Malliavin derivatives and LRM of Asian options for the same setting as section 4.

Proposition 5.2 When a, B and -y are deterministic functions satisfying the three conditions in Example 2.7 and
(4.1), we have } fOT Ssds € D2 and

1 /T 1 ﬂt Y,z T
Dt’szo Seds = T {;1{0}(2) + —Z—IRO(Z)}[ Ssds

forg-ae. (t,z) € [0,T] x R.
We illustrate LRM for Asian options with payoff (1 fOT Ssds — K) ™.



Proposition 5.3 Under the same setting as Proposition 5.2, we have, for any K > 0and t € [0, T},

_ 1
A {ﬁpr*[l{V Ky Vil Fi-]
S (B + Jiy 7h0142)) "

+/R Ep- [(Vo+71:Vi —K)* — (Vo — K) V| Fp-] ’Yt,zV(dZ)}r
0

where V; = % ftT S,ds.

6 Lookback Options

We focus on lookback options, that is, options whose payoff depends on the running maximum of the asset
price process M® := sup;¢(q 7 St-

In this section, we treat only the case where S; is given as an exponential Lévy process S; = Sgexp{L:},
where 59 > 0 and Ly = ut + X}, where X is the underlying Lévy process defined in (2.1), and y € R. Note
that Ly € D2 forany ¢ € [0, T].

First of all, we calculate Malliavin derivatives of ML.

Theorem 6.1 ML € D2 gnd

supse[O’T](Ls -+ Zl{tSs}) — ML

Di,ME = lion1oy(2) + 2

1]Ro (Z) (61)

where T = inf{t € [0, T]|L; V Li— = ML},

We next calculate Malliavin derivatives and LRM of lookback ogtions whose payoffs are given as M —
St and (M5 — K)* for K > 0. Here we assume f]Ro 22v(dz) < oo, [7(€% ~ 1)*v(dz) < o0;and

{h+% + fg,(x— e + Dwian) } (- 1)
o2+ fg, (e —1)2v(dx)

for any z € Ry. Remark that fRo(z — & + 1)v(dz) is well-defined since ¢ — 1 — z < (e — 1)2? for any
z € [—1,1]; and the three conditions in Example 2.7 and (4.1) are satisfied under these conditions. Note that
Condition (3.6) also holds for both MS — S and (MS — K)*.

Now, we calculate Malliavin derivatives and LRM for lookback options by using Theorem 4.1 and (3.7).

Proposition 6.2 (1) We have M® € D'2; and

SupsE[OIT] (SSEZI{tSS}) - MS
z

Dt,zMs = Li>1140} (z) + 1R, (2)-

)

1 S
SUP;c(o,7] (Ssez {tss}) - M e?—1
e — St e 1R, (2).

Dt,z(Ms ~S87) = (Msl{r?_t} - ST)l{O} (z) + (

(3) For any K > 0, we have

(supsciom (S:™00) = K) " = (M = K)*
Z

Diz(M® — K)* = M®1pi s 100k /50)} L2y 10} (2) + 1R, (2).
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Corollary 6.3 Forany K > 0and t € [0, T], we have

5_ 1
f"I 5t — -C?:{O'ZIEP* [MSI{TZt} - Sr|Fe-] + /Ro Ep- [ sup (Sueﬂ{fsu}) - M5 - ST')/ZIJ-}_] 'yzv(dz)},

uel0,T]
and
S_k\+ 1
P = @{UZEP'[MSI{ML>log(K/so)}1{r2t}lff—]
+
+ [ Ep- sup ( Syttt —K) — (MS = K)*|Fie 'yv(dz)}.
/Ro ¥ [(uG[O,T]< ) t ?

where v, :=¢* —1and C := (02 + fro 'yfv(dz)).
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