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1 Introduction and Main Result

This note is a brief survey of our paper [14], which is a joint work with Professors

Youngwoo Koh and Sanghyuk Lee.
We consider the initial value problem for the 3D rotating incompressible Euler equa-

tions: C _
Ou+Qeg xu+ (u-Viu+Vp=0 t>0, r€R3
divu =0 " t>0, z€R3, (Eq)
u(0, z) = uo(z) z € R,

where u = (uy(t, z), ua(t, ), us(t, z)) and p = p(t, z) denote the unknown velocity field
and the unknown scalar pressure, respectively, while ug = (uo,1(), uo2(z), uo 3(z)) de-
notes the given initial velocity field satisfying div ug = 0. The constant 2 € R represents
the speed of rotation of the fluids around the vertical unit vector e3 = (0,0, 1), which is
called the Coriolis parameter.

In this note, we prove the long time existence of unique classical solutions to the Euler
equations with the Coriolis force provided the speed of rotation is sufficiently high. More
precisely, we shall show that for given initial velocity uy and for given time 0 < T' < oo
there exists a positive constant {}y depending on s, 7" and the norm of wug such that if
€| > Qo then (Eg) admits a unique classical solution on the given time interval [0, T).

Let P := (;z + R;Rk)i1<j k<3 be the Helmholtz projection onto the divergence-free
vector fields, where R; denotes the Riesz transform in R3. Applying the projection P to
both sides of the first equation of (Eg), we obtain the following system for the velocity
fields:

Owu + QP(e3 x u) + P(u - V)u =0 t>0, zeR3
divu =0 ‘ t>0, z € R3, (Eq)
u(0, z) = up(x) T € R3.



We now summarize the local existence results on the original Euler equations for Q = 0.

Kato [10] proved that for given integer m € Z with m > 5/2 and for given initial velocity.

up € H™(R3) with div ug = 0, there exists a positive time T = T'(m, ||ug]|| =) such that
the equation (Ej) admits a unique classical solution u in the class C([0,T]; H™(R3)) N
C([0,T); H™*(R?)). Kato and Ponce [11] extended this result to the fractional ordered
Sobolev spaces W*P(R3) for s.> 3/p+ 1, 1 < p < oo. Chae [2] and Chen, Miao and
Zhang [7] obtained a local well-posedness for (E) in the Triebel-Lizorkin spaces F;5 ,(R?)
fors > 3/p+1,1 < p,q < oo. Chae [3] also obtained the local well-posedness in the
Besov spaces B (R?) fors > 3/p+1,1<p <oo,1 < g<ooandfors=3/p+1,
1 < p < 00,q = 1. Pak and Park [17] extended these results to the Besov space B, ;(R?).

For large Coriolis parameter |(2|, Dutrifoy [9] showed the asymptotics of solutions
to vortex patches or Yudovich solutions as the Rossby number goes to zero for some
particular initial data, and gave a lower bound on the lifespan Tf, of the solution to (Ef,)
as T 2 loglog|Q2|. Similar results are obtained for the quasigeostrophic systems by
Dutrifoy [8] and Charve [4].

Now, let us state our main result.

Theorem 1.1. Let s € R satisfy s > 5/2. Then, for 0 < T < 0o and ug € H**(R?)
satisfying div ug = 0, there exists a positive constant Qo = Qo (s, T, ||uo|| gs+1) such that
if |2 > Qo then (Ep) possesses a unique classical solution v satisfying

u € C([0, T]; H*H(R®) N O ([0, T]; H*(R®)).

In particular, for 2 < q < oo there exist a positive absolute constant Cy and a positive
constant Cy = C1(8, q) such that the parameter Q can be taken so that

. _1 q
QO > CO [1 + ||u0||Hs+1TeXp {ClTl ‘11|IU()”H.9+1}] . (11)

Remark 1.2. From the characterization (1.1) it follows that for sufficiently high speed of
rotation |2|, the maximal existence time Tg > 1 of the solution to (E,) has a lower bound

To > ——gi;—log <M> (1.2)

" Juo| g Co

with some positive constants C) = C{(g) and C;] = C(s, ¢). On the other hand, in [8, 9]
it was shown that T, 2 loglog |2] as || tends to infinity. Although Theorem 1.1 does

not cover the data such as vortex patches or Yudovich solutions which are treated in [8,9],

the lower bound (1.2) can be regarded as an improvement for the lifespan of the solution
to (Eg,). This is due to the use of a single exponential estimate for the blow-up criterion
(see Section 3). L '

This note is organized as follows. In Section 2, we recall the definitions of function
spaces, and the commutator estimates in these spaces. In Section 3, we state the local
existence results and the blow-up criterion of Beale-Kato-Majda type for the local solu-
tions. In Section 4, we shall give the Strichartz estimates for the propagator generated by
the Coriolis force. In Section 5, we present the proof of Theorem 1.1.
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Throughout this paper, we denote by C the constants which may differ from line to
line. In particular, C = C(-,...,-) will denote the constant which depends only on the
quantities appearing in parentheses. For A, B > 0, A < B means that there exists some
positive constant C such that A < CB. Also, A 2 B is defined in the same way as
A< B. A~ Bmeansthat A< Band A 2 B.

2 Preliminaries

Let .#(R?) be the Schwartz class, and let .#'(R3) be the space of tempered dis-
tributions. We first recall the definition of the Littlewood—Paley decomposition. Let
@o be a function in #(R?) satisfying 0 < 9o(€) < 1 forall £ € R?, suppipy C
{¢eR3|1/2< [¢] <2} and

Y %(¢) =1 forall¢ e R®\ {0},

jEZ
where ¢;(z) i= 2%po(27z). We set X(§) = 1 — >0, 9;(€). Let {A;}jez be the
Littlewood-Paley operator defined by A;f := ¢; * f for f € '(R®). Then, we re-
call the definitions of the inhomogeneous and the homogeneous Besov spaces.

Definition 2.1. (i) For s € R and 1 < p,q < oo, the inhomogeneous Besov space
B ,(R®) is defined to be the set of all tempered distributions f € .#’(R®) such that

< Q.
L9

1F13g, =l £l + | {21851 52,

(ii) For s € Rand 1 < p, ¢ < oo, the homogeneous Besov space B;’q(IRP’) is defined to
be the set of all tempered distributions f € .#’'(R3) such that

1£1sg, = [{211251115} ez

Next, let H*(R3) denotes the Sobolev space of order s € R with the inner product

< 0Q.
9

Foghme = [ (1= A f(2) (1 = A)ig(@)de = —ocs / (1 + 1€ F(&)7@)de
R3 (27r) 7

R3
and the norm || f||gs := \/(f, f) us. For s > 0, it is known that the norm equivalence

1Al ~ 1 fllze + 11 f 1l e 2.1

holds, where

90 = g, = (20612

jEZ
We end this section by recalling several commutator estimates in the Sobolev spaces.



Lemma 2.2 (Kato—Ponce [11]). For s > O, there exists a positive constant C' = C(s)
such that

(1= A)3(fg) — f(1 - A)ig

forall f € Wh(R®) N H*(R®) and g € L*(R3) N H*~1(R3).

|2 < C IV llelgllze + gz | F 1)

Lemma 2.3 (Cheri—Miao—Zhang [7]1 and [19]). For s > O, there exists a positive constant
C = C(s) such that

(2l V. A1 152 ) < C UVl + 19 F )

JEL

fof all (u, f) € Who(R3) N H5(R3)3+! with divu = 0.

3 Blow—up Criterion

In this section, we shall prove the blow—up criterion of the Beale-Kato-Majda type
[1]. We first state the uniform local existence results of the unique classical solutions to

(Egp).

Theorem 3.1. Let s € R satisfy s > 5/2. Then, for uy € H*(R?) satisfying divug = 0,
there exists a positive time T = T'(s, ||uo|| g+ ) depending only on s and ||wo||gs such that
(Eq) possesses a unique classical solution u for all Q € R satisfying

~ue C([0,T]; H*(R%)) N C*([0, T]; H*(R?)).

As in the case of the original Euler equations 2 = 0, Theorem 3.1 follows from the
classical energy method and the Kato-Ponce commutator estimates (Lemma 2.2). Indeed,
thanks to the skew-symmetry of the Coriolis force:

Qe x u(t, z) - u(t,z)dz = 0,
R

we can obtain the uniform H? energy estimates with respect to {2 € R. For the details,
see [14]. ‘

Proposition 3.2. Let s > 5/2, and let ug € H*(R®) satisfy div ug = 0. Suppose that v is
a solution of (Eg) in the class C([0,T); H*(R?)) N C*([0,T); H*~(R®)). If

T
/ [V u(t)|| gt < oo,
0

then u can be continued to the solution in C([0,T"); H*(R®)) N C([0,T"); H*~1(R?3)) for
some T > T.
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An immediate consequence of the above proposition is the following.

Corollary 3.3. Let s > 5/2, and let uy € H*(R?®) satisfy div up = 0. Suppose that u is a
solution of (Ep) in the class C([0,T); H*(R3)) N C*([0,T); H*"*(R3)). Suppose that T
is maximal, that is, u cannot be continued to C([0,T"); H S(R3))NC([0,T"); H"1(R?))
forany T' > T. Then,

T
/ [[Vu(t)||pedt = 0o
0

Proof of Proposition 3.2. By Theorem 3.1, we see that if up € H*(R?) with s > 5/2, the
time interval [0, T') of the existence of solutions to (Eg,) in the class C([0, T); H*(R®)) N

C*([0,T); H*"}(R3)) depends only on s and ||uo||zs. Hence by the standard argument
which continues the local solutions, it suffices to establish an a priori estimate for u in

H*(R®) in terms of s, ||ug||g+ and fOT IV u(t)|| podt.
Taking the L2—mner product of (E,) with u, we have

by the skew—symmetry of e3 X u and the divergence—free condition. Hence we see that

Ju(®)llze = lfuollzz 61

for all t € [0, T). We next derive the H*—estimate for u. Applying the Littlewood—Paley
operator A; to both sides of (Eg,), we have

O Aju + PQes x Aju+PA;j(u- V)u = 0. (3.2)

Taking the L’-inner product of (3.2) with Aju, and using ((u- V)Aju, Aju),, = 0,
which follows from the divergence—free condition, we have

2 D 1AuDl% = — (8 (u(e) - ) ult), Agu(e)) 2 = (u(t) - ¥, &) ult), Ayu(e)

From this and the Schwartz inequality, we see that

5& 18u®lz2 < Mu®) - V, Al w2 1A5u®)ll.

This gives
d
o 185u®ll 2 < lI[u(@) - V, Ajlu®)ll 2

Integrating both sides on [0, ¢], we have

1Au®)lL. < IIA uoll 2 + / Ifu(r) -V, Ag)w(7)]| 2 dr. (3.3)
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Multiplying both sides of (3.3) by 2%/ and then taking the £%(Z)-norm, we have from the
Minkowski inequality that

[SIT

IOl < ol + [ (2 ) 9. Al )

JEZ :

By Lemma 2.3, it follows that

Lt < luoll +C / V()| oo 0T o7

with some positive constant C' = C(s). Cdmbining (3.1) and the above inequality, by
(2.1) we see that there exists a positive constant C' = C(s) such that

t
4l < C ol +C [ IV )
Hence from the Gronwall inequality we obtain

t
He €XD {C/ HVU(T)”LoodT} 3.4
0

[u@®)l s < Clluol

for all ¢ € [0, T). This completes the proof of Proposition 3.2. t

4 Strichartz Estimates

In this section, we shall give the sharp Strichartz estimates for the propagator gen-
erated by the Coriolis force Q2e3 x u. As it is already observed in [5, 6, 9], the system
(Ex,) exhibits a dispersion phenomenon which is due to the presence of the Coriolis force.

. D
This is closely related to the Strichartz estimates for the operator T U defined by the
Fourier integral

8 () / e U Fle)de,  (t,) € (0,00) x R,
R3 ' ‘

Here fdenotes the Fourier transform of f. We are interested in the space-time Strichartz
estimate

S Nl g s 4.1)

403
He:i:’l,tlle

LiLy

where )t is replaced by ¢ € R. By the scaling f — f(A-) for A > 0, it is easy to see that
the exponents ¢, 7 and s should satisfy s = 3/2 — 3/r. Once this estimate is established
the simple change of variables ¢ — 2t shows that the effect of the Coriolis parameter §)

is given by C lﬂl_é Also, since the function &3/|¢| is homogeneous of degree 0, by the
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Littlewood-Paley decomposition and the scaling argument, the matter is reduced to the
frequency localized case. Now we consider the operator

%.0f() = [ = RBOF Ok, (0) R,

where ® € .#(R?) satisfies supp® C {272 < €] < 22} and @ = 1 on {27! < [¢| < 2}.
The operator 4. was previously studied by Dutrlfoy [9, Corollary 2], who obtamed the
space-time estimates

19 oy < £z 42

for the exponents g and r which satisfy 4 < ¢ < 00,2 < r < 0o and the admissible
relation 1/q +'1/(2r) < 1/4. We extend the estimate to the optimal range except an
endpoint case. More precisely, we shall prove the following.

Theorem 4.1. Let 2 < q,7 < oo with (q,7) # (2,00). Then, the space-time estimate
(4.2) holds if and only if L1 1
-+ -< - 4.3)
q v 2
As it was shown by Montgomery-Smith [16], it seems likely that one can show the
failure of the endpoint case (g,7) = (2, 00). .
By (4.2), the Littlewood-Paley theory and the embedding B?,(R®) — L"(R?) for
2 < r < oo, we can prove the Strichartz estimates (4.1) for the original operator as a
corollary of Theorem 4.1. Then by the scaling ¢ — (2t we have the following which

shows the dispersive effect of the Coriolis forces.

Corollary 4.2. Let 2 < g < coand2 < r < o0, and let € R\ {0}. Then, the
space-time estimate
-+ D
”eiznt]—b% f

Sl -2

LiLg
holds if q and r satisfy (4.3).

Let us set

V)= 2, €40

As it is well-known, the boundedness of the estimate (4.2) is closely related to the curva-
ture of the surface

Toi={(6,0) ER* xR | p= \1;() < le) <4},

A direct computation shows that the Hessian matrix H¥ = (%}g)lgj,kgg of W is equal
J

to
1 £3(367 — [€17) 3816263 &1(3& — [€1%)
HY(E) = GE 3618263 £(363 — €1°) &@B&E -1 |,

(365 — l617) &(3&5 — I€°) —3&s(67 +&3)



171

and

This shows that the surface ¥, has 3 non-vanishing principal curvatures (non-vanishing
Gaussian curvature) unless (£;,&2) = 0 or {3 = 0. Hence, taking a sufficiently small
¢ > 0, we decompose ¥4 (t) as follows:

G (t)f =L f + L2 f + 93],

‘where

GOf) = [ (1= wllenl/e) (- il /o) DO Fle)ae.
Of@) = [ S Bl o
930)1a) = [ R/ e

Here, ¢ is a compactly supported smooth function on the half line [0, o) such that ) = 1
on [0,1/2] and supp® C [0, 1], and we denote £ = (&,&3) € R? x R. Note that

supp ¥(|€x/c) ¥(|&|/c) N supp B(€) = B if ¢ is small enough, to say ¢ < 273,
For the proof of Theorem 4.1, let us recall the following abstract Strichartz estimates
by Keel and Tao [12].

Theorem 4.3 (Keel-Tao [12]). Let {U(t)},cg be a family of operators. Suppose that for
allt,s e R .
1T @) fllzeo S (L + 1= sD)Nfzr, (4.5
NU ) U@) fllz2 S 1Ifllz2- (4.6)
Then the estimate ,
WUl gz S 1122
holds for all 2 < q,r < oo with (q,r,0) # (2,00, 1) satisfying
) 1 o o
—+—-< =
q T 2
Therefore, for the proof of the sufficiency part of Theorem 4.1, it suffices to show

the dispersive estimates (4.5) since the second property (4.6) follows from the Plancherel
theorem.

Proposition 4.4 ([13]). The dispersii/e estimates

9L fll oo S L+ D21 f D2, @.7)
192 f]l o S @+ 1ED ANt (4.8)
|92(8) F]] oo S (L 1D Nl (4.9)

hold for allt € R and f € L*(R3).
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For the readers’ convenience, we present the proof of Proposition 4.4. To this end, we
recall the following lemma due to Littman [15].

Lemma 4.5 (Littman [15], Stein [18, page 361]). Let du be a surface measure on a
smooth surface S in R", and let ¢ € C°(R™). Suppose that for all x € S, at least k of
the principal curvatures are not zero. Then, it holds

5 _k
’qﬁdu(n)' < Afn|™>
For the surface Yy, the number of non-vanishing principal curvatures is equal to the

number of the nonzero eigenvalues, that is, the rank of the symmetric matrix H.

Proof of Proposition 4.4. The desired estimates (4.7), (4.8) and (4.9) follow from the es-
timates

[ =8 0= wlele) 0 - wlel/o) 3o < ca+ il @io

/ e (164 /o) B(€)de| < C(1 + [t])T, @.11)
Ra
and .

/m ey (163) [)B(€)de| < CL+ )L “.12)

Since det H¥ # 0 on the support of (1 — (|€|/c)) (1 — ¥(|&3]/c)) B(€) by (4.4), the
first estimates (4.10) follows from the standard stationary phase method or Lemma 4.5.

In order to show (4.11) and (4.12), we shall use Lemma 4.5. We show that on the sup-
port of 1(|€]/c)®(€) and v (|€5]/c) () the HY has two eigenvalues with their absolute
values near to 1. In fact, the determinant of HV is zero if £, = & = 0 or & = 0. Hence
it is sufficient to consider the cases {; = & = 0 and £ = 0 while |£] ~ 1 (more pre-
cisely, 1/4 < || < 4), and show that there are two non-zero eigenvalues. Then choosing
sufficiently small ¢ > 0, we obtain the desired estimates by the continuity.

In the case & = & = 0, we see that

HY(0,0,&) = TF 8 —0538 .

Since |§| ~ 1 and c is small, |£3| ~ 1. Thus, two non-zero eigenvalues —&3|¢3|~° and
—&3|€3]75 are of absolute value near to 1.
In the case &5 = 0, we have that

) 0 0 &l
HU(&1,6,0) = 0 0 —&l&f |-

G\ _ejep —ele? o



A calculation gives

det (M — HU(£1,£,,0)) = A (A - ——1—) (A + —%) :

|nl® 1€l
Since |£] ~ 1 and c is small, we see that |£,| ~ 1. Therefore, two non-zero eigenvalues
are of absolute value near to 1. This completes the proof of Proposition 4.4. ' ]

Proof of the necessity part of Theorem 4.1. We shall show the necessity of the condition
(4.3). For0 < § <« 1and N > 1, let us consider

—{feR"’lsl,&z 1/2 1], & € [6,26]},
A= { t,x) € R } |z1], |za] <K N7Y, |z3] S N7UH7H |t < N‘lé“l}

and define f; by setting f(; X, which denotes the characteristic function on R. Choos-
ing sufficiently small §, we see that R C {f € R3 | 1/2 < €l <2} and

€3

z- §:i:t|§|

if ¢ € R and (¢,z) € A. Hence we have

905 > | [ cos (0205 ) 2 Rl ~ 0
, R
for (t, x) € A with sufficiently large N. Therefore (4.2) implies that

_1_1 ' 1
8757 S NG () foll porg ay < NFe(®) follpare S W fsllza ~ 62, |
The condition (4.3) follows by letting § — 0. O

5 Proof of Theorem 1.1

We shall prove that the local solution u to (Eg,) constructed by Theorem 3.1 can be
extended to any time interval [0, T'] provided the speed of rotation is high enough. To this
end we adapt the ideas in [4,9].

Let uy € H*1(R?) satisfy divug = 0, and let u be the solution to (Ef) in the class
C([0,Tg); H*H(R?)) N CL([0, Ta); H*(R?))), where 0 < Tq < oo denotes the maximal

time of the existence. We define the projection operator Py by

1 . D
Piv .= 3 (Pv:tz'—ﬁ—l Xv)

for v € L%(R3). Note tha_t,PQP’ = P,. Furthermore, for the divergence—free vector field
v,

v=Puwv+ Puv, Pesxv= Pyv—P_v), PiPiv=Piv, PiPrv=0.

oy
~'DI _
(5.1)
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Hence applying Py to both sides of (Ef,), we have

OrPru F ’Q|D|Pi“ + Pi(u-Viu=
Piu(O, :L‘) P:;:UO(CE).

By the Plancherel theorem and the Lebesgue dominated convergence theorem, we see that

Ay :i:leT;T is the infinitesimal generator of the Cj semigroup ei’mra on L*(R3) with
the domaln of the generator D(A1) = L?(R®). Therefore by the Duhamel principle we
obtain .
. D . D
Pru(t) = D! Prug — / eEHUEID Py (u(r) - V)u(r)dr. (5.2)
0
Since s > 5/2, we can take o = a(s) € (0, 1) so that s > 5/2 + . In what follows
we show the BL —estimate for the solution u. By (5.1) it suffices to show the estimates
for P,u, P_u, separately By Theorem 4.1 and scaling, for 2 < ¢ < oo there exists a
positive constant C' = C(q) such that

| aex ity <O @) A1, 53)

L3(0,00;L>®)

forall j € Z and Q2 € R\ {0}. For the high frequency part of the first term in the right
hand side of (5.2), by the Minkowski inequality and (5.3), we see that

, . D.
S‘i‘f o(1+a)j ” A, o Pin”
12

<z

j=1

(222(”0‘)’ “A eimtﬁP Uo

j=1

1
<ClQs ( $ 22849 | Ay oo 2, )2.

j=1

Lo
L (0,00)

it 2 \;
je ]T)a[Pin“ )
Lo

Li(0,00)
1

)E
L9(0,00; L)

Hence, by the Plancherel theorem, we have

-1
< 00| "||uo||Hg+a~ (5.4)

sup 201+)J HA N Piuoll

i> Lo
721 LY(0,00)

. D
We now handle the low frequency part. Since uy € H**!(R3), we have eI Py, €
. D . D
H**1(R®) and e *1BI Py = 3 ez D XUl P, yg in L°(R?). Hence it follows from
(5.3) that

+iQt 23

|D] Piu

< C’” Z “A HB p UOH

Jj=—o00

H X*e
L4(0,00;L>) Lo {1 Le(0,00)



L3(0,00;L°)

2
<clas Y 28 | Ajuo|l .

j=-—00
L2 1,2 1
N s \2 2
<clo (D V(X Iauwl )
j=—o0 j=—o0
Hence we have
. D .
HX x e FUT Py gy < C1QI™ 7 ||uo|z2- (5.5)
La(0,00;L>®)
Combining (5.4) and (5.5), by (2.1) we obtain
+iQt 22 _1
”e R L3(0,00;B5%) < O lloll g3+ (5.6)

for some constant C' = C(g,a) > 0. Next we consider the nonlinear term in (5.2). It
follows from the Minkowski inequality and (5.3) that

”Aj / M-I P (u(r) . Vu(r)dr

0

La(0,T;L>°)

dr (5.7)

Li(m,T;L>°)

< [ a8 patutr) - Dutr)
<@ [ 1Ay Vur)ldr

for all 0 < T' < Tq. Hence for the high frequency part, by the Minkowski inequality and
the above inequality we see that

i>1

< ” (222(1+a)j
i>1
< | 22(1+a)j
2
T 1
< C’{Q|‘%{ Z 2_2(%+a)j(/0 12 (u(r) - V)u(™)|| 2 dT)2}2

Jjz1

<otart [ (D28, Vol )i

Jjzl

A; /Ot eiiﬂ(t_T)%Pi(u(T) - V)u(r)dr

Ll pa(0,1)

L3(0,T)

8, [ DB ) Vputrar] )

1
2

t , 2
8 [ eI Py(u(r) - Vyulr)dr
0 :

Lq(o,T;Loo))
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Therefore, we obtain

sup 2(1+a)j
j=1

A, / B P, () - V)i(r)dn

pERmEen - (5.8)
<ol [ 1) V) ygea

For the low frequency part, we repeat the line of argument which was used to show (5.5).
In fact, by the Minkowski inequality and (5.7) we see that

X * /t eiiQ(t_T)%TPi(u(T) - Vu(r)dr

0 | La(0,T; L)
t . D
<cy “ | B u(r) - Vur)dr
e L3(0,T;L)
<clos Z (27) / (u(r) - V)u(r)| 2 dr-

j=—00

Then, by the Schwarz inequality as before, we have

y * /0 t eﬂﬂ(t-”%}g(u(r) - V)u(r)dr

L3(0,T;L)

< oot / (Z I85(u(r) - Dyu(r)|2 Ydr

o / (ulr) - V)u(r) |2

From this and (5.8), we see that

t ‘. D
/ eim(t—T)l—ﬁilPi(u(T) - Vu(r)dr

0

Le(0,T;B3S)

T
<clar | (n(um V)u(r) s + (r) - V()50 ) dr
clal / Ju(r) - V() 5. dr

forall 0 < T < Tq with some constant C = C(g,a) > 0. Therefore, by combining

this and (5.6) and by recalling (5.2) and (5.1), we see that for 2 < ¢ < oo there exists a
positive constant C = C/(q, @) such that

T I— scmr-(won,,,ﬂ / I T>||H,+adr) (5.9)



forall0 < T < Tq.
Now, let us define

t
:/ IVa(r)|l e dr, 0<t<Th.

Since s > 5/2 + a, by applying the continuous embeddmgs Bli2 (R%) — C'(R?), the
Holder inequality, (5.9) and (3.4), successively, we see that

t
Vi) <C / () s dr < CH 4l o i

et (ol + [ 1) Dt
ce-Har (uuonw i / () dT>

t
< C’tl“E|Q|'E (]luolle+1 + ”uO”%[erl/ eCV(T)dT> :
0
Hence, there exist pos1t1ve constants C1 = C1(g, s) and C = C5(s) such that

V(E) < Ot Al ol (1+ ol vrte®V ) (5.10)

forall 0 <t < Tq. Now, for given 0 < T' < oo, let us define

Xrg:= {t € [0, 7] N[0, Ty) ’ V(t) < C’1T1"3||u0| Hs+1} , Tg = sup Xrgq.

We shall prove that TQ = min {T Tqo} by contradiction. Assume that Tg, < min {T,Tqa}.
Then we can take T so that To < T < min {T,Ta}. Since u € C([0, T]; H**1(R?%)),
V(t) is uniformly continuous on [0, T}, and it holds that

V(Ta) < CLT 7 ||uo|| gro+:. (5.11)

Take a sufficiently large 2 € R\ {0} so that
Q7 > 2 (1 + |Iu0||Hs+1Teclc2T1_%”“O“Hs“) : (5.12)
Then, since Ty < T, by (5.10), (5.11) and (5.12) we have
V(Ta) < Cu(Ta)' 41904 fuolless (1 + ol ess Tae ™" ™)
< T olll27F (1+ o e e

1 —1
< §CIT1 quUQHHsH
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Hence there exists S such that To < S < ’f~and V(S) < 01T1‘5||u0||,;,+1, which
contradicts the definition of Tq. Thus, we have T = min {7, T} provided the Coriolis

parameters (2 satisfy (5.12).
If To < T, we have T = T = sup Xrq. Therefore, it holds that

t 1
V(t) = / IVu(T)||podT < C’1T1_6||u0||Ha+1 < 00
0

for all 0 < t < Tg. By Corollary 3.3, this contradicts the maximality of To. Hence we
obtain that T, > T if €2 is as large as in (5.12). This completes the proof of Theorem 1.1.
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