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Abstract

We represent the spin configuration of 2-dimensional Ising model by the do-
main wall configuration defined on the dual link and formulate the domain wall
renormalization group (DWRG) according to the tensor network renormalization
technique. In this report, DWRG is extended to include the external magnetic
field by introducing the oriented domain wall variables. The renormalization group
transformation is obtained in 6 dimensional parameter space completely analyti-
cally and its eigenvalues around the non-trivial fixed point is calculated to give the
magnetic susceptibility exponent.

1 Introduction

The 2-dimensional Ising model is one of the best work benches for non-perturbative renor-
malization group approach [1], because it has non-trivial spontaneous magnetization and
also the Onsager’s exact solution as the leading guide. In fact, various Renormalization
Group (RG) approaches for the model has been already proposed.

The domain wall renormalization group (DWRG) [5] is a new type of renormalization
group method adopting the tensor renormalization group (TRG) [2] technique. TRG
has been applied to various models, particularly classical and quantum spin models in
2-dimension [3, 4].

In domain wall representation, there has been a remaining non-trivial problem of how
to calculate magnetic exponents. Our aim here is to propose a simple extension of our
method [5] to include the external magnetic field.
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2 Domain Wall Representation

Domain walls are the boundary of spin up or down domains. The domain wall variables
are best put on the dual links defined in Fig.1, where the solid lines represent the original
square lattice and the dashed lines represent the dual lattice which is also square. The
dual links correspond to the boundary of every neighboring spins.

Figure 1: Dual lattice of the $2d$ square lattice.

The domain wall variables thus reside on the dual links as shown in Fig.2. Spin
variables are $\sigma_{i}=\pm 1$ and domain wall variables are defined by $\alpha_{ij}=\sigma_{i}\sigma_{j}$ , and it may

take two values: $\alpha=+1$ represents no domain wall and $\alpha=-1$ represents the existence
of the domain wall.

Figure 2: Definition of domain walls.

Any spin configuration can be represented by a domain wall configuration. As shown in

Fig.3, the domain wall variables on the four links sharing a single dual site are determined
by four spins around it. We regard the final part of Fig.3 as the domain wall vertex defined
on the dual site.

However, the correspondence between spins and domain walls are not one to one. Tow

spin configurations $\{\sigma_{i}\},$ $\{-\sigma_{i}\}$ are mapped to the single domain wall configuration $\{\alpha_{ij}\}$
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and this is two to one mapping. Therefore, although there seems to be no spontaneous
symmetry breaking in the domain wall representation, its partition function or the free
energy has the exactly same singularities as the original spin partition function.

Figure 3: Domain wall representation of spin configuration.

The domain walls constitute the boundary of spin up or down domains, and therefore
the domain wall is conservative and makes topologically loop objects. Then the non-
conservative odd vertices as shown in Fig.4 are prohibited.
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Figure 4: Prohibited non-conservative vertices.

Then we define the vertex tensor at each dual site, which is a function of four domain
wall variables around the dual site as shown in Fig.5. Since it has four suffices, it is called
the tensor.

$\alpha$

$T$

$T_{\alpha\beta\gamma\delta} \beta---|---\delta|$

$\gamma$

Figure 5: Vertex tensor.

The value of the vertex is determined so that the total product and the total summation
with respect to the domain wall variables give the partition function of the original system
as shown in Fig.6. The factor 2 at the top represents the two to one mapping nature of
domain wall configuration versus spin configuration,
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$Z=2$ $\sum T_{\alpha\beta\delta\gamma}T_{\delta\mu\nu\rho}\cdots$

$\alpha\beta\delta\gamma$

Figure 6: Partition function.

Therefore, the vertex value is proportional to the square root of the local statistical
weight of the configuration. In case of non-conservative vertex, the statistical weight must
vanish. Then the non-vanishing elements of this $2\cross 2\cross 2\cross 2$ tensor are only 8 elements

as shown in Fig.7

1

$—+–\cdot T_{++++}$

1/’

$—\ulcorner_{and_{I}csro\iota at/ons}T_{++--}$

and its

$ro\iota z\iota j\circ nsT_{+-+-}$

Figure 7: Non-vanishing elements of tensor.

3 Domain wall renormalization group.

In this section we discuss how to define the renormalization group transformation in the

domain wall representation, that is, renormalization of its vertex tensor $T$ . The basic
strategy to define the renormalization group is flow-charted step by step in Fig.8.

According to this chart, first we define coarse graining of the dual lattice. We define
the coarse grained original lattice a la Wilson [1], and then the coarse grained dual lattice
is automatically defined as in Fig.9.

Note here that the coarse graining of original lattice keeps a half of their sites com-
monly, while the coarse graining of dual lattice has no common site nor link. In terms of
decimation, the coarse graining of lattice is obtained by decimation of sites, whereas the

coarse graining of dual lattice is obtained by decimation of domains (dual plackets).

Then we define the coarse grained domain status as shown in Fig.10. Note that the

decimation of domains here is equivalent to the decimation of spins on the original lattice.
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Definition of coarse grained dual lattice

$Configuratio\cap l$

mapping rule $-$
Micro domain $wa\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ state

1.
1 Macro $doma/nwa\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$ state

’ $ntroduc/ng$ macro variables

$1$ $-$ integrate out micro variables

Inherit the statistical weight:
Effective interactions given by a function of macro variables

Figure 8: Domain wall renormalization group.

$arrow$ Decimating sites $arrow$ Decimating domains

Figure 9: Coarse graining lattice and dual lattice.
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The coarse grained domain status is just equal to the micro domain status at the center
of it.

Figure 10: Definition of coarse grained domains.

Next, the coarse grained domain walls are defined by the boundary of the coarse
grained domains. Thus we get the mapping function from micro domain wall configura-
tion to the macro domain wall configuration. In Fig.11 we show the mapping function,

where the blue dual link denotes the micro domain wall and the red coarse grained dual
link denotes the macro coarse grained domain wall. The 4 configurations in the upper

row correspond to non-existence of the macro domain wall and those in the lower row
correspond to existence of the macro domain wall respectively. It is the eight to two

reduction mapping and this is the coarse graining of domain walls.

Figure 11: Macro domain walls and the mapping function.

It should be noted here that the macro coarse grained domain walls are boundary of
the coarse grained domains, and accordingly the macro domain walls are also conserved
by themselves.

An example of the coarse graining of domain walls is shown in Fig.12. The left small

island survives the coarse graining whereas the right one disappears.
Now the most non-trivial part comes up. We have defined the domain wall mapping

function between micro and macro. Thus the macro domain wall configuration must have

some proper statistical weight to be maximally consistent with that given by the micro
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Figure 12: Coarse graining example.

domain wall configuration. And also the macro domain wall weight must be represented
by the renormalized tensor vertex. To make this procedure we learn from the tensor
network renormalization technique.

First of all, we split the micro domain wa114-vertex $T$ into a product of 3-vertices $S$

as shown in Fig.13, which is something like transforming the four-fermi interactions into
a pair of yukawa interactions by introducing auxiliary scalar fields. This decomposition
is performed by the following matrix diagonalization,

$T=UDV$, (1)

where tensor $T$ is regarded as a matrix by grouping the domain wall indices as $T_{\{\alpha\beta\}\{\gamma\delta\}}$

and $U,$ $V$ are unitary matrices. The resultant matrix $D$ is a diagonal matrix of singular
values $\lambda_{M}$ which are all positive semi-definite. Then we can define $S$ as

$T_{\alpha\beta\gamma\delta}= \sum_{M}U_{\alpha\beta M}\sqrt{\lambda_{M}}\sqrt{\lambda_{M}}V_{M\gamma\delta}=S_{1\alpha\beta M}S_{2\gamma\delta M}$ , (2)

$S_{1\alpha\beta\Lambda I}=U_{\alpha\beta l1f}\sqrt{\lambda_{M}}, S_{2\gamma\delta M}\sqrt{\lambda_{M}}V_{M\gamma\delta}$ . (3)

Actually our $T$ matrix is a symmetric real matrix and it can be diagonalized by the
orthogonal transformation, that is, we have $S_{1}=S_{2}.$

$\alpha|$

$\alpha^{1}$

$-\beta+_{\wedge}\tau^{\delta}-(D^{rightarrow\beta\backslash _{M}^{S}}\backslash_{\gamma_{I}}s_{\delta-}$ –

Figure 13: Splitting vertex $T$ . Figure 14: Renormalization of $T.$

We like to consider the scalar particle index $M$ as the macro domain wall variable.
Here we have to do some approximation. Since the renormalized domain wall has only two
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states naively, while the index $M$ has 4 degrees of freedom to satisfy the above equation.
Then we adopt the approximation that only the relatively important channels should be
kept, that is, only two indices $M$ are taken among four. This is the approximation we
have to do to define the domain wall renormalization group.

Next we integrate out all original domain wall indices $\alpha,$
$\beta,$

$\gamma,$
$\cdot$ and we get the

effective weight function of $M$ at each coarse grained (renormalized) dual link, where $M$

is regarded as the renormalized domain wall variable. The effective weight function is
written by the renormalized vertex tensor $T’$ defined by

$T_{MNKL}’= \sum_{\alpha\beta\gamma\delta}S_{\alpha\beta M}S_{\beta\gamma N}S_{\gamma\delta K}S_{\delta\alpha L}$
. (4)

This process is understandable as integrating out original fermion fields to leave effective
interactions among scalar fields, and it is graphically expressed in Fig.14.

The global landscape is drawn in Figs.15 and 16. After the renormalization procedure,
the renormalized dual lattice has $\sqrt{2}$ times larger spacing. This transformation can be
repeated and we have completed to define the domain wall renormalization group in the
lowest order approximation.

Figure 15: Global landscape 1. Figure 16: Global landscape 2.

The detailed analysis of this domain wall renormalization group is found in [5]. There,

the renormalization transformation is written down completely analytically and it is
proved that the physical selection of channels to interpret the renormalized indices as

the macro domain wall variables is perfectly consistent with the optimized selection of
largest singular values. Also the fixed point structure of the renormalization group flow
and the eigenvalues of the renormalization transformation around the fixed point are
calculated to give good values compared with the Onsager’s exact solution.

4 Introducing the external magnetic field

So far, there is no external field imposed, and no way of calculating magnetic quantities.

In this section we propose a simple extension of the domain wall renormalization group
to accommodate the external magnetic field.
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The domain wall representation is a degenerate description of the spin configurations,
that is, it does not discriminate $Z_{2}$ inverted spin configurations, $\{\sigma\}$ and $\{-\sigma\}$ . To
discriminate these $Z_{2}$ inversion we introduce orientation of the domain wall as shown in
Fig.17. Our rule here is that the up spin domain is on the right hand side of the oriented
domain wall when moving along the arrow. Simultaneously we double the no-domain wall
state and call them as up domain and down domain as in Fig.18. Now our domain wall
variable has four states at every dual link.

Figure 17: Oriented domain walls. Figure 18: Up domain and down domain.

$\S$ $\#$

up domain

$arrow\prime IlI$ $trightarrow\}$

Figure 19: Four domain wall states. Figure 20: $Z_{2}$ symmetry transformation.

The statistical weight is given by,

$\exp(K\sum_{<ij>}\sigma_{i}\sigma_{j}+h\sum_{i}\sigma_{i})$ (5)

where $\langle ij\rangle$ means the nearest neighbor pair of spins, $K$ is the coupling constant and $h$ is
the external magnetic field. The four states of the domain wall variable on the dual link
is diagrammatically expressed as in Fig.19. The $Z_{2}$ conjugate transformation is defined
for these states as in Fig.20, which is important to understand the symmetry constraint
of the vertex tensor and its renormalization transformation.

Now the indices $a,$ $\beta,$
$\gamma,$

$\delta$ of tensor $T$ takes 4 states each as in Fig.19, and tensor
$T_{\alpha\beta\gamma\delta}$ has originally $4^{4}=256$ elements. Only 16 elements are non-vanishing including
rotation because of the domain wall conservation law with orientation, which are listed
in Fig.21. In Fig.21, the barred variable means $Z_{2}$ conjugate, while $a=a,$ $c=\overline{c}$ are self
$Z_{2}$ conjugate.

This domain wall representation has 6 dimensional parameter space $\{N, \overline{N}, b, b, a, c\}$

and one to one correspondence to spin interactions $\{C_{0}, K, K_{D}, K_{4}, h, h_{3}\}$ , whose def-
inition is given by Eq.(6) and Fig.22,
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$.–a^{1\underline{N}},^{--}1l$

$I_{I}\underline{\overline{b}}I^{--}I^{\cross 4}$

Figure 21: Non-vanishing 16 elements of the vertex tensor.

$+_{\sigma_{2}\sigma_{3}}^{\sigma_{1}\sigma_{4}}$

$\gamma$

$\gamma$

$- \beta\lrcorner^{\alpha}\ulcorner\delta$

Figure 22: Spin configuration. Figure 23: 2-dimensional matrix.

$\exp[C_{0}+K(\sigma_{1}\sigma_{2}+\sigma_{2}\sigma_{3}+\sigma_{3}\sigma_{4}+\sigma_{4}\sigma_{1})+K_{D}(\sigma_{1}\sigma_{3}+\sigma_{2}\sigma_{4})+K_{4}(\sigma_{1}\sigma_{2}\sigma_{3}\sigma_{4})$

$+h(\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4})+h_{3}(\sigma_{1}\sigma_{2}\sigma_{3}+\sigma_{2}\sigma_{3}\sigma_{4}+\sigma_{3}\sigma_{4}\sigma_{1}+\sigma_{4}\sigma_{1}\sigma_{2})]$ (6)

We use 2-dimensional matrix representation $T_{\{\alpha\beta\}\{\gamma\delta\}}$ of $T_{\alpha\beta\gamma\delta}$ as in Fig.23, and matrix
$T_{\{\alpha\beta\}\{\gamma\delta\}}$ is $16\cross 16$ dimensional. Actually, non-vanishing indices $\{\alpha\beta\}$ or $\{\gamma\delta\}$ are very
much and limited as shown in Fig.24. Only 8 elements are non-vanishing among 16
elements, and therefore $T_{\{\alpha\beta\}\{\gamma\delta\}}$ has only $8\cross 8$ non-vanishing block.

$z_{2}\downarrow \frac{t|}{---1\underline{|l}}I \lrcorner| \lrcorner t I^{\theta}$

$–\underline{S}_{r}| \underline{\mathfrak{g}_{I}^{I}l} \mathscr{Q}$

Figure 24: Non-vanishing indices.

Considering the oriented domain wall conservation law, possible combination of indices
$\{\alpha\beta\}$ and $\{\gamma\delta\}$ are summarized in Fig.25. Thus the matrix $T_{\{\alpha\beta\}\{\gamma\delta\}}$ is divided into the
even section and odd section and their $Z_{2}$ conjugate sections. Each section consists of $2\cross 2$

structure. Odd section and odd section are also constrained by the rotational symmetry.
Accordingly, the total image of $T_{\{\alpha\beta\}\{\gamma\delta\}}$ takes the form shown in Fig.26. The matrix
$T_{\{\alpha\beta\}\{\gamma\delta\}}$ is block diagonal consisting of 4 blocks of $2\cross 2$ each.

Now we set up the oriented domain wall renormalization group. The renormalized
domain wall states are defined by renormalized domain states. Then each sector corre-
sponds to a unique macro domain wall state as shown in Fig.27. To keep the domain
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Even section $\overline{Even}$ section

–
$Z_{2}$

Odd section
$rightarrow$

$Z_{2}$

$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$

–
rotation

Figure 25: Even and odd section.

wall interpretation through the renormalization procedure, we have to pick up one macro
channel each from every section.

Figure 26: Block diagonal matrix $T.$

We diagonalize $T_{\{\alpha\beta\}\{\gamma\delta\}}$ as follows. Cosine and sine functions constituting the orthog-
onal matrices are denoted by $c_{a},$ $s_{a}$ . Diagonalization of even sector is given by,

$(\begin{array}{ll}N bb c\end{array})=(\begin{array}{ll}c_{1} -s_{1}s_{1} c_{1}\end{array})(\begin{array}{ll}\lambda_{1} 00 \lambda_{2}\end{array})(\begin{array}{ll}c_{1} s_{1}-s_{1} c_{1}\end{array})$ (7)

$\overline{Even}$ section is expressed by using the $Z_{2}$ conjugate variables,

$(\begin{array}{l}\overline{N}\overline{b}\overline{b}\overline{c}\end{array})= (\overline{\frac{c_{1}}{s_{1}}} -\overline{\frac{S}{c_{1}}1})(\overline{\lambda_{1}0}\frac{0}{\lambda_{2}})(\begin{array}{ll}\overline{c_{1}} \overline{s_{1}}-\overline{s_{1}}\overline{c_{1}} \end{array})$ (8)

Odd and odd sections are parametrized by,

$(ab \frac{a}{b})=(\begin{array}{ll}c_{2} -\mathcal{S}_{2}s_{2} c_{2}\end{array}) (\begin{array}{ll}\lambda_{3} 00 \lambda_{4}\end{array})(\begin{array}{ll}c_{2} s_{2}-s_{2} c_{2}\end{array})$ (9)

where we adopt the following $Z_{2}$ conjugation rules,

$\overline{\lambda_{3}}=\lambda_{3}, \overline{c_{2}}=s_{2}, \overline{s_{2}}=c_{2}$ . (10)
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Macro Up domain

Odd section $|$

$rightarrow$

$Z_{l}$

$Z_{2}$

$rightarrow$

rotation

$\overline{Even}$ section
$-$.

$\dot{c}_{\backslash }\backslash$

$\ddagger$

$\backslash \backslash$

$\backslash \backslash$

$\epsilon$
$\backslash \backslash \theta\cdot\blacksquare\cdot\cdot$

$-$

:
Macro Down domain

Odd section

Macro Domain Wall

Figure 27: Macro domain wall states.

Here larger eigenvalues (selected channels) in each section are taken to be $\lambda_{1},$
$\overline{\lambda_{1}},$

$\lambda_{3},$
$\overline{\lambda_{3}},$

and they are also the 4largest singular values of a118 singular values, which assures our
physical selection is consistent with the optimized singular value decomposition policy.

The Feynman rules which couples micro and macro domain walls are listed in Fig.28.
Domain walls are conserved in total for micro and macro. It should be noted that they are
oriented Feynman rules and therefore they are irreversible, that is, the example diagrams
at the bottom of Fig.28 do not exist.

$\sqrt{\lambda_{1}}c_{1}$

$rightarrow^{Z_{2}}$

$===\Rightarrow$
$\sqrt{\overline{\lambda_{1}}}\overline{c_{1}}$

$\sqrt{\lambda_{1}}s_{1}$ $===\ll$ $\sqrt{\overline{\lambda_{1}}}\overline{s_{1}}$

$\sqrt{\lambda_{3}}c_{2}$
$\sqrt{\lambda_{3}}s_{2}$

$\sqrt{\lambda_{3}}s_{2}$ $\sqrt{\lambda_{3}}c_{2}$

e.g.

Figure 28: Feynman rules between micro and macro.

Renormalization transformation is carried out by calculating the one-loop diagrams
as in Fig.29. Note that all transformation rules are consistent with the $Z_{2}$ conjugation.
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For example $a’$ and $c’$ keep $Z_{2}$ self conjugateness.
From the statistical weight defined in Eq.(5), the physical initial values of these 6

parameters are given by,

$N = e^{2K+h}\ovalbox{\tt\small REJECT}\overline{N}=e^{2K-h}$

$b = e^{h/2}rightarrow\overline{b}=e^{-h/2}$

$a = 1, c=e^{-2K}$ (11)

where left and right handed sides $ofrightarrow areZ_{2}$ conjugate to each other.
Now we write down the renormalization group transformation explicitly and analyti-

cally as follows,

$\lambda_{1} = \frac{1}{2}(N+C+\sqrt{(N-C)^{2}+4b^{2}})$

$\overline{\lambda_{1}}= \frac{1}{2}(\overline{N}+C+\sqrt{(\overline{N}-C)^{2}+4\overline{b}^{2}})$

$\lambda_{3} = \frac{1}{2}(b-\overline{b}+\sqrt{(b-\overline{b})^{2}+4a^{2}})$

$t_{1} = \frac{1}{b}(\lambda_{1}-N) , t_{1}=\frac{1}{\overline{b}}(\overline{\lambda_{1}}-\overline{N}) , t_{2}=\frac{\lambda_{3}-b}{a},$

$c_{a}^{2}$ $=$ $\frac{1}{1+t_{a}^{2}}$ $s_{a}^{2}=1-c_{a}^{2}$ , for $a=\{1, \overline{1}, 2\}$ (12)

Due to the $Z_{2}$ conjugate property of the total system, there exists a 4-dimensional subspace
of $Z_{2}$ invariant space,

$N=\overline{N}, b=\overline{b}, a, c$ , (13)

in which the renormalization group flows are confined. Therefore this subspace is renor-
malization group invariant subspace. The renormalization group transformation in this
$Z_{2}$ invariant subspace is exactly equal to what we have obtained previously [5].

We have to find the non-trivial fixed point to evaluate critical properties of the spon-
taneous magnetization. Actually, however, there is no fixed point in the transformation
in Eq.(12), since the vertex tensor $T$ continues to increase due to the volume effect of
the renormalization procedure which compensates the decimation of half of the degrees
of freedom at each renormalization step. We will set some normalization condition of $T$

and multiply a constant factor to all elements in $T$ to satisfy it at each renormalization
step. This is called the gauge fixing since such constant multiplication does not change
any physical quantities of density type objects, such as, magnetization per site etc.

The position of a fixed point itself depends on the gauge fixing condition adopted,
called the gauge simply. However, the eigenvalues around the fixed point does not depend
on the gauge. Here we show a proof of it briefly. We have two gauge fixing conditions,
and coordinates on the gauge fixed manifolds are denoted by $x$ and $y$ respectively. There
are gauge transformation path (fiber bundle) in the total space on which $T$ is physically
equivalent. This gauge transformation defines a relation between $x$ and $y,$

$y=g(x)$ , (14)
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$+$ $=\lambda_{1}^{2}(c_{1}^{4}+s_{1}^{4})$

$Z_{2}\downarrow$

$a’=$

$+$

Figure 29: Renormalization transformation.
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where $g$ is a non-singular function. Now the renormalization transformation are written
as

$x’=R_{1}(x) , y’=R_{2}(y)$ , (15)

and they have a fixed point at $x^{*}$ or $y^{*}$ satisfying,

$x^{*}=R_{1}(x^{*}) , y^{*}=R_{2}(y^{*}) , y^{*}=g(x^{*})$ . (16)

The eigenvalues for $x$ and $y$ spaces are denoted by $\lambda_{1}$ and $\lambda_{2}$ respectively, and they are
calculated to coincide with each other as follows,

$\lambda_{1} = R_{1}’(x^{*})=\frac{d}{dx}[g^{-1}(R_{2}(g(x^{*})))]=g^{-1/}(R_{2}(g(x^{*})))R_{2}’(g(x^{*}))g’(x^{*})$

$= g^{-1/}(y^{*})R_{2}’(y^{*})g’(x^{*})=R_{2}’(y^{*})=\lambda_{2}$ (17)

After the gauge fixing, the effective dimension of the total parameter space is five. In
the $Z_{2}$ invariant 3-dimensional subspace we have found a non-trivial fixed point [5]. This
fixed point is also a fixed point in the tota15-dimensiona1 space. The eigenvalues around
the fixed point consist of three $Z_{2}$ even eigenvalues and two $Z_{2}$ odd eigenvalues.

We show transformation of variables between $\{C_{0}, K, K_{D}, K_{4}, h, h_{3}\}$ and domain
representations $\{N, \overline{N}, b, b, a, c\}$ in Fig.30, where letters in red are contributed by $Z_{2}$

odd interactions.

$Z_{2}\uparrow+C:\ N=\exp[C_{0}+2K+2K_{D}+K_{4}+h+4h_{3}]$

$\bullet\bullet\bullet 4\bullet \bullet\blacksquare \overline{N}=\exp[C_{0}+2K+2K_{D}+K_{4}-l\iota-4h_{3}]$

$i:[$

$+_{r*}^{11}$ $b= \exp[C_{0}^{\gamma}-K_{4}+\frac{h}{2}-2h_{3}]$

$Z_{2}\uparrow$

$\overline{b}=\exp[C_{0}-K_{4}-\frac{h}{2}+2h_{3}]$

$a=\exp[C_{0}-2K_{D}+K_{4}]$

$c=\exp[C_{0}-2K+2K_{D}+K_{4}]$

Figure 30: Transformation between spin and domain wall interactions.

The inverse transformation from domain wall interactions $\{N, \overline{N}, b, b, a, c\}$ to spin
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interactions $\{C_{0}, K, K_{D}, K_{4}, h, h_{3}\}$ are given by,

$C_{0} = \frac{1}{16}\log[N\overline{N}a^{4}b^{4}\overline{b}^{4}c^{2}] K=\frac{1}{8}\log[N\overline{N}/c^{2}]$

$K_{D} = \frac{1}{16}\log[N\overline{N}c^{2}/a^{4}] , K_{4}=\frac{1}{16}\log[N\overline{N}a^{4}c^{2}/b^{4}\overline{b}^{4}]$

$h = \frac{1}{4}\log[Nb^{2}/\overline{N}^{2}\overline{b}^{2}] h_{3}=\frac{1}{16}\log[N\overline{b}^{2}/\overline{N}^{2}b^{2}]$ (18)

In the actual analysis of the renormalization group flow, we set a gauge fixing condition,
$C_{0}=0$ , that is, the spin independent factor is discarded.

5 Results

The $Z_{2}$ even quantities such as the free energy, the specific heat and the correlation length
exponent have been reported previously [5]. Here we show $Z_{2}$ odd magnetic properties
only.

We plot typical high and low temperature flows in terms of the spin interaction pa-

rameters in Fig.31 and Fig.32, where $n$ is the number of renormalization steps. In both
cases only the single spin magnetic interaction $h$ survives at the infrared (macro) limit,

since we have to work with finite correlation length situation. The difference between

high and low temperatures is seen by the final enhancement factor of $h.$

$\subset 0$

$\overline{\alpha}$

$\cup 0\supset$

$0 5101520253035$
$n$

Figure 31: High temperature flow.

In Fig.33, we plotted the magnetization versus the initial nearest neighbor coupling

constant $(\alpha\equiv e^{-2K})$ for various initial external magnetic fields. We can see the second

order phase transition of the spontaneous magnetization around $\alpha=0.37036.$

Finally we evaluate renormalization group eigenvalues around the non-trivial fixed

point. We have three $Z_{2}$-even eigenvalues,

$\{1.4224, -0.2908, 0\}$ , (19)
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$\circ t$

$\underline{c}$

$\overline{\alpha}$

$\mathring{\cup}\supset$

$0 5101520253035$
$n$

Figure 32: Low temperature flow.

and two $Z_{2}$ odd eigenvalues,

{2.0214, 1.0547}. (20)

The relevant $Z_{2}$-even eigenvalue gives the correlation length critical exponent,

$\nu=\frac{\log\sqrt{2}}{\log 1.4224}=0.984$ , (21)

which looks perfect compared to the exact value of 1. The peculiar zero eigenvalue appears
because the renormalization group transformation in the $Z_{2}$ even 3-dimensional subspace
is actually constrained to be 2-dimensional. This seems an occasional constraint and no
physical significance is expected.

As for $Z_{2}$-odd eigenvalues, we encounter a serious deficit; there are two relevant oper-
ators. So far we have no good idea about how to cure this problem in this lowest order
formulation. Some normalization issue owing to the singularity of decimation type renor-
malization group may be related. If we use the larger eigenvalue to evaluate the magnetic
susceptibility exponent,we have

$\gamma=2.028$ , (22)

which looks not so good compared to the exact value of 7/4.
We have another idea of including the external magnetic field in the dual representation

of the domain wall representation. Analysis of this dual renormalization group will be
reported elsewhere [6].
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$\mathring{\underline{=c\varpi N}}$
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Figure 33: Magnetization versus temperature.
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