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1 Introduction

Let $X_{1},$ $X_{2},$
$\cdots,$ $X_{N}$ be independent, identically distributed random variables. Assume that $\mathbb{E}X=0$ and

$\mathbb{E}X^{2}=1$ . Then, their sum $S_{N}:=X_{1}+X_{2}+\cdots+X_{N}$ satisfies

$\frac{S_{N}}{\sqrt{N}}arrow N(0,1)$ (in distribution), (1.1)

which is the Central Limit Theorem. In principle, all the random variables $X_{1},$ $X_{2},$ $X_{N}$ can be of order
1, hence $S_{N}\sim 1$ as well, but the probability of having such a rare event is incredibly small. We can even
estimate the bound on the probability for the rare event from the large deviation principle.

A similar phenomenon happens when we form a large matrix from i.i. $d$ . random variables and consider
the distribution of its eigenvalues. The simplest example for the random matrix model is the Gaussian
Orthogonal Ensemble (GOE).

Definition 1,1 (Gaussian Orthogonal Ensemble (GOE)). An $N\cross N$ random matrix $H=(h_{ij})$ is said to
be the Gaussian Orthogonal Ensemble if its entries $h_{ij}$ are real Gaussian random variables, independent up
to the symmetry constraint $h_{ij}=h_{ji}$ , satisfying

1. $\mathbb{E}h_{ij}=0,$

2. $\mathbb{E}|h_{ij}|^{2}=N^{-1}$ for $i\neq j$ , and

3. $\mathbb{E}|h_{ii}|^{2}=2N^{-1}$

Similarly, we can define a model for complex Hermitian matrices, which is known as Gaussian Unitary
Ensemble (GUE).

Definition 1.2 (Gaussian Unitary Ensemble (GUE)). An $N\cross N$ random matrix $H=(h_{ij})$ is said to be
the Gaussian Unitary Ensemble if its entries $h_{ij}$ are complex Gaussian random variables, independent up to
the symmetry constraint $h_{ij}=\overline{h_{j\iota’}}$ , satisfying

1. $\mathbb{E}h_{ij}=0,$

2. $\mathbb{E}|h_{ij}|^{2}=N^{-1}$ , and

3. $\mathbb{E}(h_{ij})^{2}=0$ if $i\neq j.$

In order to introduce results on GOE or GUE analogous to CLT, we consider the empirical spectral
distribution of a random matrix.

Definition 1.3. Let $\lambda_{1}\leq\lambda_{2}\leq\cdots\leq\lambda_{N}$ be the eigenvalues of $H$ . Then, the empirical (spectral) measure
of $H$ is defined by

$\mu(H) :=\frac{1}{N}\sum_{j=1}^{N}\delta_{\lambda_{j}}$ . (1.2)
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Random matrices such as GOE or GUE were first introduced by Wigner [17] for the spectral analysis
of heavy nuclei. Later, Gaudin, Mehta, and Dyson [10, 11, 3, 4] proved important results on Gaussian
ensembles such as the bulk universality results. While the early works focused on the properties of the
eigenvalue distribution of the Gaussian ensembles, the recent developments on the random matrix theory

showed that in fact most of the properties hold for a larger class of Wigner matrices as well [7, 14]. The
most basic yet the most well-known such a phenomena is the semicircle law proved by Wigner [17]. We first

consider the GOE case.

Theorem 1.4. Let $\mu_{GOE}$ be the empirical measure of $GOE$. Then, $\mu_{GOE}$ converges almost surely to the
Wigner semicircle distribution $\mu_{sc}$ whose density is defined to be

$\mu_{sc}(x)dx :=\frac{1}{2\pi}\sqrt{(4-x^{2})_{+}}dx$ . (1.3)

Wigner semicircle law holds for a much larger class of random matrices. The most notable examples are
Wigner matrix ensembles.

Definition 1.5. An $N\cross N$ random matrix $H=(h_{ij})$ is said to be $a$ (symmetric/Hermitian) Wigner matrix
if its entries $h_{ij}$ are (real/complex) random variables satisfying

1. The upper right entries $h_{ij}(i<j)$ are i.i. $d$ . with $\mathbb{E}h_{ij}=0$ , and $\mathbb{E}|h_{ij}|^{2}=N^{-1}$

2. The diagonal entries $h_{ii}$ are i.i. $d$ . with $\mathbb{E}h_{ii}=0$ and $\mathbb{E}|h_{ii}|^{2}=CN^{-1}$ for some constant $C.$

3. In addition, for the Hermitian case, $\mathbb{E}(h_{ij})^{2}=0.$

The bulk universality concerns the behavior of eigenvalues in the bulk of the spectrum. Consider the
following $k$-point correlation function of the eigenvalues.

Definition 1.6 ( $k$-point correlation function). Let $p_{N}(x_{1}, x_{2}, \cdots, x_{N})$ be the symmetric density function of
the eigenvalues $\lambda_{1},$ $\lambda_{2},$

$\cdots,$
$\lambda_{N}$ . For any $k=1$ , 2, $\cdots,$

$N$ , we define the $k$-point correlation function of the
eigenvalues by

$p_{N}^{(k)}(x_{1}, x_{2}, \cdots, x_{k}) :=\int p_{N}(x_{1}, x_{2}, \cdots, x_{N})dx_{k+1}\cdots dx_{N}$ . (1.4)

For $GUE$ , it is proved by Gaudin and Mehta [10, 11] that $p_{N}^{(k)}$ has a determinantal structure, i.e., there

exists a function $K_{N}$ such that

$p_{N}^{(k)}(x_{1}, x_{2}, \cdots, x_{k})=\det[I\iota_{N}’(x_{i}, x_{j})]_{1\leqi,j\leq k}$ . (1.5)

Later, Dyson found the formula for $K_{N}$ which becomes

$K_{N}(x+ \frac{y_{1}}{N\mu_{sc}(x)}, x+\frac{y_{2}}{N\mu_{sc}(x)})=\mu_{sc}(x)K(y_{1}, y_{2})$ , (1.6)

where $K$ is the function
$K(y_{1}, y_{2}):= \frac{\sin(\pi(y_{1}-y_{2}))}{\pi(y_{1}-y_{2})}$ , (1.7)

which is called the Dyson sine kernel.
As in the Wigner semicircle law, the limiting distribution for the correlation function is universal, under

suitable conditions, in the sense that it does not depend on the specific matrix model. There is, however, one
crucial difference between the universality of the correlation function and that of the semi-circle law, which

is that the correlation function may depend on whether the given random matrix model is an orthogonal

ensemble or a unitary ensemble. The Dyson sine kernel can describe the limiting distribution for unitary
ensembles but not for orthogonal ensembles. Including this feature, we use the term bulk universality

that asserts the fact that the limiting distribution for the correlation function depends only on the symmetry

class.
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The bulk universality also implies that the limiting distribution of the gap’, the distance between adjacent
eigenvalues, is also universal. In particular, since the adjacent eigenvalues in GUE or GOE tend to keep
distance from each other, we can also find that the adjacent eigenvalues in many random matrix models.
This is called (level repulsion’. Note that this also tells the eigenvalues of random matrix models are strongly
correlated, unlike i.i. $d$ . random variables.

The dyson sine kernel, and in general the determinantal structure of the correlation functions, appear
in many other fields of mathematics. For example, if we consider the non-trivial zeros of the Riemann zeta
function on the critical line, then after a proper normalization, the imaginary parts of the zeros behave like
the eigenvalues of GUE.

Near the edge of the spectrum, i.e., for the eigenvalues very near 2 $($or $-2)$ , the limiting distribution for
the correlation function has different asymptotics. In this case, $K_{N}$ collverges to a different kernel, which is
usually called the Airy kernel. However, there is another formula, proved by Tracy and Widom [15], for the
limiting distribution for the largest eigenvalue.

Definition 1.7 (Tracy-Widom distribution). Let $q(t)$ be a solution to the Painlev\’e II equation

$q”=tq+2q^{3}$

satisfying
$q(t)\sim Ai(t)$ as $tarrow\infty.$

The function $F_{2}$ is a distribution function defined by

$F_{2}(t)=\exp(-l^{\infty}(x-t)q(x)^{2}dx)$ (1.8)

The function $F_{2}$ is called the Tracy-Widom distribution.

It is proved by Tracy and Widom that the cumulative distribution function of the rescaled largest eigen-
value of GUE

$\mathbb{P}[N^{2/3}(\lambda_{N}-2)\leq t]arrow F_{2}(t)$

in distribution (vague convergence). In particular, the size of the fluctuation of the largest eigenvalue of GUE
around 2 is of order $N^{-2/3}$

The subindex 2 in $F_{2}$ again denotes the dependence on the symmetry class [16]. For orthogonal ensembles,
the limiting distribution function is different from $F_{2}$ , and it is usually called $F_{1}$ . As in the bulk universality,
under suitable conditions, the limiting distribution for the largest eigenvalue only depends on the symmetry
class. This fact is what we call the edge universality.

The Tracy-Widom distribution appears in many other applications. For example, if we consider $L_{N},$

the length of the longest increasing subsequence of a random permutation on $\{$ 1, 2, $\cdots,$ $N\}$ , then $L_{N}/\sqrt{N}$

behaves as the largest eigenvalue of GUE, hence the limiting distribution is given by Tracy-Widom.
The universality results, bulk and edge, provide a very important strategy in the random matrix theory.

When a certain property of the eigenvalues of a given random matrix model is hard to achieve, we can
first consider the property we want to attain in GOE or GUE. Then, by proying a universality result, by
comparing the limiting distribution of some eigenvalues of the given model with that of GOE or GUE, we
can find a desired property in the given random matrix. This is very powerful because there are additional
tools working only on GUE or GOE due to some symmetry or some explicit formulas.

Although omitted in this article, there are many other random matrix models that exhibit similar beha-
viours as Wigner matrices. Among important random matrix models are the Wishart random matrix (sample
covariance matrix), which is of the form $XX^{*}$ for an $M\cross N$ random matrix $X$ with i.i. $d$ . entries, and the
Circular Ensembles $($COE $/CUE)$ . In some cases, a random matrix ensemble is defined by a probability
distribution on the set of matrices, such as

$P(M) dM=\frac{1}{Z_{N}}e^{-trQ(M)}dM$ , (1.9)
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where $dM$ is the Lebesgue measure on the independent entries of $M,$ $Q$ is a real-valued function satisfying
$Q(x)arrow\infty$ as $xarrow\pm\infty$ , and $Z_{N}$ is the normalization constant (partition function) given by

$Z_{N}= \int e^{-trQ(M)}dM$ . (1.10)

The set $\{M\}$ can be a set of all real symmetric matrices or a set of all Hermitian matrices. The former is

known as ‘orthogonal ensembles’ and the latter (unitary ensembles’. As the names suggest, GOE and GUE
belong to orthogonal ensembles and unitary ensembles, respectively, where the ‘potential’ $Q$ becomes

$Q(x)= \frac{\beta N}{4}x^{2}$ (1.11)

with $\beta=1$ for orthogonal ensembles and $\beta=2$ for unitary ensembles. In the invariant ensemble, although

a typical choice for $\beta$ is $\beta=1$ or $\beta=2$ , it is also possible to use different $\beta$ other than 1 or 2. (The choices
$\beta=1$ , 2, and 4 are called ‘classical’.) In this case, the bulk universality means that the limiting distribution

depends only on $\beta$ under suitable conditions on $Q.$

Throughout the article, the limit, $O,$ $0,$ $\gg,$ $\ll$ , and other similar notations will always refer to the limit
$Narrow\infty$ unless noticed otherwise. In some cases the notation $A<B\sim$ will be used, where it means that

$A\leq(\log N)^{C\log\log N}B$

for some constant $C$ independent of $N$ . The notation $A\sim B$ means that

$C^{-1}|B|\leq|A|\leq C|B|$

for some constant $C$ independent of $N.$

2 Wigner semicircle law

In this chapter, we prove Wigner semicircle law for Wigner matrices in two different ways. The first one by

the moment counting is almost the same as the original proof by Wigner, and it requires some combinatorial
arguments. The second one uses the Stieltjes transform, which provides a nice tool in the random matrix

theory in general.

2.1 Proof by moment counting

In the original work of Wigner, a combinatorial proof by moment counting was used. In order to prove the

semicircle law, it suffices to show that

$\mathbb{P}(|\langle\mu, f\rangle-\langle\mu_{sc}, f\rangle|>\epsilon)arrow 0$

for any $f\in C_{b}(\mathbb{R})$ and for any $\epsilon>0$ . By Weierstrass approximation theorem, $f$ can be approximated by a

polynomial. Thus, it suffices to prove that

$\langle\mu, x^{k}\ranglearrow\langle\mu_{sc}, x^{k}\rangle.$

By an explicit calculation, we can find that the $2k$-th and $(2k-1)-st$ moments satisfy

$m_{2k}=C_{k}, m_{2k-1}=0$ , (2.1)

where $C_{k}$ is the k-th Catalan number defined by

$C_{k}= \frac{1}{k+1}(\begin{array}{l}2kk\end{array})=\frac{(2k)!}{(k+1)!k!}$ . (2.2)
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Thus, it only remains to prove that

$\langle\mu,$ $x^{k} \rangle=\frac{1}{N}$ tr $H^{k}arrow\{\begin{array}{ll}C_{k/2} if k is even,0 if k is odd.\end{array}$ (2.3)

We first prove the following lemma.

Lemma 2.1. After taking expectation, we have

$\mathbb{E}\langle\mu,$ $x^{k}\ranglearrow\{\begin{array}{ll}C_{k/2} if k is even,0 if k is odd.\end{array}$ (2.4)

Proof. Consider

$\mathbb{E}\langle\mu,$

$x^{k} \rangle=\frac{1}{N}\sum_{i_{1},i_{2},\cdots,i_{k}}\mathbb{E}[H_{i_{1}i_{2}}H_{i_{2}i_{3}}\cdots H_{i_{k-1}i_{k}}H_{i_{k}i_{1}}]$ (2.5)

Since each entry in $H$ is independent (up to the constraint on the symmetry), if $\{i_{j}i_{j+1}\}\neq\{i_{j’}i_{j’+1}\}$ for
some $1\leq j\leq k$ and all $j’\neq j$ , then the summand vanishes. (Here, we let $i_{k+1}=i_{1}$ For given $i_{1},$ $i_{2},$

$\cdots,$
$i_{k},$

consider a graph $G_{i_{1}\cdots i_{k}}$ with vertices $(i_{1}, i_{2}, \cdots, i_{k})$ and edges $(i_{1}i_{2}, i_{2}i_{3}, \cdots, i_{k}i_{1})$ . From the argument
above, it suffices to consider the graphs where vertices $i_{j}$ and $i_{j+1}$ are connected at least twice. In particular,
if the graph $G_{i_{1}\cdots i_{k}}$ contains more than $(k/2)+1$ distinct vertices, the contribution from the graph to the
sum vanishes.

We now estimate $\mathbb{E}[H_{i_{1}i_{2}}H_{i_{2}i_{3}}\cdots H_{i_{k-1}i_{k}}H_{i_{k}i_{1}}]$ . Each entry of $H$ contains the factor $N^{-1/2}$ , hence
the expectation contains the factor $N^{-k/2}$ If we have $r$ distinct vertices in the graph, then, we have
$N(N-1)\cdots(N-r+1)$ different choices of labeling the vertices using 1, 2, $\cdots,$

$N$ . Together with the factor
$N^{-1}$ in front of the summation, we conclude that the conribution from the graph $G_{i_{1}\cdots i_{k}}$ to the sum is $0$

unless $r\geq(k/2)+1.$

So far, we have seen that the only case we need to consider is $r=(k/2)+1$ , in particular, the sum
converges to $0$ when $k$ is odd. When $k$ is even, the graphs we want to consider are doubly connected trees,
which can be identified with ordered trees, with $(k/2)+1$ vertices. The number of different ordered trees
with $(k/2)+1$ vertices is $C_{k/2}$ , thus

$\frac{1}{N}\sum_{i_{1},i_{2},\cdot\cdot,i_{k}}.\mathbb{E}[H_{i_{1}i_{2}}H_{i_{2}i_{3}}\cdots H_{i_{k-1}i_{k}}H_{i_{k}i_{1}}]arrow C_{k/2}$ (2.6)

when $k$ is even. $\square$

In order to complete the proof of the semicircle law, it is enough to prove that

$\mathbb{E}[\langle\mu_{)}x^{k}\rangle^{2}]-[\mathbb{E}\langle\mu, x^{k}\rangle]^{2}arrow 0$ (2.7)

and use Chebyshev inequality. It requires more graph counting, which we omit here.

2.2 Stieltjes transform

We briefly study the basic properties of Stieltjes transform.

Definition 2.2. For a finite measure $v$ on the real line, the Stieltjes transform of $v,$ $m_{\nu}$ is defined by

$m_{1}$ノ
$(z):= \int_{\mathbb{R}}\frac{\nu(dx)}{x-z}$ (2.8)

for $z\in \mathbb{C}\backslash \mathbb{R}.$

If we let $z=E+i\eta$ , then we have the following trivial properties.
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Lemma 2.3. Let $m_{\nu}$ be the Stieltjes transform of a finite measure $\nu$ on the real line.

1. If $\eta>0$ , then ${\rm Im} m_{\nu}(z)>0.$

2. If $\nu(\mathbb{R})=C_{\nu}$ , then $|m_{\nu}(z)|\leq C\eta^{-1}$

The Stieltjes transform $m_{\nu}$ is (complex) analytic on $\mathbb{C}\backslash \mathbb{R}$ . It is also possible to (invert’ the Stieltjes

transform.

Lemma 2.4. Assume that $\nu$ is a probability measure without any point mass (atom). Then,

$\frac{1}{\pi}{\rm Im} m_{\nu}(\cdot+i\eta)arrow\nu$

vaguely as $\eta\searrow 0$ . In particular, for any interval $I,$

$\nu(I)=\frac{1}{\pi}\lim_{\eta\searrow 0}\int_{I}{\rm Im} m_{\nu}(E+i\eta)dE$ . (2.9)

As we can see from the above lemma, we can recover information on the measure from its Stieltjes

transform. Thus, given a sequence of measures, it is natural to consider the Stieltjes transform of the

measures in order to find its limit. The following lemma supports the technique.

Lemma 2.5. Let $(\nu_{i})$ be a sequence of random probability measures. Then, $m_{\nu}.(z)arrow m_{\nu}(z)$ almost surely (in

probability) for some deterministic probability measure $\nu$ if and only if $\nu_{i}arrow\nu$ almost surely (in probability)

for every $z$ in the upper half plane.

The Stieltjes transform of a measure $\nu$ contains information on the moments of $\nu$ . A formal calculation
shows that

$S_{\mu}(z)= \int\frac{\mu(dx)}{x-z}=-\frac{1}{z}\sum_{k=0}^{\infty}\frac{1}{z^{k}}\langle x^{k}, \mu\rangle.$

For the semicircle distribution, if we consider

$g(z):= \sum_{k=0}^{\infty}m_{k}z^{k},$

then, for $|z|<1/2,$ $g(z)$ is analytic. $Moreover_{\}}$ we find that

$g(z)=1+z^{2}[g(z)]^{2}= \frac{1-\sqrt{1-4z^{2}}}{2z^{2}}.$

We also have for $|z|<1/2$ that

$g(z)= \sum_{k=0}^{\infty}z^{k}\int x^{2k}\mu_{sc}(x)dx.$

We thus obtain the Stieltjes transform of the semicircle measure

$m_{sc}=- \frac{1}{z}g(\frac{1}{z})=\frac{-z+\sqrt{z^{2}-4}}{2}$ . (2.10)

2.3 Local semicircle law

In order to understand the spectrum of a given operator, we use the resolvent, or the Green’s function defined

as follows:

Definition 2.6 (Resolvent(Green’s function For a real symmetric (complex Hermitian) matrix $H$ , the

resolvent $G$ of $H$ is defined by
$G(z) :=(H-zI)^{-1}$ (2.11)
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The idea of using Stieltjes transform to prove the semicircle law based on the averaged Green’s function

$m(z)$ $:= \frac{1}{N}$ tr $G(z)= \frac{1}{N}\sum_{j=1}^{N}G_{jj}(z)$ . (2.12)

Recall that the empirical measure $\mu$ was defined by

$\mu=\frac{1}{N}\sum_{j=1}^{N}\delta_{\lambda_{j}}.$

If we calculate the Stieltjes transform of $\mu$ , then we get

$m_{\mu}(z)= \int\frac{\mu(dx)}{x-z}=\frac{1}{N}\sum_{j=1}^{N}\frac{1}{\lambda_{j}-z}=\frac{1}{N}$ tr$(H-zI)^{-1}=m(z)$ .

Thus, the semicircle law can be attained once we prove that $marrow m_{sc}$ as $Narrow\infty.$

To estimate the difference $|m-m_{sc}|$ , we use the following formula:

Lemma 2.7 (Schur complement formula). Let $H^{(i)}$ be the submatrix of $H$ attained by removing the i-th row
and the column of H. (The indices are not changed.) If we let $G^{(i)}$ be the resolvent of $H^{(i)}$ , then we have

$G_{ii}= \frac{1}{h_{ii}-z-\sum_{s,t}^{(i)}h_{is}G_{st}^{(i)}h_{ti}}.$

From Schur complement formula, together with the fact that $h_{ii}\sim N^{-1/2}$ , we find that

$G_{ii} \simeq\frac{1}{-z-N^{-1}\sum_{j}^{(i)}G_{jj}^{(i)}}\simeq\frac{1}{-z-m(z)}.$

(See [6] for more detail.) In particular,

$m(z) \simeq\frac{1}{-z-m(z)}.$

Since $m_{sc}(z)$ is the solution to the equation

$m_{sc}(z)= \frac{1}{-z-m_{sc}(z)},$

we can estimate the difference $|m(z)-m_{SC}(z)|$ in terms of $N.$

For any fixed $z=E+i\eta$ , the best result known [8] is that

$|m(z)-m_{sc}(z)|< \sim\frac{1}{N\eta}$ , (2.13)

which is enough to prove the semicircle law in the limit $Narrow\infty$ . (It is believed to be optimal.) If we choose
$\eta\ll 1$ , we can obtain more information on the distribution of eigenvalues. Because Equation (2.13) describes
the local behaviour of the eigenvalues, it is often called the local semicircle law. The local law has many
important consequences including the complete delocalization of eigenvectors and the rigidity of eigenvalues,
which will be discussed in the following chapters.
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3 Green IUnction Comparison

3. 1 Lindeberg replacement strategy

Suppose that we want to prove the central limit theorem. For simplicity, assume that $(Y_{i})$ are i.i. $d$ . real
random variables with $\mathbb{E}Y_{i}=0,$ $\mathbb{E}|Y_{i}|^{2}=1$ , and $\mathbb{E}|Y_{i}|^{p}<C_{p}$ for any finite $p$ . Let

$W_{N}= \frac{Y_{1}+Y_{2}+\cdots+Y_{N}}{\sqrt{N}}.$

Suppose that $(X_{i})$ are i.i. $d$ . real Gaussian random variables with $\mathbb{E}X_{i}=0$ and $\mathbb{E}|X_{i}|^{2}=1$ . We also let

$Z_{N}= \frac{X_{1}+X_{2}+\cdots+X_{N}}{\sqrt{N}}.$

Notice that $Z_{N}$ is a centered Gaussian with variance 1, which can be easily checked by a Fourier transform
method. Define

$W_{N}^{(i)}= \frac{X_{1}+\cdots+X_{i}+Y_{i+1}+\cdots+Y_{N}}{\sqrt{N}})$

in particular, $W_{N}^{(0)}=W_{N}$ and $W_{N}^{(N)}=Z_{N}$ . We now consider the m-th moment of $W_{N}$ . Since (Y) are i.i. $d.$

with $\mathbb{E}Y_{i}=0$ , we find that

$\mathbb{E}(W_{N})^{m}=\sum_{i_{1},i_{2},\cdot\cdot,i_{k}}.\mathbb{E}(\frac{Y_{i_{1}}}{\sqrt{N}})^{r_{1}}(\frac{Y_{i_{2}}}{\sqrt{N}})^{r_{2}}\ldots(\frac{Y_{i_{k}}}{\sqrt{N}})^{r_{k}}$ (3.1)

with $i_{1},$ $i_{2},$ $\cdots$ , $i_{k}>0$ and $i_{1}+i_{2}+\cdots+i_{k}=m.$

We now consider $\mathbb{E}[(W_{N}^{(j)})^{m}-(W_{N}^{(j-1)})^{m}]$ . from the argument above, we can easily find that

$\mathbb{E}[(W_{N}^{(j)})^{m}-(W_{N}^{(j+1)})^{m}]=\sum_{s=2}^{m}C_{s}\mathbb{E}[(\frac{X_{j}}{\sqrt{N}})^{S}-(\frac{Y_{j}}{\sqrt{N}})^{s}]$ (3.2)

for some finite constants $C_{2},$ $C_{3},$ $\cdots$ $($They $may$ depend $on m, but we$ omit $the$ detail. $)$ Since $Y_{j}$ and $X_{j}$

have matching second moment, we find that $\mathbb{E}[(W_{N}^{(j)})^{m}-(W_{N}^{(j+1)})^{m}]=O(N^{-3/2})$ . Applying the argument
$N$-times, we find from the telescoping series

$\mathbb{E}[(W_{N})^{m}-(Z_{N})^{m}]=\sum_{j=0}^{N-1}\mathbb{E}[(W_{N}^{(j)})^{m}-(W_{N}^{(j+1)})^{m}]$

that $\mathbb{E}[(W_{N})^{m}-(Z_{N})^{m}]=O(N^{-1/2})$ . This proves the central limit theorem.
The advantage of using Lindeberg replacement strategy in proving CLT is that it does not require the

exact calculation on the moments of $W_{N}$ . Instead, the moments are simply compared with well-known objects
-the moments of the Gaussian-and the proof can be done by controlling the error terms in the comparison.
Lindeberg replacement strategy has many important applications in random matrix theory, most notably,

the Green function comparison for the universality.

3.2 Eigenvalue counting and Green function

For $E_{1}<E_{2}$ , let
$\mathcal{N}(E_{1}, E_{2})=|\{\lambda_{j}:E_{1}\leq\lambda_{j}<E_{2}\}|,$

i.e., the number of eigenvalues in the interval $[E_{1}, E_{2}$ ). If we consider the characteristic function $\chi=\chi_{[E_{1},E_{2})},$

we have
$\mathcal{N}(E_{1}, E_{2})=tr\chi(H)$ .
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Since $\chi$ is not a continuous function, we want to approximate it by a smooth function. We use the Poisson
kernel in the upper half plane, i.e.,

$P_{\eta}(x)= \frac{\eta}{\pi(x^{2}+\eta^{2})}.$

Notice that $P_{\eta}*\chi$ is a smooth function for any $\eta>0.$

Using $P_{\eta}*\chi$ instead of $\chi$ , we find

$\mathcal{N}(E_{1}, E_{2})=tr\chi(H)\simeq tr(P_{\eta}*\chi)(H)=tr\int_{E_{1}}^{E_{2}}P_{\eta}(H-E)dE$ . (3.3)

Applying the identity

$P_{\eta}(x)= \frac{1}{\pi}{\rm Im}\frac{1}{x-i\eta},$

we get

$\mathcal{N}(E_{1}, E_{2})\simeq\frac{1}{\pi}\int_{E_{1}}^{E_{2}}$ tr ${\rm Im} \frac{1}{H-E-i\eta}dE=\frac{N}{\pi}\int_{E_{1}}^{E_{2}}{\rm Im} m(E+i\eta)dE$ . (3.4)

Roughly speaking, this approximation shows that the estimate on the difference of the Green functions of
two different Wigner matrices may imply the universality of eigenvalue distribution.

3.3 Four moment theorem and Green function comparison theorem

Definition 3.1 (Moment matching). For two independent real random variables $X$ and $Y$ , if

$\mathbb{E}X^{k}=\mathbb{E}Y^{k}$

for $k=1$ , 2, $p$ , we say that the first $p$ moments of $X$ and $Y$ match. For complex random variables, we
use the condition

$\mathbb{E}\overline{X}^{j}X^{k}=\mathbb{E}\overline{Y}^{j}Y^{k}$

for $j,$ $k=0$ , 1, 2, $\cdots,$ $p$ with $j+k\leq p$ , then we say that the first $p$ moments of $X$ and $Y$ match.

If we have some moment matching condition on the entries of two Wigner matrices $H$ and $H’$ , then the
eigenvalue distributions of them can be easily bounded. The following theorem by Tao and Vu [14] shows
that matching four moments is always sufficient.

Theorem 3.2 (Four moment theorem). Let $H$ and $H’$ be Wigner matrices. Assume that the first four
moments of $h_{ij}$ and $h_{ij}’$ match, the first two moments of $h_{ii}$ and $h_{ij}$ match, and the subexponential decay
condition holds for the single entry distributions. Then, there exists a small positive constant $c_{0}$ such that,
for any suficiently $\mathcal{S}mall$ positive $\epsilon$ , for any function $F:\mathbb{R}^{k}arrow \mathbb{R}$ satisfying $|\nabla^{j}F|\leq N^{\epsilon}$ for $j\leq 5$ , and for
any selection of $k$ -tuple of indices $i_{1},$ $i_{2},$ $\cdots$ , $i_{k}\in[\epsilon N, (1-\epsilon)N]$ , we have

$|\mathbb{E}F(\lambda_{i_{1}}, \lambda_{i_{2}, )}\lambda_{i_{k}})-\mathbb{E}F(\lambda_{i_{1}}’, \lambda_{i_{2}}’, \cdots, \lambda_{i_{k}}’)|\leq N^{-c_{0}}$ (3.5)

for any suficiently large $N.$

In particular, if a real symmetric Wigner matrix $H$ satisfies that

$\mathbb{E}x_{ij}=0, \mathbb{E}x_{ij}^{2}=1, \mathbb{E}x_{ij}^{3}=0, \mathbb{E}x_{ij}^{4}=3, Ex_{ii}=0, \mathbb{E}x_{ii}^{2}=2,$

then we always have universality. In order to find the statistics of eigenvalues around a fixed point, instead
of considering the eigenvalues with fixed indices, the following theorem can be used [5].
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Theorem 3.3 (Green function comparison theorem). Suppose that $H^{v}$ and $H^{w}$ are Wigner matrices satis-
fying the subexponential decay condition and the first four moments of $H^{v}$ and $H^{w}$ match. Then, there exist
a positive constant $\epsilon>0$ such that, for any $\eta\in[N^{-1-\epsilon}, N]$ and for any $z_{1},$ $z_{2}$ with ${\rm Im} z_{1},$ ${\rm Im} z_{2}=\pm\eta$ , we
have

$\lim_{Narrow\infty}[\mathbb{E}tr G^{v}(z_{1}) tr G^{v}(z_{2})-\mathbb{E}trG^{w}(z_{1}) tr G^{2}(z_{2})]=0$ , (3.6)

where $G^{v}$ and $G^{w}$ denote the Green functions of $H^{v}$ and $H^{w}$ , respectively.

Both of the theorems can be applied to prove the universality, provided that a nice matrix $H’$ exists.

Idea of proof of Green function comparison theorem. Suppose that we want to estimate $|\mathbb{E}(m-m’)|$ , where
$m$ and $m’$ denote the averaged Green functions of $H$ and $H’$ , respectively. Let $\gamma=N(N+1)/2$ . Adopting

the Lindeberg replacement strategy, we consider a sequence of Wigner matrices $\{H_{0}, H_{1}, \cdot\cdot, H_{\gamma}\}$ , where
$H_{0}=H,$ $H_{\gamma}=H’$ , and $H_{k}$ and $H_{k+1}$ differ at most in two matrix entries. We now consider a telescoping

series

$\mathbb{E}m-\mathbb{E}m’=\frac{1}{N}\sum_{k=1}^{\gamma}[\mathbb{E}tr(H_{k-1}-z)^{-1}-\mathbb{E}tr(H_{k}-z)^{-1}]$ (3.7)

Suppose that $H_{k}$ and $H_{k-1}$ differ only at the $(i,j)$-position. (It can be a diagonal element, i.e., it is allowed
to have $i=j.$ ) Let $Q$ be a matrix having zero entries at the $(i, j)$ -position and all the other entries are equal

to those of $H_{k}$ and $H_{k+1}$ . We let
$H_{k}=Q+y_{)} H_{k-1}=Q+W.$

We now expand the resolvents of $H_{k}$ and $H_{k-1}$ . Let

$R=(Q-z)^{-1}, S=(H_{k}-z)^{-1}, T=(H_{k-1}-z)^{-1}$

Then, we have an identity
$S=R-RVS$. (3.8)

Applying (3.8) successively, we also find that

$S=R-RVR+RVRVR-(RV)^{3}R+(RV)^{4}R-(RV)^{5}S$ (3.9)

We then calculate the expectation of $S_{aa}$ . From (3.9), we find that

$\mathbb{E}S_{aa}=\mathbb{E}R_{aa}-\mathbb{E}(RVR)_{aa}+\cdots-[(RV)^{5}S]_{aa}.$

Consider the second term in the above expansion. Since the entries of $V$ are all zero except $V_{ij}$ and $V_{ji},$

we have
$(RVR)_{aa}=R_{ai}V_{ij}R_{ja}+R_{aj}V_{ji}R_{\dot{n}a}.$

However, $Q$ is independent of $V$ , thus $R$ is also independent of $V$ . Thus, by taking partial expectation with

respect to $V_{ij}$ , we find that

$\mathbb{E}(RVR)_{aa}=\mathbb{E}V_{ij}\cdot \mathbb{E}[R_{ai}R_{ja}]+\mathbb{E}V_{ji}\cdot \mathbb{E}[R_{aj}R_{ia}]=0.$

The third term in the expansion (3.9) does not vanish. Nevertheless, we can decouple $V$ and $R$ by using
the same idea as above, so we find that

$\mathbb{E}(RVRVR)_{aa}=\mathbb{E}[V_{ij}V_{ji}]\cdot \mathbb{E}[R_{ai}R_{jj}R_{ia}]+\cdots$

We can also consider the expansion of $T$ , alld in the expansion, we find a term

$\mathbb{E}(RWRWR)_{aa}=\mathbb{E}[W_{ij}W_{ji}]\cdot \mathbb{E}[R_{ai}R_{jj}R_{\triangleleft a}]+\cdots,$
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which will exactly cancel the term above in the difference $\mathbb{E}S_{aa}-\mathbb{E}T_{aa}$ . In this way, from the four moment
matching condition, we find that

$\mathbb{E}S_{aa}-\mathbb{E}T_{aa}=-\mathbb{E}[(RV)^{5}S]_{aa}+\mathbb{E}[(RW)^{5}T]_{aa}.$

From the local law, we can attain a priori estimates $|S_{ii}|<C,$ $|S_{ij}|=o(1)$ , and similar results for $R$ and
T. Rom those estimates, we find that

$\mathbb{E}S_{\alpha a}-\mathbb{E}T_{aa}=O(N^{-5/2})$ .

Since we have $O(N^{2})$ terms in the telescoping series (3.7), we conclude that

$\mathbb{E}m-\mathbb{E}m’=O(N^{-1/2})$ .

$\square$

Remark 3.4. The four moment theorem as well as the Green function comparison theorem can be extend to
the edge of the spectrum.

Remark 3.5. The fourth moment matching condition (and the two moment matching condition for the
diagonal entries) can be weakened to $\mathbb{E}(h_{\iota’j})^{4}-\mathbb{E}(h_{ij}’)^{4}=O(N^{-\delta})$ for some $\delta>0.$

In the proof of the bulk universality and the edge universality, the Green function comparison theorem
is applied to compare the eigenvalue distribution of a given Wigner matrix and a reference matrix such as
Gaussian ensembles. In some situations, we even consider a chain of Wigner matrices and compare the Green
functions of them one pair at a time.

4 Dyson sine kernel and the bulk universality

4.1 Joint density of Gaussian unitary ensemble

Recall that we defined GUE as a Wigner matrix with Gaussian random variables. With a slight abuse of
notation, we may write it using the Gaussian measures such as

$dh_{ii}=C_{1}^{(N)_{e^{-Nh_{t}^{2}}:}/2}dM_{ii}, dh_{ij}^{R}=C_{2}^{(N)}e^{-N(h_{ij}^{R})^{2}}dM_{ij}^{R}, dh_{ij}^{I}=C_{2}^{(N)}e^{-N(h_{ij}^{I})^{2}}dM_{ij}^{I},$

where $dM_{ii},$ $dM_{ij}^{R}$ , and $dM_{ij}^{I}$ are Lebesgue measures on $\mathbb{R}$ . (Here, $R$ and $I$ stand for ‘real’ and (imaginary’,

respectively.) If we consider the probability measure corresponding to GUE defined on the $N^{2}$-dimensional
space of Hermitian matrices, then we obtain that

$dH=\prod_{i=1}^{N}dh_{ii}\prod_{i<j}dh_{ij}^{R}dh_{ij}^{I}=C_{N}\exp(-\frac{N}{2}\sum_{i,j=1}^{N}|h_{ij}|^{2})\prod_{i=1}^{N}dM_{ii}\prod_{i<j}dM_{ij}^{R}dM_{ij}^{I}$

(4.1)

$=C_{N}\exp$ $(- \frac{N}{2}$ tr $H^{2}) \prod_{i=1}^{N}dM_{ii}\prod_{i<j}dM_{ij}^{R}dM_{ij}^{I}$

For the GUE matrix, we can diagonalize it and have $H=U\Lambda U\dagger$ for a unitary matrix $U$ and a real diagonal
matrix $\Lambda=dia9(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N})$ . Notice that there is arbitrariness in the choice of $U$ , which corresponds
to the phase factor, i.e., for any $T=diag(e^{i\theta_{1}}, e^{i\theta_{2}}, \cdots, e^{i\theta_{N}})$ , we have $T\Lambda\tau\dagger=\Lambda$ . Thus, we consider the
quotient group $\tilde{U}=U/T$ , where $U$ is the unitary group of order $N$ , and let $d\tilde{U}$ be the Haar measure on U.
We now have

$dH=C_{N}\exp$ $(- \frac{N}{2}$ tr $H^{2}) \mathcal{J}(H)d\Lambda dU=C_{N}\exp(-\frac{N}{2}\sum_{i=1}^{N}\lambda_{i}^{2})|\mathcal{J}(H)|d\Lambda dU$ (4.2)
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where $\mathcal{J}(H)$ is the Jacobian and $d\Lambda=d\lambda_{1}d\lambda_{2}\cdots d\lambda_{N}$ is the Lebesgue measure on $\mathbb{R}^{N}$ A calculation shows
that

$\mathcal{J}(H)=\prod_{i<j}(\lambda_{i}-\lambda_{j})^{2}$
, (4.3)

hence we find the formula

$dH=\frac{1}{Z_{N}}\exp(-\frac{N}{2}\sum_{i=1}^{N}\lambda_{i}^{2})\prod_{i<j}(\lambda_{i}-\lambda_{j})^{2}d\Lambda d$ U. (4.4)

In particular, for any function $f(H)=f(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N})$ invariant under $Harrow UHU^{\uparrow}$ , we have

$\int f(H)dH=\frac{1}{Z_{N}}\int_{\mathbb{R}^{N}}f(\lambda_{1)}\lambda_{2}, \cdots, \lambda_{N})\exp(-\frac{N}{2}\sum_{i=1}^{N}\lambda_{i}^{2})\prod_{i<j}(\lambda_{i}-\lambda_{j})^{2}d\Lambda$ . (4.5)

The expression $\prod_{i<j}(x_{i}-x_{j})$ is known as the van der Monde determinant; using the determinant, we
can rewrite it as

$\prod_{i<j}(x_{i}-x_{j})=(-1)^{n(n-1)/2}\det(\begin{array}{llll}1 1 \cdots 1x_{l} x_{2} \cdots x_{N} x_{l}^{N-l} x_{2}^{N-l} \cdots x_{N}^{N-l}\end{array})$ (4.6)

4.2 Orthogonal polynomial

Consider a family of polynomials $\{f_{k}(x)\}$ , where $f_{k}$ is a degree $k$ monic polynomial with the following
property:

$\int_{\mathbb{R}}f_{j}(x)f_{k}(x)e^{-Q(x)}dx=c_{i}c_{j}\delta_{ij}$

for some function $Q$ and for some constants $c_{1},$ $c_{2},$ $\cdots$ There are many (classical’ orthogonal polynomials,
e.g., Jacobi polynomials, Laguerre polynomials, Hermite polynomials, etc., depending on the choice of $Q.$

When $Q(x)=x^{2}/2$ , we can use Hermite polynomials defined as follows:

Definition 4.1 (Hermite polynomials). The n-th Hermite polynomial $H_{n}$ is define by

$H_{n}(x)=(-1)^{n}e^{x^{2}/2} \frac{d^{n}}{dx^{n}}e^{-x^{2}/2}$ (4.7)

We also define the n-th normalized oscillator wavefunction $\psi_{n}$ by

$\psi_{n}(x)=\frac{e^{-x^{2}/4}}{\sqrt{n!\sqrt{2\pi}}}H_{n}(x)$ . (4.8)

Remark 4.2. Often in literature, the choice of $Q(x)=x^{2}$ is used when defining Hermite polynomials, which
gives “physicists‘ Hermite polynomials”’

Notice we chose the constant in the definition of $\psi_{n}$ to ensure that

$\int_{R}\psi_{m}(x)\psi_{n}(x)dx=\delta_{mn}$ . (4.9)

Recall the van der Monde determinant from the last section. Since $H_{n}$ is monic, we also have

$\det(\begin{array}{llll}1 1 \cdots 1x_{1} x_{2} \cdots x_{N}\vdots \vdots \vdots x_{l}^{N-l} x_{2}^{N-1} \cdots x_{N}^{N-l}\end{array})=\det(\begin{array}{llll}H_{0}(x_{l}) H_{0}(x_{2}) \cdots H_{0}(x_{N})H_{1}(x_{l}) H_{1}(x_{2}) \cdots H_{l}(x_{N})\vdots H_{N-l}(x_{l}) H_{N-l}(x_{2}) \cdots H_{N-1}(x_{N})\end{array})$
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Thus, if we let

then we obtain that

$K_{N}(x, y):= \sum_{k=1}^{N}\psi_{k-1}(x)\psi_{k-1}(y))$ (4.10)

$\exp(-\sum_{\prime,l=1}^{N}\frac{x_{i}^{2}}{2})\prod_{i<j}(x_{i}-x_{j})^{2}=C[\det\psi_{i-1}(x_{j})]^{2}=C\det K_{N}(x_{i}, x_{j})$ .

We remark that

$\int K_{N}(x, x)dx=N$ . (4.11)

We also have the following properties:

Lemma 4.3. For $\psi_{j}$ and $K_{N}$ defined above, we have

1. (Reproducing kernel property)

$\int K_{N}(x, y)K_{N}(y, z)dy=K_{N}(x, z)$ .

2. (Christoffel-Darboux formula)

$K_{N}(x, y)= \sqrt{N}[\frac{\psi_{N}(x)\psi_{N-1}(y)-\psi_{N}(y)\psi_{N-1}(x)}{x-y}]$

Moreover, if $x=y$ , we have

$K_{N}(x, x)=\sqrt{N}(\psi_{N}’(x)\psi_{N-1}(x)-\psi_{N-1}’(x)\psi_{N}(x))$

3. (Asymptotic behaviour)

$\lim_{Narrow\infty}N^{1/4}\psi_{n}(N^{-1/2}t)=\frac{1}{\sqrt{\pi}}\cos(t-\frac{n\pi}{2})$

locally uniformly, where $n=N-\ell$ for a fixed $\ell.$

4.3 Dyson sine kernel

We first consider the determinantal structure of the correlation functions. If we let

$p_{N}^{(k)} (x_{1}, x_{2}, \cdots , x_{k})=\frac{1}{Z}\int\exp(-\frac{1}{2}\sum_{i=1}^{N}x_{i}^{2})\prod_{i<j}(x_{i}-x_{j})^{2}dx_{k+1}\cdots dx_{N}$

$=C \int\det I\zeta_{N(X_{i},X_{j})dx_{k+1}\cdots dx_{N}},$

then the reproducing kernel property shows that the determinantal structure holds for $p_{N}^{(k)}$ For example,
when $N=3$ , we have

$\int\det K_{N}(x_{i}, x_{j})dx_{3}$

$= \int dx_{3}[K_{N}(x_{3)}x_{1})|\begin{array}{ll}K_{N}(x_{l},x_{2}) K_{N}(x_{l},x_{3})K_{N}(x_{2},x_{2}) K_{N}(x_{2},x_{3})\end{array}|-K_{N}(x_{3)}x_{2})|_{K_{N}(x_{2},x_{1})}^{K_{N}(x_{1},x_{1})} K_{N}(x_{1},x_{3})K_{N}(x_{2},x_{3})]$

$+ \int dx_{3}K_{N}(x_{3}, x_{3})|_{K_{N}(x_{2},x_{1})}^{K_{N}(x_{1},x_{1})}$ $K_{N}(x_{1},x_{2})K_{N}(x_{2},x_{2})|$

$=|\begin{array}{ll}K_{N}(x_{l},x_{2}) K_{N}(x_{1)}x_{1})K_{N}(x_{2},x_{2}) K_{N}(x_{2},x_{l})\end{array}|-|\begin{array}{ll}K_{N}(x_{l},x_{1}) K_{N}(x_{l},x_{2})K_{N}(x_{2},x_{1}) K_{N}(x_{2},x_{2})\end{array}|+N|_{K_{N}(x_{2},x_{1})}^{K_{N}(x_{1},x_{1})} K_{N}(x_{2},x_{2})K_{N}(x_{1},x_{2})$

$=|\begin{array}{ll}K_{N}(x_{l},x_{l}) K_{N}(x_{1},x_{2})K_{N}(x_{2},x_{1}) K_{N}(x_{2},x_{2})\end{array}|$
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Collecting the tools we developed in the last section, we can prove the formula established by Dyson. We
first rescale the formulas we have and find that

$\exp(-\frac{N}{2}\sum_{i=1}^{N}x_{i}^{2})\prod_{i<j}N^{-\frac{N(N-1)}{2}}(-\frac{N}{2}\sum_{i=1}^{N}x_{i}^{2})\prod_{i<j}(\sqrt{N}x_{i}-\sqrt{N}x_{j})^{2}$

$=CN^{-\frac{N(N-1)}{2}}\det K_{N}(\sqrt{N}x_{i}, \sqrt{N}x_{j})$ .

We then use the Christoffel-Darboux formula to get

$K_{N}( \sqrt{N}\sqrt{N})=\frac{\psi_{N}(\sqrt{N}x_{i})\psi_{N-1}(\sqrt{N}x_{j})-\psi_{N}(\sqrt{N}x_{j})\psi_{N-1}(\sqrt{N}x_{i})}{x_{i}-x_{j}}.$

When $x_{i}$ and $x_{j}$ are near zero, we let

$x_{i}= \frac{\pi y_{i}}{N}, x_{j}=\frac{\pi y_{j}}{N}.$

Using the property on the asymptotic behaviour of $\psi_{N}$ , we obtain

$K_{N}(\sqrt{N}x_{i}, \sqrt{N}x_{j})$

$arrow\frac{\sqrt{N}}{\pi}\frac{\cos(\pi y_{i}-N\pi/2)\cos(\pi y_{j}-(N-1)\pi/2)-\cos(\pi y_{j}-N\pi/2)\cos(\pi y_{i}-(N-1)\pi/2)}{\pi\sqrt{N}(x_{i}-x_{j})}$

$= \sqrt{N}\frac{\sin(\pi(y_{i}-y_{j}))}{\pi(y_{i}-y_{j})}.$

In particular, if we let

$K(y_{i}, y_{j})= \frac{\sin(\pi(y_{i}-y_{j}))}{\pi(y_{i}-y_{j})}$ , (4.12)

then we find that
$p_{N}^{(k)} (y_{1}, y_{2}, \cdots, y_{k})arrow C\det[K(x_{i}, x_{j})]_{i,j=1}^{k},$

for $y_{i}$ near zero. This proves the Dyson sine kernel formula near zero.
For general eigenvalues, we use an asymptotic formula

$\lim_{Narrow\infty}N^{1/4}\psi_{n}(\sqrt{N}x+\frac{t}{\sqrt{N}\mu_{sc}(x)})=\mu_{sc}(x)\cos(t-\frac{n\pi}{2})$

and proceed as the proof for the eigenvalues near zero.
In order to fix the constant, we may use the following lemma.

Lemma 4.4 (Integrating out lemma). For any $m\leq N$ , we have

$\int\det[K_{N}(x_{i}, x_{j})]_{i,j=1}^{m}dx_{m}=(N-m+1)\det[K_{N}(x_{i}, x_{j})]_{i,j=1}^{m-1}$ . (4.13)

Instead of tracking the constants, we can easily find that

$\frac{1}{N!}\det K_{N}(x_{i}, x_{j})$

defines a probability measure. After applying the integrating out lemma $(N-k)$-times, we find that

$p_{N}(x_{1}, x_{2}, \cdots, x_{N})arrow\frac{(N-k)!}{N!}\det[K(x_{i}, x_{j})]_{i,j=1}^{k}$ , (4.14)

since the right hand side defines a probability measure.
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5 Edge universality and Tracy-Widom distribution

5.1 Tracy-Widom distribution

Recall that the Tracy-Widom distribution is defined by

$F_{2}(t)= \exp(-\int_{t}^{\infty}(x-t)q(x)^{2}dx)$ (5.1)

where $q(t)$ is a solution to the Painlev\’e II equation

$q”=tq+2q^{3}$

satisfying
$q(t)\sim Ai(t)$ as $tarrow\infty.$

The first result on the distribution of the largest eigenvalue was based on the Fredholm determinant as
in the gap probability [9]. Considering an interval $(t, \infty)$ , we can see that

$\lim_{Narrow\infty}\mathbb{P}(N^{-2/3}(\lambda_{N}-2)\leq t)=1+\sum_{s=1}^{\infty}\frac{(-z)^{s}}{s!}\int_{(t,\infty)^{s}}\det[K(x_{i}, x_{j})]_{i,j=1}^{s}dx_{1}\cdots dx_{s}$ . (5.2)

Later, it was shown by Tracy and Widom that the above limit becomes $F_{2}$ . For a different ensemble, the
limiting distribution is different, though it is also called the Tracy-Widom distribution. For example,

$F_{1}(s)= \exp(-\frac{1}{2}\int_{S}^{\infty}q(x)dx)(F_{2}(s))^{1/2},$

which is the Tracy-Widom distribution for GOE.
Using the tools as Green function comparison, we can prove that the edge universality holds for a very

general class of Wigner matrices, $e.g.$ , a Wigner matrix with subexponential decay

$\mathbb{P}(|\sqrt{N}h_{ij}|\geq x)\leq C_{0}e^{-x^{1/\theta}}$

for some positive constant $C_{0}$ and $\theta>1$ . Notice that this conditions guarantees that the p-th moment of
the random variable $x_{ij}=\sqrt{N}h_{ij}$ is finite for any fixed $p$ . On the other hand, if the p-th moment of $x_{ij}$ is
infinite for some $p>0$ , then the Wigner matrix may exhibit a totally different behaviour. For example, it
is known that the Wigner semicircle law fails if the variance of $x_{ij}$ is infinite. When the variance is finite
but the 4-th moment is infinite, the largest eigenvalue can become larger than 2 although the semicircle law
holds as we can see from the following theorem [2]:

Theorem 5.1. Let $\lambda_{N}$ be the largest eigenvalue of a Wigner matrix $H$ and let $x_{ij}=\sqrt{N}h_{ij}$ . Then, $\lambda_{N}arrow 2$

as $Narrow\infty$ almost surely (with probability 1) if and only if $\mathbb{E}|x_{ij}|^{4}<\infty$ for $i\neq j.$

5.2 Poisson statistics for the largest eigenvalue

If the entries of the Wigner matrix in question have heavy tails, the edge universality may fail, i.e., the
limiting distribution for the largest eigenvalue differs from the Tracy-Widom distribution [13]. More precisely,
let $x_{ij}=\sqrt{N}h_{ij}$ . If the decay of $x_{ij}$ is given by

$\mathbb{P}(|x_{ij}|>s)\sim s^{-\alpha}$

for $\alpha<4$ , the largest eigenvalue has Poisson statistics [1]. Notice that the fourth moment of $|x_{ij}|$ is infinite
in this case. For simplicity, we consider real symmetric cases only in the following.
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When $\alpha<4$ , setting $\delta=4-\alpha$ , we have

$\mathbb{P}(|h_{ij}|>N^{\frac{\delta}{4\alpha})=\mathbb{P}(|x_{ij}|}>N^{\frac{1}{2}+\frac{|f}{4\alpha})\sim N^{-\frac{a}{2}-\frac{\overline{A}}{4}}=N^{-2+\frac{\prime\dagger}{2}}}\gg N^{-2+\frac{\delta}{4}}.$

Thus, the probability of having at least one entry bigger than $N^{\frac{\delta}{4a}}$ is

$1-(\mathbb{P}(|h_{ij}|\leq N^{\frac{\delta}{4\alpha}))^{N(N+1)/2}}\geq 1-(1-N^{-2+\frac{\delta}{4}})^{N(N+1)/2}\geq 1-Ce^{-N^{c}}$

and we find that there exists with high probability an entry bigger than $N^{\frac{\delta}{4\alpha}}$ in $H.$

When $h_{ij}>N^{\epsilon}$ for some $\epsilon>0$ , we consider $v=(v_{1}, v_{2}, \cdots, v_{N})^{T}\in \mathbb{R}^{N}$ such that

$v_{i}=v_{j}= \frac{1}{\sqrt{2}},$ $v_{k}=0$ if $k\neq i,$ $j.$

$(If i=j, we let v_{i}=1 and all the$ other entries $of v$ vanish. $)$ Since $\Vert v\Vert_{2}=1$ and

$\langle v, Hv\rangle=\frac{1}{2}(H_{ij}+H_{ji})=H_{ij}>N^{\epsilon}$

Thus, by using the minimax principle, we find that $\lambda_{N}>N^{\epsilon}$

In general, when $\alpha<4$ , the limiting distribution of the largest eigenvalue is solely determined by the
order statistics of $\{|h_{ij}|\}_{1\leq i<j\leq N_{\rangle}}$ i.e., the distribution of the largest one among $(N(N+1)/2)$ i.i.d. random
variables $\{|h_{ij}|\}_{1\leq i<j\leq N}$ . (This becomes the Frech\’et distribution whose p.d. $f$ . is given by $e^{-x^{-c}}.$ ) For the
$k$-largest eigenvalue, by using the interlacing property of the eigenvalues, we can prove a similar statement,
i.e., the limiting distribution of them is given by the order statistics. It is also known that the such an order
statistics corresponds to an inhomogeneous Poisson random point process.

5.3 A necessary and sufficient condition for the edge universality

For a Wigner matrix with heavy tails, the following theorem gives a necessary and sufficient condition for
the edge universality [12].

Theorem 5.2. Let $\lambda_{N}$ be the largest eigenvalue of a Wigner matrix $H$ and let $x_{ij}=\sqrt{N}h_{ij}$ . Then, the
distribution of the rescaled eigenvalue $N^{2/3}(\lambda_{N}-2)$ converges to the Tracy-Widom distribution in probability
as $Narrow\infty$ if and only if

$\lim_{sarrow\infty}s^{4}\mathbb{P}(|x_{ij}|\geq s)=0$

for $i\neq j.$

Notice that the condition is weaker than the existence of 4-th moment. For example, if the density of
$|x_{ij}|$ decays as $|x|^{-5}(|\log x|^{-1})$ , then the 4-th moment does not exists since

$l^{\infty} \frac{x^{4}}{x^{5}\log x}dx=\int_{\log s}^{\infty}\frac{dt}{t}=\infty.$

However, it satisfies the condition in the above theorem, since

$\lim_{sarrow\infty}s^{4}\mathbb{P}(|x_{ij}|\geq s)=\lim_{sarrow\infty}s^{4}\int_{s}^{\infty}\frac{l}{x^{5}\log x}dx=\lim_{sarrow\infty}\frac{s^{-5}(\log_{\mathcal{S}})^{-1}}{-4s^{-5}}=0.$

We remark that the condition in Theorem 5.2 does not contradicts the conclusion in Theorem 5.1 because of
the different notion of the convergence.

In order to prove the necessity, one may argue as in the previous section, i.e., the probability of having
an element bigger than 4 is quite large if the condition fails. The proof of the sufficiency requires the Green
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function comparison theorem. The Green function comparison at the edge features a different scaling of $\eta.$

Recall that

$\mathcal{N}(E_{1}, E_{2})\simeq\frac{1}{\pi}\int_{E_{1}}^{E_{2}}$ tr ${\rm Im} \frac{1}{H-E-i\eta}dE=\frac{N}{\pi}\int_{E_{1}}^{E_{2}}{\rm Im} m(E+i\eta)dE.$

To see the fluctuation of the largest eigenvalue, we let $E_{1}$ and $E_{2}$ satisfy $|E_{1}-2|,$ $|E_{2}-2|\sim N^{-2/3}$ Then,
the fluctuation of $m$ at this scale can be estimated by using $\eta\sim N^{-2/3}$ . In this scaling, the off-diagonal
term in the resolvent expansion becomes $G_{ij}\sim N^{-1/3}$ , which gives an extra converging factor in the Green
function comparison.
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