<table>
<thead>
<tr>
<th>Title</th>
<th>Existence of IIC measure for 2D Ising percolation at high temperatures (Applications of Renormalization Group Methods in Mathematical Sciences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>橋口 保成 木下 一成 竹居 正登</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2014), 1904: 31-34</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/223097</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Publisher</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Existence of IIC measure for 2D Ising percolation at high temperatures

Yasunari Higuchi (Kazunari Kinoshita)
Graduate School of Science, Kobe University

Masato Takei
Graduate School of Engineering, Yokohama National University

Yu Zhang
University of Colorado

1 Ising percolation

We consider the percolation problem for Ising model on the two-dimensional square lattice \mathbb{Z}^2. For $\beta < \beta_c$ and $h \in \mathbb{R}$, there exists a unique Gibbs measure $\mu_{\beta,h}$. The (+)-cluster containing the origin is denoted by C_0^+. For each $\beta > 0$, the critical external field is defined by

$$h_c(\beta) := \inf\{h : \mu_{\beta,h}(\#C_0^+ = \infty) > 0\}.$$

It is known that $h_c(\beta) > 0$ whenever $\beta < \beta_c$, and $\mu_{\beta,h_c(\beta)}(\#C_0 = \infty) = 0$. (See e.g. Higuchi (1997).)

Let $S(n) = [-n, n]^2$ and $S^c(n) = \mathbb{Z}^2 \setminus S(n)$. Our main result is the following:

Theorem 1. Let $\beta < \beta_c$. For every cylinder event E, the limits

$$\lim_{n \to \infty} \mu_{\beta,h_c(\beta)}(E \mid O \sim S^c(n)) \quad \text{and} \quad \lim_{h \searrow h_c(\beta)} \mu_{\beta,h}(E \mid \#C_0^+ = \infty)$$

exist and are equal. If we denote their common value by $\nu(E)$, then ν extends uniquely to a probability measure on Ω, and

$$\nu\left(\text{there exists exactly one infinite (+)cluster \tilde{C}_0^+, and \tilde{C}_0^+ contains the origin O}\right) = 1.$$

The measure ν is called the incipient infinite cluster (IIC) measure in the sense of Kesten (1986). The expectation with respect to ν is denoted by E_ν. The following theorem is obtained by a similar method as in Higuchi, Takei and Zhang (2012).
Theorem 2. For any $t \geq 1$,

$$E_{\nu} \left[\left\{ \#(\tilde{C}_{0}^{+} \cap S(n)) \right\}^{t} \right] \asymp \left\{ n^{2} \mu_{\beta,h_{c}(\beta)}(O \sim S(n)) \right\}^{t},$$

where $f(n) \asymp g(n)$ means that $C_{1}g(n) \leq f(n) \leq C_{2}g(n)$.

Our proof also works for Ising model on the two-dimensional triangular lattice with $\beta < \beta_{c}$, where $h = h_{c}(\beta) \equiv 0$ (see Grimmett and Janson (2009)).

2 Idea of the proof of Theorem 1

We list the basic facts:

- In the high temperature case $\beta < \beta_{c}$, $\mu_{\beta,h}$ has a good mixing property.
- The Markov property: For any A measurable inside $S(k)$,

$$\mu_{\beta,h}(A | \{\omega(x) : x \in S^{c}(k)\}) = \mu_{\beta,h}(A | \{\omega(x) : x \in \partial S(k)\}),$$

where $\partial S(k) = S(k+1) \setminus S(k)$.
- The FKG inequality: If both A and B are increasing, then

$$\mu_{\beta,h}(A \cap B) \geq \mu_{\beta,h}(A)\mu_{\beta,h}(B).$$

- For any $k \geq 1$ and any $\epsilon > 0$, there exists $m > k$ such that

$$\mu_{\beta,h}(\exists (+)-\text{circuit around } S(k) \text{ in } S(m)) > 1 - \epsilon \quad \text{for all } h \geq h_{c}(\beta).$$

Hereafter we adopt an abbreviation $\mu = \mu_{\beta,h_{c}(\beta)}$. We fix a cylinder event E, which depends only on the spins in $S(n_{0})$: We look at $\mu(E \cap \{O \mapsto S^{c}(n)\})$ with $n_{0} < n$.

- $n_{0} < \exists n_{1} < \exists n_{1} < n$ such that

$$\mu(E \cap \{O \mapsto S^{c}(n)\}) \asymp \mu \left(E \cap \{ \exists \text{innermost (+)-circuit } \mathcal{C}_{1} \text{ in } A(n_{1}) := S(n_{1}) \setminus S(\tilde{n}_{1}) \} \cap \{O \mapsto \mathcal{C}_{1} \cap \{ \mathcal{C}_{1} \mapsto S^{c}(n) \} \} \right)$$

The Markov property separates inside \mathcal{C}_{1} and outside \mathcal{C}_{1}:

$$= \sum_{C_{1} \subset A(n_{1})} \mu(E \cap \{ \mathcal{C}_{1} = C_{1} \cap \{O \mapsto C_{1} \} \}) \mu(C_{1} \mapsto S^{c}(n) | C_{1} \text{ is +}).$$

- Let $\gamma(C_{1}, n) := \mu(C_{1} \mapsto S^{c}(n) | C_{1} \text{ is +})$. We have

$$\frac{\mu(E \cap \{O \mapsto S^{c}(n)\})}{\mu(\{O \mapsto S^{c}(n)\})} \asymp \frac{\sum_{C_{1} \subset A(n_{1})} \mu(E \cap \{ \mathcal{C}_{1} = C_{1} \cap \{O \mapsto C_{1} \} \}) \gamma(C_{1}, n)}{\sum_{C_{1} \subset A(n_{1})} \mu(\{ \mathcal{C}_{1} = \tilde{C}_{1} \cap \{O \mapsto \tilde{C}_{1} \} \}) \gamma(\tilde{C}_{1}, n)}.$$
So we want to show the existence of $\lim_{n \to \infty} \frac{\gamma(C', n)}{\gamma(C, n)}$ for $C, C' \subset A(n_1)$.

In the same way as above, we can show: $n_1 < \exists \tilde{n}_2 < \exists n_2 < n$ such that

$$\gamma(C_1, n) = \mu(C_1 \leftrightarrow S^c(n) \mid C_1 \text{ is } +) \times \sum_{C_2 \subset A(n_2)} \mu(\{ \mathscr{C}_2 = C_2 \} \cap \{ C_1 \leftrightarrow C_2 \}) \gamma(C_2, n).$$

Iterating this, we have the following: For $n_0 < \tilde{n}_1 < n_1 < \tilde{n}_2 < n_2 < \cdots < \tilde{n}_k < n$, we put

$$\gamma(C_i, n) := \mu(C_i \leftrightarrow S^c(n) \mid C_i \text{ is } +),$$

$$M_i(C_i, C_{i+1}) := \mu(\{ \mathscr{C}_i = C_i \} \cap \{ C_i \leftrightarrow C_{i+1} \}),$$

where \mathscr{C}_i is the innermost $(+)$-circuit in $A(n_i) := S(n_i) \setminus S(\tilde{n}_i)$. For a suitable choice of the sequence $n_0 < \tilde{n}_1 < n_1 < \tilde{n}_2 < n_2 < \cdots < \tilde{n}_k < n_k < n$, we have

$$\gamma(C_1, n) \times \sum_{C_2, \ldots, C_{k+1}} M_1(C_1, C_2) \cdots M_k(C_k, C_{k+1}) \gamma(C_{k+1}, n)$$

$$=: \left(\prod_{i=1}^{k} M_i \right) (C_1, C_{k+1}) \gamma(C_{k+1}, n).$$

A result of Hopf (1963) implies: If there exists $\lambda > 1$ such that for any $i \geq 1$, $C_i, C'_i \in A(n_i)$, and $D_{i+1}, D'_{i+1} \in A(n_{i+1})$,

$$\frac{M_i(C_i, D_{i+1}) M_i(C'_i, D'_{i+1})}{M_i(C_i, D'_{i+1}) M_i(C'_i, D_{i+1})} \leq \lambda,$$

then

$$\lim_{k \to \infty} \frac{\prod_{i=1}^{k} M_i(C_1, C_{k+1})}{\prod_{i=1}^{k} M_i(C'_1, C_{k+1})} = \alpha(C_1, C'_1),$$

uniformly in C_{k+1}; whence

$$\lim_{n \to \infty} \frac{\gamma(C', n)}{\gamma(C, n)} = \alpha(C_1, C'_1).$$

This shows the convergence of $\mu(E \mid O \leftrightarrow S^c(n))$ as $n \to \infty$.

((#)) is the key inequality; it is true if for some $\lambda_1 > 1$,

$$(\lambda_1)^{-1} N_i(C_i) L_i(D_{i+1}) \leq M_i(C_i, D_{i+1}) \leq \lambda_1 N_i(C_i) L_i(D_{i+1}).$$

For Ising percolation, this is the most delicate part. We have to choose further subsequence carefully, to use the mixing property. Details are found in Higuchi, Kinoshita, Takei, and Zhang (2013).
References

