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THE STABILITY AND THE RATE OF CONVERGENCE TO
STATIONARY SOLUTIONS OF THE TWO-DIMENSIONAL
NAVIER-STOKES EXTERIOR PROBLEM

MASAO YAMAZAKI (L E58)

FACULTY OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY
(FREXE HEIZMER)

ABSTRACT. This paper is concerned with the stability of stationary so-
lutions of the two-dimensional Navier-Stokes exterior problem. The sta-
tionary solutions are assumed to be small and enjoy certain pointwise
decay conditions. If the decay condition is critical, the domains and solu-
tions are assumed to satisfy some symmetry condition as well. Under an
initial perturbation in the solenoidal L2-space, with the same symmetry
if the decay order of the stationary solution is critical, the solution of the
nonstationary equation tends to the stationary solution in the solenoidal
L?-class. Also given are the decay orders of the perturbation in other
function spaces.

1. INTRODUCTION.

Let Q be an exterior domain with C3*7-boundary I" with some y > 0.
We consider the nonstationary Navier-Stokes equation on €2 with time-
independent external force f(x):

(1.1)
%u(x t) — Au(x,t) + (u(x,t) - V)u(x,t) + Vp(x,t) = f(x) inQ,
(1.2) V.u(x,t)=0, inQ,
(1.3) u(x,t) =a(x) onT,
(1.4) u(x,t) >0 as |x| = oo,
(1.5) u(x,t) = up(x) in Q,
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‘where a(x) satisfies the outflow condition

(1.6) /ra(x) -n(x)ds(x) =

We are concerned with the asymptotic stability of the stationary solutions
of this equation. Suppose that (w(x),7(x)) is a stationary solution of the
system (1.1)—(1:5): Namely,

(1.7) —Aw(x) + (w(x) - V)w(x) + Vr(x) = f(x) in Q,
(1.8) V.wx)=0, inQ,
(1.9) w(x) =a(x) onT,
(1.10) w(x) =0 as|x| — .

Putting v(x,t) = u(x,t) — w(x), p(x,t) = p(x,t) — m(x) and vo(x) = uop(x) —
w(x), we can rewrite the system (1.1)—(1.5) into the system

(1.11) ﬂ(x,t) — Av(x,1) + (w(x) - V)v(x,1)

ot
+(v(x,1)- V)w(x) + (v(x,2)- V)v(x,2) + Vp(x,£) =0  inQ,
(1.12) Vou(x,t)=0 inQ,
(1.13) v(x,t)=0  onT,
(1.14) v(x,t) >0  as |x| — oo,
(1.15) v(x,0) = vp(x) in Q.

We next introduce the Helmholtz decomposition. For g € (1,00), there exists
a projection operator P, in (L1 (Q))2 onto the space

Iqu———L?,(Q)z{uE(Lq(Q))z’V-u-—-binQ,n-u:Oonl"}
such that
KerP, = G(Q) = {er (1@ ‘feL1 }

Since we have P, = P, on (LY(Q)NL" (Q)‘)z, we abbreviate P, by P in the
sequel.

Applying the projection P to the system (1.11)—(1.14) and putting A=
—PA, we obtain the abstract differential equation

(1.16) %:-(t) +Av(t) + P[(w-V)v(e) + (v(t) - V)w+ (v() -V)v(2)] =0.

This equation together with the initial condition (1.15) is formally equiva-
lent to the following integral equation: '

(1.17) v(t)*exp(—tA)vo
/Oexp( (1= 7)A) +P[(w- V)¥(2) + (v(1)- V)w++ (4(2) - V)¥(1)] d7

91



In order to consider the time-local unique solvability of (1.17), we introduce
classes of functions. For s € (2,%0) and T € (0,0}, put

Y (s,T) = {u(t) ‘tl/z”l/su(t) e BC((0,T), LS, (Q)),
11/2u(t) € BC ((0, T), (H (Q))z) }

equipped with the norm
g iry = sup {725 )l +1 /2 Vute) }
0<t<T
Then the class % (s, T) becomes a Banach space, and
Po(s,T) = {u(t) € ¥ (s,T) l lim ¢1/271/5u(t) = 0in L (),
—
lim ¢/2u(r) =0in (H(Q))" }.
Tim /%u(e) = 0 in (H}(@)
is a closed subspace of #(s,T). Then we have the following theorem on
the existence of time-local solutions:
Theorem 1.1. Suppose that s > 4 and that € is an exterior domain. Sup-
pose moreover that (w(x),m(x)) is a solution of the system (1.7)~(1.10)
such that w(x) € (L(Q)NH 1(Q))z. Then, for every initial perturbation
vo(x) € L2 (Q), there exists a positive number Ty such that the integral equa-

tion (1.17) admits a solution v(t) on (0,Tp) in the class %(s,Tp) such that
v(t) converges to vo in L2.(Q) as t = +0. This solution belongs to the class

¢(0,To), L3 (<)) NC' (0, 0), L5 (@) nC ((0,To), (H*())°),

and is a solution of the abstract differential equation (1.16). F. urthermore, if

vo belongs to the space (H' (Q))2 as well, then the number Ty is estimated
from below by s, [wl,. VWil [Ivoll, and [ Vvoll.

We also have the theorem for the uniquenéss.as follows:

Theorem 1.2. Suppose that s, Q, (w(x),7(x)) and vo(x) are the same as
in Theorem 1.1. Suppose that Ty, T, € (0, 0] and that the functions v;(t) €
¥ (s,T;)NC([0,T;),L%(RQ)) are solutions of (1.17) on (0,T;) and satisfies
vj(0) = vg for j =1,2. Then we have vi(t) = v,(t) on [0,T3), where T3 =
min{7},7>}.

In order to state the main result on the asymptotic stability of the
aforementioned stationary solution (w(x),7(x)) under initial perturbation

vo(x) € L2(Q). we put
Z (b) = {w(x) € C(Q) | Wl 2(5) =§gg(1 + [x)°w(x)] < oo}

for a positive number b, and assume that one of the following conditions
holds:



(C) The exterior domain € is invariant under the mappings

(x1,x2) = (=x1,x2),  (x1,%2) = (x1,—x2),

and (w(x),7(x)) satisfies the symmetry conditions
us {fl(—xl,xz) =—fi(x1,x%2), fi(x1,—x2) = filx1,%2),
| fo(=x1,302) = fa(xi,:2),  falxr, —x2) = —falx1,32),
and 7(—x;,xp) = 7w(x;,—x2) = 7(x1,x2). Furthermore, w €

(2 (1)NH'(Q))? such that Wl 2 (1) and [|Vw], are sufficiently
small, and vo(x) satisfy (U4).

(S) we (Z(b) ﬂHl(Q))2 with some b > 1 such that |jw|| 4, and
|Vw||, are sufficiently small.

Remark 1.1. If (w(x), 7 (x)) satisfies w € (2 (b))? with some b > 1, then
w(x) € (L* (Q))2 holds for every s € (2,00].

Remark 1.2. If the condition (C) holds, then Theorem 1.2 implies that v(-,t)
satisfies the condition (U4) for every ¢.

Remark 1.3. For the existence of the stationary solution satisfying the con-
dition (S), the boundary value a(x) must satisfy the condition (1.6):

Remark 1.4. The existence of stationary solutions satisfying the above con-
ditions are already proved in [9] under more restrictive symmetry conditions
on the domain and the external forces.

Then our main result is the following:

Theorem 1.3. Under the assumption (C) or (S), there uniquely exists a so-
lution v(t) € BC([0,),L2(Q)) of the integral equation (1.17) such that

v(0) = vo and that t'/%v(t) € BC ((o,w), (HY(Q)?

~ function ||v(t)||, is monotone-decreasing with respect to t, and v(t) enjoys
the decay properties

). Furthermore, the

(1.18) v@)lly=o0(t/47%)  ast = o for g € [2,),
(1.19) IVv()||, = o(s=/?) ast — oo,
(1.20) lv(t)|l. =0 (t_l/zy/logt) ast — co.

Remark 1.5. It follows from the assumption that the solution v(¢) enjoys the
assumption of Theorem 1.2, from which the uniqueness follows.

Remark 1.6. This theorem asserts that the stationary solution w(x) satisfy-
ing the condition (S) is the global attractor in L2 ().

As will be seen later, this note is an abridged version of Galdi and Ya-
mazaki [6] and Yamazaki [10]. However, I believe that it will be worthwhile
to provide a unified note of the separate papers on the same problem with
the same essential tools.
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2. OUTLINE OF THE PROOF OF THEOREMS 1.1 AND 1.2.

In this section we give a sketch of the proof of the theorems above. Detail
is given in [6]. To this end we first review the L9-L" estimates given by
Borchers and Varnhorn [2] and Dan and Shibata [3, 4].

Theorem 2.1. For the semigroup exp(—tA) we have the following asser-
tions:

(i) Assume that 1 < g < o, q < r<ooand o« > 0. Then there
exists a constant C such that, for every u € LEL(Q) we have
1A% exp(—A)ul|, < Ce= YAt r|lul| .

(ii) Assume that 1 < q < r < 2. Then there exists a constant
C such that, for every u € LL(Q) we have ||Vexp(—tA)ul|, <
Ct‘l/z_l/qH/’Hqu.

From this theorems we can prove the following lemmata.

Lemma 2.2. Suppose that 2 < s < o. Then there exists a positive con-
stant C such that the function u(t) = exp(—tA)ug belongs to %(s,1) and
the estimate |lullg ;1) < Clluoll, holds for every up € L3(Q). More-

over, we have u(t) € BC([0,1),L%(S2)) with u(0) = uo. Furthermore, if
2
up € L2(Q)N (H 1-2/s (Q)) , the inequality

2.1) letllg 5.7y < Clluollyaays T4/

holds for every T € (0,1].

Lemma 2.3. Let g and s satisfy 1 < q <2 < s < oo. Then there exists a
positive constant C such that the following assertions hold.

(i) Suppose that u(t) € C((0,T),LL(Q)) with some T € (0,1), satisfies

the estimate B=sup t/>~1/4||u(t)| g < . Then the function v(t)
0<t<T

t
defined by the formula v(t) = ‘/0 exp(—(¢r —1)A)u(t)dt belongs
to ¥ (s,T), and the estimate ||v||g ) < CB holds. Moreover, we

have v(t) € BC((0,T),L%(RQ)). Furthermore, for every o < 1—
1/q and every § € (0,T), the function v(t) is Holder continuous of

order o with values in (Hé(Q))2 on (6,T).
(i) If we assume in addition that 113109/ 214)|u(r)|, = 0, then we
—
have v € %(s,T), and v(t) converges to 0 in L3(Q) as t — +0.
Lemma 2.4. Suppose that 2 < s < oo. Then we have the following asser-
tions:

(i) There exists a positive constant C such that the following assertion
holds. Let T be a positive number such that T < 1. Suppose that
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w(x) € (L5(Q) NHY(Q))” and that u(t), v(t) € ¥ (s,T). Put
Swv,u)(t) = P[(w-V)v(r) + (v(t) - V)w+ (u(r) - V)v(2)].
Then we have t'=1/8,,[v,u)(t) € BC([0,T),L5/*+)(Q)) with

22)  sup ' YISy ) (1)l o
0<t<T

< (12wl + 19wl + g ) ) Vo)

(ii) Suppose that u(t) and v(t) are Holder continuous with values in
(H} (Q))2 on (6,T) for some 6 € (0,T) in addition to the assump-
tion in Assertion (1). Then S [v,u|(t) is Holder continuous with

values in L=/ *)(Q) on (8,T).
N . 1/2-1/s — im 172 =
(iii) Suppose that thot lu@)||l; =0 or thot |Vv(®)|l, =0

holds in addition to the assumption in Assertion (i). Then we have
11
im A58, () -y = O
The following corollary follows immediately from the lemmata above.

Corollary 2.5. Suppose that s > 2, there exists a constant C such that the
following assertion holds. Suppose that 0 < T <1, and let w(x), u(t) and
v(t) be the same as in Lemma 2.4. Put

t
Tyv,u) () = — / exp(— (1 — 7)) Sylv,u)() dx.
0
Then we have T,,[v,ul(t) € # (s,T), and we have the estimate
Iyl oy < € (T2 (il + 1V9l) + Hallgr o ) V7
P 1/2—1/s — : 1/2 —
Furthermore, if tl—1>r—|r—10t, llu(t)|l, =0 or tngrrlOt |Vv(#)|l, = 0 holds,

then we have T,,[v,u](t) € Yo(s,T) and T,,[v,u](t) — 0 in L% (Q) as t — +0.
In particular, if u € %(s,T) orv € %(s,T), then Tyu,v] € (s, T).
Proof of Theorem 1.1. Put ¥o(t) = exp(—tA)vg for vo € L2(Q). Then
Lemma 2.2 implies ¥p € Zp(s, ). Next, for every T € (0, 1], consider the
mapping U from #(s, T;) into itself defined by U [v](r) = ¥o(¢) + T [v, v](2).
Then Lemma 2.2 and Corollary 2.5 imply that the estimate

UMl (s,79)

< 1Follar (o) +CTo >~ (Iwlly + 19wl1o) ¥l 79) +ClV g 5,72

holds with a constant C > 1 independent of w, Vo, v and 7 € (0,1]. If the
inequality

. 1
(2.3) 19oller (1) < 1eE



holds with some Tjj € (0,1], put

| | . 2s/(s—2)
B=min\ B (e i ody) |

Then the quadratic equation x = “ﬁO“W(S,To) +x/2+Cx? has two distinct
real roots. Let o be the smaller one. Then, if v € %(s,Tp) satisfies
IVllg (s,m) < @ it follows that

~ 1/2—-1
UM (5,75) < IP0ll a5, +CT) 275 (||, + |Vw]l) e+ Co? < a.

Hence, if the inequality (2.3) holds with some T € (0, 1], the mapping U
maps the closed ball in %(s, Tp) of center 0 and radius ¢ into itself.
We next show that the constant T which satisfies (2.3) exists for every

vo € L2(Q). There exists a constant C’ such that, for every T > 0, vo €
L2(Q) and v; € L2(Q) N (H! (Q))z, we have the estimate
I90llg 5,7y < llexp(—tA)villg (o 1) + llexp(—2A) (vo = vi)ll g (5,7
< T2 5| |vy | gy + C'lIvo =1l

Choose vy so that ||vg — v1]|, < 1/32CC’, and then choose T;; € (0,1] for v
above by Tjj = min{l, (1/32CC'|\vy “Hl(Q))zS/(S_Z)}.
2 " _
If vo € L& (Q) N (H(Q)) ", we have [[o]lg (s ) < C'TY*15||vol 1 -
In this case we put Ty = min{l, (1/64CC’||v0||H1(Q))2s/(s—2)}. Then we

have (2.3) in both cases, and in the latter case we can choose Té by the
values of s, ||vo||, and ||Vvo||,. Hence we can choose Tj by the values of s,
[volla» 1¥volly, lIwlls and || Vw]l,.

Next, let v(t), 7(t) € (s, To) such that ||v]|g (s ), 1Pl (s, 7) < ©- Then
we have

U] (t) —UPI(e) = T[7,9](2) - Twlv V] (2)
exp(—(t — T)A) (Sw(»v)(7) — Sw(¥,9)(1)) dT
= /t exp(—(t — T)A)P[(w-V)v(T) + (v(7) - V)w+ (v(1)- V)¥(7)

— (w-V)i(z) — (5() - V)w— (¥1) - V) \7(1)] dr

S~

-~

= [[exp(~(t=DA)P[(w- V) (4(5) = 3(0) + ((v(2) = (1)) - V) w
+(5(2)- V) (o) = 7(2)) + ((v(1) = 9(0)) - V) (@) dx

= T[T —v,7](t) + To[v, 7 — V]
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for every t € (0,Tp). Hence Corollary 2.5 implies that
(2.4) _
U] = UM g s,m)

1/2-1 s i
<C (To/ Wl + IVwlly) + 191l 5,7 + ||VHms,To)) 19— Vllg (5,7)

1 -
< (E +2C06> ||v fVl|€?/(s,To) :

. ‘70
~In view of the definition of ¢, we have —;——|~2Ca =1- E—M(S—TOZ <l

Hence (2.4) implies that the mapping U is a contraction mappir(lxg from the
closed ball in #4(s,Tp) of center 0 and radius ¢ into itself, and therefore
it has a unique fixed point v(z) in this ball. If vo € L% () N (H! (Q))2, the
number 7 is determined by s, ||voll,, [|[Vvoll,, [|wll; and || Vw|l,. O

Proof of Theorem 1.2. We first remark that we may assume that v;(t) €
(s, T1). Indeed, let yi(¢) and y,(¢) the functions satisfying the as-
sumption of this theorem defined on [0,7’] and [0,73] respectively. Let
v(t) € %(s,Tp) be the solution constructed in Theorem 1.1. Applying
this theorem to v;(¢) = v(¢) and v,(¢) = y1(¢), we have v{(t) = y;(t) on
(0,min{Tp,7"}). Hence, putting -

Vl(t) =

V(t) if T' < Ty,
y1(t) ifTo<T

we see that vi(t) € #(s,T;), where T} = max{Ty,T’}. Then it suffices to
show the identity v(¢) = v(¢) on the interval [0, 74] for every Ty € (0,73).
From the assumption we see vi(t) € #(s,T1). Put ¥(t) = va(r) — v1(2).
Then we have ¥(t) = T,,[v2,v2](t) — Ti[v1,v1](¢), and hence

| (2.5) ()= —/Ot exp(—(t —7)A)
P[((w+va(1) - V) 5(e) + (3(r) - V) (w+v1(2))] d7

for every ¢ € (0,7). Hence Lemmata 2.3 and 2.4 imply that there exists a
constant C such that the estimate -

@6) lly oy < €TV bl + T2V,

+WHWWMMwwWwwM%m
0<t<T .

0<7t<T



holds for every T € (0,T4]. Then, in the same calculation as in the proof of
Theorem 1.1, we can find a positive constant 75 such that

1/2—1 1/2 -
T2 ), + T2 VWl + sup /2715wy (7))
0<1<T;5

1
+ sup TI/ZHVW(T)HzS%»
0<1<T;s

with the same constant C as in (2.6). Then (2.6) implies that ||7{|g( 7,) =0,
which implies that #(¢) = 0 on [0, Ts].

For a positive number 6 determined later and a nonnegative integer n,
consider the condition

(2.7) 7(t) =0 holds on [0,T5 +nd].

Suppose that (2.7) holds with some n, which we have already seen that we
have already verified for n = 0. Then the identity (2.5) can be rewritten as

17‘(1‘) = - /;+n8 exp(—(t —7)A)
Pl((w+va(1))-V)¥(z)+ (35(7) - V) (w+wi(7))] d7

for t € (Ts +nd,Ty]. Then Lemmata 2.3 and 2.4 imply that there exists a

constant C independent of v, w and n such that the estimate

[9@)1ls +1IVo(@)ll

2s _ 5—2)/25 _ 3
<C—5(t=Ts~n8)CD sup ([l5(x)],+[[Vo(D)ll,)
: Ts+ndé<t<t
1/s~1/2 ~1/2
(Il + T3l 3y + IVl + 7521901l )

holds for ¢ € [Ts +n8,Ts +nd + 1]. Suppose that Tg € (T5+nd,Ts+né +1].
Taking the supremum with respect to ¢t € [T5 +nd, Tg), we have

5 . 2s 2 /s
sup (||V(t)||s+||VV(’)H2)(1“Cs—_§(T6-T5—n6)( 2)/2s

Ts+nd<t<Ty
1/s—1/2 ~1/2
(|.|w||s-+-T5 /s=1/ Ivallg(s,m) + |Vwl|, + T / ”VW”@(_;,Y}))) <0.
Now choose & € (0, 1] so small that it satisfies

25 _s(s-2)/2s
s—2
1

(Il + 73752 vallar () + VWl + 7521901 lla ey ) < 5

and put Ty = min{75+ (n+1)6,T4}. Then we have #(t) =0for 0 <t < T.
If Ts = Ty, we conclude that 7(z) = 0 for 0 <t < Ty. Otherwise we have
(2.7) with n replaced by n+ 1. Repeating the argument above, we can arrive
Ts = T4 in finite steps. This completes the proof. O
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3. OUTLINE OF THE PROOF OF THEOREM 1.3.

In order to obtain the decay rate of ||v(z)||; and ||Vv(2)||2, we follow the
method by Kato [7]. However, this calculation requires the smallness of
the initial value. Hence, to prove the result for large initial value, another
method is needed to prove the global solvability and weak decay property.
For this purpose we employ the energy inequality.

We first recall Hardy’s inequality as follows:

Lemma 3.1. Suppose that U is an exterior domain. Then there exists a
constant C such that, for every u(x) € Hy(U),

| MOE gy < Va2
U |x? (1+ |log x]])

If U enjoys some symmetry property, we have the following 1mproved
version, whose proof is found in Galdi [5].

Lemma 3.2. Suppose that U is an exterior domain satisfying (D4). Then
there exists a constant C such that, for every u(x) € H} (U) satisfying (U4),
we have

Ju(x) 2
dx < C||Vul|,*.
U |x|2 = H “2

We now start the proof of Theorem 1.3. The proof consists of four steps
as follows:

(1) Global solvability together with the boundedness (a priori estimate)
(i) Decay of ||Vv(t)||, (||Vv(t)]|, cannot grow so rapidly)
(iii) Decay of ||v(t)||, (Slowness of energy dispersion)
(iv) Decay rate of [v(2)||, and |Vv(t)|l, (LI-L" estimate for the per-
turbed semigroup) ‘
Detailed proof of Step (i)-Step (iii) is given in [6], and that of Step (iv) is
given in [10].
Step (i): Under the assumption of Theorem 1.3 we have the following
lemma, which implies the boundedness of ||v(z)|l,.

Lemma 3.3. We have the inequality

S0 ,% < (Clvllgr gy ~1) 1902

Proof. Taking the inner product with v(¢) with the equality (1.16) and inte-
grating by parts, we obtain the equality

d
3.1 VO + VO, = (v(1) @ w) Vv(z) = 0.
Employing Lemma 3.1 under Assumption (S) and Lemma 3.2 under As-
sumption (C), we can estimate
(3.2) v(®) @wll, < Cllwll g ) IVV(D)]l,-
Substituting this estimate into (3.1) we obtain the conclusion. g
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Lemma 3.3 implies the required estimates [|v(¢)||, < [[v(s)]l, for s,  with_

0<s<t<ooand
(3.3) / IVv(2)], dt < o=.
0

In the same way we have the an estimate for a higher order derivative, which
we admit for the moment.

Lemma 3.4. We have the inequality
d : ' 4
ZIvve)l,> <€ (Il +1Vul) vl

4
If w45 < 1/2C', putR=2C" (||w|| zo+ ||Vw||2> . Then Lemmata
3.3 and 3.4 imply
d .
= (RIPOI* + IVv@)ILL* ) < =RIVY@)ll,*Iv@)ll,* < 0.
dt

This estimate ensures the boundedness of ||Vv(z)||,, and hence Theorem 1.1
implies that the solution become a time-global one.

Proof of Lemma 3.4: We have the equality

S0l = (F0.a00)

GD = ()= P[(v() - V) w+ (w-V)v(e) + (v(1) - V) v(t)] , AV (1))
= —|-av@®)ll,’ +h + B+ 1,

where

I = ((v(r) - V)w,Av(z)),

L ((w-V)v(t),Av(t)),

L= ((v(t)-V)v(1),Av(r)).
By direct calculation we have Iy = 0. Next, in view of the interpolation
relation (L?,H?); /5 = B} | C L, we can estimate

2 3/2
| < Cllv(e) |32 1av) 132 Vw2,

L] < CIv) 13 1av @) 1wl 2y -

Substituting these estimates into (3.4) we obtain the conclusion. [l

Step (ii): We can prove the following lemma, which implies that
|IVv(¢)|l2 cannot grow so rapidly.

Lemma 3.5. For sandt such that 1 <t —1 < s <t, we have the estimate

IVv()llz 2 [[Vv(£)ll

2
—C(t—s)'" (”W”%(b) + Ilellz+§gllwllv(t)|l2+§grl>lle(t)|Iz> :
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Admitting this lemma for the moment, we can derive ||Vv(¢)||, — 0 as
t — oo from (3.3). In view of this fact and the boundedness of ||v(z)||,, the
Gagliardo-Nirenberg inequality implies that |[v(#)||, — 0 as  — o for every

g€ (2,0).

Proof of Lemma 3.5: We have v(t) = exp(—(t — 5)A)v(s) + 7, where
(3.5)

j= —/st exp(—(t—1)A)P[(v(t)- V)w+ (w- V)v(1) + (v(‘r)V)v(’c)] dr.
Put |
g1(7) =P[(v(1)-V)w+ (v(7)- V)v(7)] and g2(7) = P(w- V)v().

Then we have the estimates
g1 (D)3, <C (va”z +SupHVV(t)Hz) sup |v(e) [,/ sup | Vv (1) [,
t>1 t>1 t>1

and
llg2(D)ll, < Cliwll g1y fgIIDHVV(t)Ilm

Substituting these estimates into (3.5) we have

t
V9], S/s Ct—7)"*ar (IIVWII2+§grl>IIVv(t)II2>

sup||v(r)[|,"/? sup | Vv (r)|,>/*
t>1 t>1

t
+ [ Cle =) delwl ) sup VRO,

2
< C(t =)' [ Wl g (g) + 1wl +sup [v(2) [l + sup [Vv(©)]l, | -
®) t>1 t>1

Integrating this inequality on the interval [s,z] we obtain the conclusion.
This completes the proof of Lemma 3.5. 0

Step (iii): We show an estimate which dominates the increase of the en-
ergy far from the origin. Let y(x) be a smooth function on R such that
0<x(x) <1, x(x) =00n0,1] and x(x) =1 on [2,0). Then we have the
following lemma.

Lemma 3.6. We have the estimate

‘ 2
e (5| < c(imlar + ol 90l

dt

(3.6)
with a constant C independent of R > 0.

2
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Admitting this lemma for the moment, we complete the proof of Step
(iii). Suppose that s < . Integrating (3.6) on the interval [s, ], we obtain

[ PP
[x|>2R
t
< [ M e Clar +boll) [ 19Dl dr.

For every fixed € > 0, choose s so large that

f sl T < o

€
1wl g ey + [Ivoll2)

£
For this s, choose R > 0 so large that / [v(x,s)|>dx < e Then we have

x>

3.7 / | |v(x,t)|2dx‘< £ for every t > s.
x|>2R 2

On the other hand, it follows from the fact ||v(t)]|, — 0 as t — oo for g > 2
that there exists a constant 7' > s such that

(3.8) / |v(x,t)|2dx < £ for everyt > T.
x| <2R 2

Then the required asymptotic stability follows from (3.7) and (3.8). O

Proof of Lemma 3.6: In the same way as in the proof of Lemma 3.3, we

obtain
sale (%) e,
(i (2 (&) ) (G0 )
" (xR ')( Av(x,1) + P (w(x)- V)v(x,1)
+ () V) + () V)ots)] ) () i)
=h+hL+5L+1,
where

I = (—Av(x,t) — ] v(x,1) )

2
((v(x,t) ) vix t) Px( ) v(x t )
b= (( -Vt P (1 ') (xn)) ,

L



2
Iy = <(v(x,t)~V)W(x)v, Py (%) v(x,t)) .

We first estimate I;. Since Vv(z,x) € L2(Q) and v(¢,x) = 0 on 9, integra-
tion by parts yields

R
=~ Vo 0)ll 2+ (Vv<x,t), (v (x (%) )) v(x,o)

=19l + 5 (.20 (B 2 (B ).

It follows that
o0 (%) (&)

Since v(x,¢) = 0 on d<2, we can apply the Poincaré inequality to obtain the
estimate \

e o () (B v
=¢ </{xé9||x|521%} |Vv(x’t)12dx> ; < CRIV,.

Substituting this estimate into (3.10) we conclude

C
(3.10) L < E”VV('J)Hz

2

(3.12) I < C||Vv(, 1)l
We next estimate the term I, as follows:
3.13) B < V() vl
2 | 2
S CIVvC o)l 10l S Clv( TV ()l

for ¢t > T in view of the Gagliardo-Nirenberg inequality.
In view of (3.2), the term I3 can be estimated as

(3.14) I < Cllwll g IVV (5017

Finally, in order to estimate I; we recall the construction of the Helmholtz
decomposition in exterior domains by Miyakawa. We have

Py (%)21@,:) =x (%)Zv(x,t) +Vq1(x,t) + Vga(x,1),

where g1 (x,) is the solution in R? of the equation

(3.15) —Aqvl(x,t)rz div (x (%)%(x,ﬂ) = %(sz) (%) V(1)
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and g, (x,?) is the solution of the Neumann problem

—Agqa(x,t) =0 in Q,
(n-V)aa(x,1) = —(n-V) (x (' ') W) +ai(x, r)) (V)i (51
' ondQQ.

Then, integrating by parts, we have

1= () @w(e), - ( () v(x,r)) V(a1 —_v2q2<x,t>).

It follows that -
il 2Vv(x t)
x R b
+ —_

oo (5)x(5) e

Then the Lz-boundedness of the Rlesz transforms implies
3.17)

Vool < 5|0 (5) 2 (§) e

We next have

||VZQ2 ”2 <Cll(n-V)qa2(:, )||H1/2(ag) =C||(n-V)a1(,, )”H1/2 (9Q)

G.16) I SC“W||£’(b)||VV||2<
2

2
Vol [Vaol,).

) <CIvv(-,0)l,-

<C|V'ai (0],
Ittfollows from (3.17) that
(3.18) VP ( 0l < CIVVC D)l -
Substituting (3.11), (3.17) and (3.18) into (3.16) we obtain
(3.19) L <Clwll g IIVv||2 :

Substituting (3.12), (3.13), (3.14) and (3.19) into (3.9) we conclude that

2
il () v " < (1wl + @) 195017

Now (3.6) follows from the monotonicity of ||v(¢)]|,. O

We now recall the estimate of coerciveness of the Stokes operator.
Lemma 3.7. We have the following assertions:
(i) Forve D(AV?) =L2(Q)N (H} (Q))2 we have ||Vv||, = HAl/zvuz.

(i) For v € D(A) = L2(Q) N (H (Q)HH2(Q))2, there exists
a constant C such that we have the estimate '|V2v||2 <

(1wt o)



~ We next recall the resolvent estimates of the Stokes operator by Borchers

and Varnhorn [2] and Dan and Shibata [3, 4], from which estimates Theo-

rem 2.1 follows.

Proposition 3.8. Put D = {{ eC|§ #0,|argl| < 37m/4}. Then we have
the following assertions: '

(i) For every q and r such that 1 < g < r < oo, there exists a positive
constant Cy , such that, for every § € D, the operator (C +A) lisa
bounded operator from L% (Q) to (L (Q))2 satisfying the estimate
1€ +A)ul], < CyrlC V9" ull for every u € LE(Q). In
particular, if ¢ < r < oo, we have ({ +A)"lu € LL(Q).

(ii) For every q and r such that 1 < q < r < 2, there exists a positive
constant C, such that, for every { € D, the operator V({ +A)™!
is a bounded operator from L%L(Q) to (rr (Q))4 satisfying the es-
timate ||V (§+A)"lu||, < Cq,rlC|_1/2+1/‘1_1/’||u”q for every u €
LE(Q).

This proposition and Lemma 3.7 yield the following proposition.

Proposition 3.9. We have the following assertions:

(i) Suppose that 1 < q < 2. Then there exists a constant Ccll such that,
for every u € LE(Q) and every t > 0, the function exp(—tA)u be-
longs to the space (H} (Q)NH 2((2))2, and satisfies the estimate

HVzexp(—tA)u“2 < C;’st_l/q(l +t,“1/2)||ullq.

(ii) There exists a constant C such that, for every u € L2(Q) N

(H} (Q))2 the function exp(—tA)u satisfies the estimate
|V exp(~tA)ul|, < CI(1+6712)| V.
This proposition immediately implies the following corollary.

Corollary 3.10. Suppose that 1 < s < 3/2. Then we have the following
assertions:

(i) Suppose that 1 < q < 2. Then there exists a constant Cy ; such

that, for every u € L% (Q) and every t > 0, the function exp(—tA)u
belongs to the space (H} (Q))z, and satisfies the estimate

lexp(—A)ullge < C ™ /A(1+167V2) ]l

(ii) There exists a constant C" such that, for every u € L2(Q)N
(H; (Q))z, the function exp(—tA)u satisfies the estimate

lexp(—tA)ullge < €Y (1417 C7D/2) | V.
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We now introduce a perturbation of the operator A, and show some
properties. Suppose that w satisfies w € (2 (b))2 with some b > 1 and

Vwe (Lz(Q))4, and put Blu] = P{(w- V)u+ (u-V)w}. Then, for every
u€ D(A) = L§(Q) N (H.o(Q) NHA(Q))*

with 1 < ¢ < 2, we have Vu € (Lq(Q))4, which implies (w- V)u €
(Lq(Q))?'. We moreover have u € L2/ 9(Q)if l <g<2and u e
(L°°(Q))2 if ¢ = 2, which imply (u-V)w € (L7 (Q))2 in both cases. Hence
the operator L,,[u] = Au+ B[u] is well-defined on u € D(A).

In the sequel we obtain the resolvent estimate of this operator. For this
purpose Borchers and Miyakawa [1] expanded the resolvent into Neumann
series. Kozono and Yamazaki [8] extended the range of boundedness by
estimating the Neumann series by using fractional powers of the resol-
vent. However, we cannot employ this method straightforward due to the
strong limitation of the range of coerciveness. We get around this diffi-
culty by obtaining the estimate for the fractional power ({ +A)~1/2 defined
by the spectral decomposition of A on L2 () and estimate the operator
(£ +A)"1/2B({ +A)~1/2 by duality argument.

Let p1(A) denote the spectral measure associated with the operator A on
L%(Q). Then, for ¢ € D, we can write

S A —1/2 _
C+a)" = [Cergan@), rayi= \/?dum

Then the operator (§ 4 A)~1/2 is holomorphic in the interior of D with val-
ues in bounded linear operators on L2(Q). Here we note that { € D im-
plies { + A € D for every A > 0, and hence the branch of 1/ + A is well-

2
defined. It is easy to see that {(C +A)‘1/2} = (£ +A)~L. For the operator

(¢ +A)~1/2 we can prove the following lemmas by spectral decomposition.

Lemma 3.11. For every q and r satisfying 1 < g <2 < r < oo, there exist
constants C,4 and C, such that, for every { € D we have the estimates

|G+
|+ 2| <clg™ il for everyu e 13 ().

< Cl&1™ Y4 ull, for every u € LZ(Q) NLL(Q),

Lemma 3.12. There exists a constant C, such that, for every { € D and
every u € L%(Q), we have the estimate. “V (+A) 1/2 “ < C2||u||2

From these lemmas we can prove the following estimate.

Lemma 3.13. Suppose that w € (% (b))* with some b > 1 and Vw €
(LZ(Q))4. Suppose also that { € C\ {0} satisfies |arg{| < 3n/4. Then
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the operator (§ +A)~1/2B({ +A)~1/2 is bounded in L% (Q), and it satisfies
the estimate

|€+a)712B[(C+a)7 2] || < Cllwl g sl
where C is a constant depending only on ).

Proof. Suppose that ¢ € C5;(€). In view of the equalities V- w = 0 and

V(¢ +A)_1/2u =0, we have
(3.20)

j( (<;+A)—1/2P{(w-V)(c+A)—1/2u+((§+A)-1/2u-v)w})|
= |- (V& +a) 20w +4)7 )|
<[, s 4],

TIn view of the fact ({ +A)~1/2u € D(A!/?), Lemma 3.12 and (3.2) imply
(3.21)

(& +2)7 72, < Clwll || V(& +4)u], < Cllwllr

where the constant C depends only on Q. Since Cg (Q) is dense in L2 (Q),
we obtain the conclusion by substituting Lemma 3. 12 and the inequality
~(3.21) into (3.20). U

For the operator L,, we have the following proposition.

Proposition 3.14. For every q, r such that 1 < g <2 < r < oo, there exist
positive numbers A and Ay, such that, for every w € (,%’ (b))2 satisfying
Vwe (L2(£2))4 and ||w|| 2 (b) S A we have the estimates

166 + L) ™"l < AglGI7H Y471 ul,
IV +L)"ull, < Agald ] /4]l
for every u € LE(Q) and every { € D.

Proof. Suppose that ||w|| PR /2C. Then Lemma 3.13 implies that the
operator T defined by

T = Z{ (G +A) " 2B(g+a) 2

is bounded on L2 (Q) uniformly in { € D and satisfies
32)  GH+ATTEHA T =((+A+B) T = ((+Lw)!

For ¢ and r as in the assumption, Lemmata 3.11 and 3.12 im-
ply [[(¢+A)7Tul|, < Cgl¢I7F1/4|u||, for u € LE(Q) N LE(RQ), and
(& +4) 1], < CIEI™ Y ull,, [[V(E+A)"u]], < Callully for u €
LZ(Q). Hence the required estimates follow from these estimates. O



Since we can obtain a semigroup by integrating the resolvent of the gen-
erator on an appropriate contour in the complex plane, we can deduce the
next theorem from the proposition above.

Theorem 3.15. Let w be the same as in Proposition 3.14. Then the opera-
tor —L,, generates a bounded analytic C°-semigroup exp(—tL,) on L%(Q),
and for every q and r such that 1 < q <2 <r < oo, there exists a constant
By such that, for every u € LE(Q2) and t > 0, we have the estimates

lexp(=tLw)ull, < Byt ™4 ully, IV exp(—tLy)ull, < Bgat ™/ |ull,-

We now proceed to Step (iv). The conclusions of Step (i1) and Step (iii)
imply that, for every € > 0, there exists a positive number Ty such that, for
every t > Tp we have ||v(t)]|, <&, ||[v(t)||4 < € and | Vv(2)||, < €.

Next, for T; such that Tp < T; < oo, we put

a(Ty)=_sup_max{(t —To)' (), (¢ — To) 2| Vv(o)l, }

Th<t<T

Then the function a(7}) is continuous and monotone-increasing. For ¢ €
[To, Ty), we can write

v(t) = exp(—(t — To)Lw)v(To) + /T: exp(—(t—t)Ly) P [(v(1)- V)v(7)] d7.

From this we can estimate
Iv(t) ]l < Baa(t —To)~/*Iv(To) I,

t
+C4/3/T B3 4(t — 7)1 2|(7)|| 4| V¥(T) ||, dT
0
t
< Byu(t —To)/*e +Cypax(t)’ /T By3a(t—1)712173 4 de
0

where Cy/3 denotes the operator norm of the projection P from (L*/ 3(Q))2
to Lf,/ 3(Q). This implies
11
(3.23) (t = T0)/*|[v(t)|l4 < B2,a€ +Ca/3B4/3 4B (E’ Z) a(T))?2.
In the same way, from the estimate

!
“V"(t)”z < 32,2 (t _'TO)_1/28 +C4/3oc(t)2/T B4/3,2 (t — 1;)‘3/41;_3/4d1-’
0

it follows that
11
(3.24) ([ — Tb)l/ZHVV(I)'b < 32,28 +C4/3B4/3.2B (Z, Z) (Tl)z.
Hence, putting
Cr — CorBair B 11 11
1 =max | Cy3Ba/34B 1 557 1Ca/3B4/3.2B 71)(’

G = max{Bz,4,B2,2, 1}
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and taking the maximum of (3.23) and (3.24), we see that
max {(t — o) {v(®) g, (¢ - T0)1/2||VV(1)||2} <Cia(Th)* +Cae.
Taking the supremum for ¢ € [T, T} ], we see that o(7) satisfies

(3.25) o(T) < C'loc(Tl)2 +Cze.

We suppose that € < 1/4C1C;. Then there exists two distinct roots of the
equation C;X? — X + C,¢ = 0. Let f(€) denote the smaller one. Then we
have € < f(€), and the intermediate theorem implies that we have o(T7) <
f(e) if Ty > Ty is sufficiently close to Tp. It follows that

IVv(Ty)|l, < F(e)(Th — To)~V/? < \/if(e)Tl_l/z

for every T; > 2Tp. On the other hand, we have ||v(T1)||, < & < f(g). Hence
the Gagliardo-Nirenberg inequality implies that the estimate [|v(T3)]|, <
qu(s)T1_1/2+1/q holds for every T7 > 2Tj and g € [2,). Since we have
f(€) = 40 as € — +0, we conclude (1.18) and (1.19).

It remains only to show (1.20). First, since v(¢) € Hj (€2) and since H} (Q)
can be regarded as a closed subset of HJ (R2), we have '

“V(t)”Bg,z(Q) < [|v(t)||Bg’2(R2)
< CIVVO) gz = CIVYO)llz2q) = 0™1/?),

where Bgyz(Rz) denotes the homogeneous Besov space on R2. Then, for
every fixed € € (0, 1], we can choose T > 2 so large that

sup max {e¥Sv(0) g, V(o) oot VD) g, | <
Suppose that # > T'. Then, forevery T € [t —1,t], wehave T >t —1>1¢/2.

We next recall the Littlewood-Paley decomposition. Let x(s) be a
monotone-decreasing C*-function on (—1, o) such that y(s) =1on (—1,1]
and x(s) =0 on [2,). Next, for & € R", put ®(&) = x(|&]) and
@;j(&) = x(277|&|) — x(2177|&|) for j € Z. Then, for every k € Z we have

D7) + Y. ¢j(€)=1. For afixed t > T, choose k as the smallest

j=k+1
positive integer such that ¢ < 2%%; namely, k > (log, ¢)/2. We then put
k—1
W)= Z7 @) Zp0)], v () = Y [9/(E)Zb0)],
j=—k+1 |

oo

v (0) = Y, [0;(6) Z ()]

J=k

Then we have v(t) = v (£) +v® (£) +v3)(2).
We first have '
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(3.26) ”v(l)(t)“,w

< 0)ls2 (2710 74|, = c2 vl < 0.

8/7
We next observe that

o)< T £ loeboll.

j=—k+1
» 1/2

(327) < V-1 ( y ||9”‘[<p;f[v(t)]]!lf>
j=—k+1

< Cy/logt|v() |l B, < Cetr~12\/logt.

Finally, in order to estimate ”v(3) () ”m, we employ another representation
(3.28) v(t) = éxp(—A)v(t ~1)
+/til exp(—(t—T)A)P [(w-V)v(7) + (v(1)- V)w+ (v(1)- V)v(1)] d7.
Then the Sobolev embedding theorem and Corollary 3.10, (2) imply
(3.29) lexp(=A)v(t —1)ll¢1s < Cllexp(=A)v(t = 1)l
<C|Vv(t—1)||, < Ce(t—1)"1/2 < 2Cer™1/2

Next, for 7 € [t — 1,¢], we have

100V (D)llgss < IwlslI V(2o < Cllwl g gryer™7,

| ((2)- D wlly 5 < () 51911, < Vw673,

and ' 7
[(v(2) - V)v(2)||g /5 < CE™1/E.

Summing up these estimates we conclude that
|P[(w-V)v(T)+ (v(7)- V)w+ (v(7) - V)¥(7)] ||8/5
< Ce(||wll g5y + 11Vl + 138, |

Hence the Sobolev embedding theorem and Corollary 3.10, (2) imply
(3.30) -

ls@lews <€ [ 6=z 23344
||P [(w-V)v(t)+ (v(7)- V)w+ (v(1) - V)v(1)] ||8/5 dt
< CelIwll gy + IVl + 1 [ (1= "2

< Ce(|Iwll gy + 1YWl + 1)~/



It follows from (3.28), (3.29) and (3.30) that
V(@) llass < Ce(lIwll gy + VWl +1)e7%2.

Since C1/3 coincides with BY/> =, we have

|2 [0 Z BN .. < 2wl gr sy + 1wl + 1),

Summing up we obtain
”vm(t)“w <Y |Z e F vl
j=k

(3.31) < C2*Pe(|Iwll g sy + | VWil + 1)~/
< Ce(|[wll gy + VWil + 1) ~3/871/6
< Ce(lwll ) + VWil + D12,

Summing up (3.26), (3.31) and (3.27) we conclude (1.20).
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