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ABSTRACT. This article summarizes the problems of interest and the
results presented by the authors at the workshop. The full article with
their complete proofs will be made available under the same title by the
authors at the appropriate juncture.

1. DOMAINS AND TOPOLOGIES

Let $L$ be a partially ordered set (poset) equipped with partial order $\leq.$ $A$

subset $E$ of $L$ is called directed if it is nonempty and every pair of elements
from $E$ has an upper bound in $E$ , and $L$ is called a directed complete poset
(or, dcpo for short) if $\sup E$ exists for any directed subset $E$ . A subset $E$

is called a lower set if $x\in E$ and $y\leq x$ imply $y\in E$ , and a lower set $E$ is
called an ideal if it is also directed. For example, $\langle x\rangle$ $:=\{z : z\leq x\}$ is an
ideal, called principal ideal. An element $x$ of $L$ is said to be way below” $y,$

denoted by $x\ll y$ , if we can find $x\leq w$ for some $w\in E$ whenever a directed
set $E\subseteq L$ satisfies $y \leq\sup E$ . An element $x$ is called isolated from below if
$x\ll x$ . A dcpo $L$ is called a domain if (i) $\langle\langle x\rangle\rangle$ $:=\{z:z\ll x\}$ is an ideal
and (ii) it satisfies $x= \sup\langle\langle x\rangle\rangle$ for any $x\in L$ . Every domain possesses the
following property, called the strong interpolation property: If $x\ll z$ and
$z\neq x$ then there exists some $y\neq x$ interpolating $x\ll y\ll z.$

A poset is said to be a semilattice if $x\wedge y$ $:= \inf\{x, y\}$ , called meet,
exists for every pair $\{x, y\}$ . Similarly we can define a $\sup$-semilattice if
$x\vee y$ $:= \sup\{x, y\}$ , called join, exists for any $\{x, y\}$ . A poset is called a
lattice if the meet and the join exist for every pair, and it is said to be a
complete lattice if the supremum and the infimum exist for every subset. $A$

domain is called a continuous lattice if it is a complete lattice. Throughout
this paper we frequently refer to [6] for their extensive treatise of continuous
lattices and domains. The notable exception is our choice of notation
and for generators (which $are\downarrow$ . and 9$\cdot$ in [6]). A poset with converse
(or “dual”) order relation $\leq^{*}$ is called dual, denoted by $L^{*}$ . A subset is
called filtered in $L$ if it is directed in $L^{*}$ . An upper set of $L$ is dually defined
as a lower set of $L^{*}$ , and a filtered upper set is simply called a filter. In
an analogous manner to $\langle x\rangle$ and $\langle\langle x\rangle\rangle$ , we write $\langle x\rangle^{*}:=\{z : x\leq z\}$ and
$\langle\langle x\rangle\rangle^{*}:=\{z : x\ll z\}$ (which are respectively expressed $as\uparrow xand\uparrow x$ in
[6]). For a subset $A$ we can write $\langle A\rangle$ $:=\{z$ : $z\leq x$ for some $x\in A\}$ and
$\langle\langle A\rangle\rangle$ $:=\{z$ : $z\ll x$ for some $x\in A\}$ . Again, analogously we can introduce
$\langle A\rangle^{*}$ and $\langle\langle A\rangle\rangle^{*}$
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We will call a domain $L$ continuous $\sup$-semilattice if it is a $\sup$-semilattice.
If a $\sup$-semilattice $L$ is a dcpo then it suffices to check $x= \sup\langle\langle x\rangle\rangle$ in order
to see whether it is a domain, or equivalently, to find some $z\ll x$ with
$z\not\leq y$ whenever $x\not\leq y$ . A continuous $\sup$-semilattice $L$ is unital, contain-
ing the top element 1 $:= \sup L$ . If it also has the bottom element $\inf L$

then it becomes a continuous lattice. Regardless of whether there exists a
bottom element or not, we can always form a continuous lattice, denoted
by $\check{L}:=L\cup\{\hat{0}\}$ , by adjoining a bottom element \^O. The extended interval
$(-\infty, +\infty]$ is a continuous $\sup$-semilattice without the bottom element, and
$x<y$ is equivalent to $x\ll y$ . The top element $+\infty$ is not isolated from
below.

Suppose that $L$ is a continuous $\sup$-semilattice. Then we can introduce a
Scott open set $U$ if (i) it is an upper set and (ii) $U\cap E\neq\emptyset$ holds whenever
a directed subset $E$ satisfies $\sup E\in U$ . By Scott(L) we denote the family
of Scott open subsets in $L$ . The poset Scott(L) ordered by inclusion is a
continuous lattice, in which $U\ll V$ if $U\subseteq\langle A\rangle^{*}$ holds for some finite subset
$A$ of $V$ . By $S$ $:=Scott(L)\backslash \{\emptyset\}$ we denote the collection of nonempty
Scott open subsets in $L$ . Then $S$ is a continuous $\sup$-semilattice ordered
by inclusion. We view Scott (L) as the continuous lattice by adjoining the

bottom element $\emptyset$ to $\mathcal{S}$ , and denote it by $\check{S}$ . If $i$ is isolated then $S$ itself
becomes a continuous lattice with the bottom element $\{i\}$ . For $x\in L$ we
can define a filter $S_{x}$ $:=\{U\in S : x\in U\}$ . Given a directed subset $\mathcal{E}$ of
$S$ satisfying $\sup \mathcal{E}\in S_{x}$ , we can find some $U\in \mathcal{E}$ which contains $x$ so that
$U\in S_{x}$ ; thus, $S_{x}$ is Scott-open. In fact, the collection $\mathcal{S}_{x},$ $x\in L$ , becomes
an open subbase for the Scott topology on the domain $S.$

The Scott topology is not a Hausdorff space; thus, a refinement can be
made by introducing a closed upper set $\langle x\rangle^{*}$ , called the Lawson topology.
A subbase of the topology can be formed by all the Scott open subsets $U$

and all the lower subsets of the form $L\backslash \langle x\rangle^{*}$ . The Lawson topology of
the domain $(-\infty, +\infty$], for example, is homeomorphic to the metric space
$(0,1]$ . In general, equipped with the Lawson topology, a continuous sup-
semilattice $L$ is locally compact Hausdorff (LCH), arld $\check{L}$ is the one-point
compactification of L. (cf. Theorem III-1.9 of [6]).

A map from $L$ to another domain is called Scott-continuous if it is con-
tinuous under their respective Scott topologies. The Scott-continuity im-
plies monotonicity, and it has the following equivalent condition: $f$ is Scott-
continuous if and only if $f(x)= \sup f(\langle\langle x\rangle\rangle)$ for every $x\in L$ (Proposition
II-2.1 of [6]). Equipped with the Lawson topology on the respective domains,
a continuous map is called Lawson-continuous. In continuous lattices, a net
$\{x_{\alpha}\}$ is said to be liminf-converge to $x$ if $x= \lim_{\alpha}\inf x_{\alpha’}$ for every subnet

$\{x_{\alpha’}\}$ , which agrees with convergence in the Lawson topology (Theorem

III-3.17 of [6]).
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A real-valued function $\varphi$ on a domain $L$ is Scott-continuous if and only
if it is monotone and lower semicontinuous $(l.s.c.)$ with respect to the Law-
son topology. A Scott-continuous nonnegative function $\varphi$ will be called
$s$-monotone in this paper. Furthermore, we assume in the rest of paper that
$L$ is a continuous $\sup$-semilattice which is also a semilattice (hence a lattice),
and that the top element $i$ is isolated from below. Thus, $S$ is a continuous
lattice with the bottom element $\{i\}$ , and it is viewed as a compact Hausdorff
space equipped with the Lawson topology.

Example 1.1. The collection $\mathcal{K}$ of compact sets on an LCH space $R$ can be
viewed as a dcpo with reverse inclusion, and a lattice with the top element
$\emptyset$ . It has the bottom element, namely the entire space $R$ , only when it is
compact. We can show that $E\ll F$ in $\mathcal{K}$ if $F\subseteq int(E)$ (cf. Proposition I-
1.24.2 of [6]). The lattice $\mathcal{K}$ is a continuous $\sup$-semilattice, and the top
element $\emptyset$ is isolated from below. A set function $\varphi$ over $\mathcal{K}$ is said to be
continuous on the right if for any $E\in \mathcal{K}$ and $\epsilon>0$ there is an open
neighborhood $G$ of $E$ such that $|\varphi(E)-\varphi(F)|<\epsilon$ for all $E\subseteq F\subseteq G$ . If $\varphi$

is nonnegative, decreasing [i.e., monotone in the lattice $\mathcal{K}$] and continuous
on the right, then $\varphi$ is $s$-monotone (cf. Theorem 4.6.18 in Berg et al [1]).

2. COMPLETELY $S$-MONOTONE FUNCTIONS

The collection OFilt (L) of Scott open filters becomes a base for the Scott
topology on $L$ . The semilattice OFilt (L) ordered by inclusion is denoted by
$\mathcal{F}$ , and it has the bottom element $\{\hat{1}\}$ . A continuous semilattice is called
multiplicative if $a\wedge b\ll x\wedge y$ holds whenever $a\ll x$ and $b\ll y$ . In this
section and again in Section 4 we will assume that $L$ is multiplicative. Then
$\mathcal{F}$ becomes a complete lattice (see [8]).

Since $\mathcal{F}$ is a Scott open base for $L$ , we can express a principal filter
$\langle U\rangle_{S}^{*}:=\{W\in S : U\subseteq W\}$

. on $S$ by the intersection of $\langle V\rangle_{S}^{*},$ $V\in \mathcal{F},$

satisfying $V\subseteq U$ if $U\in S$ . Thus, we can find that $S_{x},$ $x\in L$ , and $S\backslash \langle V\rangle_{S}^{*},$

$V\in \mathcal{F}$ , form an open subbase for the Lawson topology on $S.$

Lemma 2.1. $\mathcal{F}$ is a compact subset of $S.$

Let $F$ be a semilattice, and let $\phi$ be a nonnegative function on $F$ . Then
we can introduce a difference operator $\nabla_{z}$ by $\nabla_{z}\phi(x)=\phi(x)-\phi(x\wedge z)$ ,
and the successive difference operator $\nabla_{z1\cdots,z_{n}}$ recursively by $\nabla_{z,\ldots,z_{n}}1\phi=$

$\nabla_{z_{n}}(\nabla_{z_{1},\ldots,z_{n-1}}\phi)$ for $n=2$ , 3, . . .. The operator $\nabla_{z_{1},\ldots,z_{n}}$ does not depend on
an order of $z_{i}’ s$ , nor a repetition of elements, and therefore, it is denoted by
$\nabla_{A}$ for a finite subset $A=\{z_{1}, . . . , z_{n}\}$ . The function $\phi$ is called completely
monotone if $\nabla_{A}\phi\geq 0$ holds for every nonempty finite subset $A.$

Proposition 2.2. Suppose that $m$ is a finite measure on $F$ , and that $\langle x\rangle$ is
measurable for each $x\in F$ . Then $\phi(x)=m(\langle x\rangle)$ is completely monotone.

The converse of Proposition 2.2 is also true if $F$ is finite. We say $x$

covers $z$ in $F$ if $z<x$ and there is no other element between $z$ and $x.$
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We set $r(x)=\phi(x)$ for the bottom element $x=\wedge F$ , and $r(x)=\nabla_{A}\phi(x)$

with the collection $A$ of all the elements covered by $x$ if $x$ is not the bottom
element of $F$ . Thus, we can construct a signed measure $m(E)= \sum_{x\in E}r(x)$

for each $E\subseteq F$ . It is a straightforward exercise to show $\phi(x)=m(\langle x\rangle)$ for
every $x\in F$ . In fact, such a measure $m$ corresponds uniquely to $\phi$ , and $r$ is
known as the M\"obius inverse of $\phi$ . Particularly, $r$ is nonnegative (i.e., $m$ is
a measure on $F$ ) if $\phi$ is completely monotone.

Let $\varphi$ be an $s$-monotone function on $L$ . Then $\varphi$ is called completely s-
monotone if it is also completely monotone.

Proposition 2.3. A completely $s$-monotone $\varphi$ has a unique representation
$\mu$ on $\mathcal{F}.$

3. COMPLETELY $S$-ALTERNATING FUNCTIONS

Recall that $\check{L}=L\cup\{\hat{0}\}$ is the one-point compactification of $L$ , and
$\check{S}=Scott(L)$ is the continuous lattice, having the respective bottom element
$\hat{0}$ and $\emptyset$ . Here we introduce the subspace $\check{\mathcal{L}}$

$:=\{\check{L}\backslash \langle z\rangle : z\in\check{L}\}$ of the
compact Hausdorff space $\check{S}$ . An open subbase of $\check{\mathcal{L}}$ consists of $\check{\mathcal{L}}_{x},$ $x\in L,$

and $\check{\mathcal{L}}\backslash \langle U\rangle_{\dot{S}}^{*},$ $U\in S$ , where $\langle U\rangle_{\check{S}}^{*}:=\{W\in\check{S} : U\subseteq W\}$ is a closed upper

set of $\check{S}.$

Proposition 3.1. The bijective map $\xi(x)=\check{L}\backslash \langle x\rangle$ is homeomorphic from
$\check{L}$ to $\check{\mathcal{L}}.$

We define the operator $\nabla_{A}$ on the “dual poset of a $\sup$-semilattice, and
call it the dual successive difference operator, denoted by $\triangle_{A}$ . It can be

constructed with the dual difference operator $\Delta_{z1}\phi(x)=\phi(x)-\phi(x\vee z_{1})$ ,
and recursively by $\Delta_{zz_{n}}1,\ldots,\phi=\Delta_{z_{n}}(\Delta_{z1,\ldots,z_{n-1}}\phi)$ for $n=2$ , 3, . . .. A function
$\phi$ is said to be completely alternating if $\Delta_{A}\phi\leq 0$ holds for any nonempty
finite subset $A.$

Let $\varphi$ be a monotone nonnegative function on $L$ . Then we can naturally
extend it to $\check{\varphi}$ on $\check{L}$ by setting $\check{\varphi}(\hat{0})=0$ , and correspond it to the dual
monotone function $\varphi^{*}(x)=\check{\varphi}(i)-\check{\varphi}(x)$ on the dual poset $\check{L}^{*}$ The com-
pletely alternating property of $\varphi$ is dually characterized by the complete
monotonicity of $\varphi^{*}.$

An $s$-monotone function $\varphi$ is called completely $s$-alternating if it is com-
pletely alternating.

Let $\mathcal{L}$ $:=\check{\mathcal{L}}\backslash \{\emptyset\}$ . By Proposition 3.1 we can observe that $\check{\mathcal{L}}$ is compact on
$\check{S}$ , and therefore, that $\mathcal{L}$ is closed in $S$ . Thus, Corollary?? and Lemma??
together imply the existence of representation $\mu$ on $\mathcal{L}$ for completely s-
alternating $\varphi$ . We can view $\mu$ as a measure on $\check{\mathcal{L}}$ by setting $\mu(\{\emptyset\})=0$ . By
using the homeomorphism $\xi$ of Proposition 3.1 we can construct a Radon
measure $R$ on $\check{L}$ by setting $R(B)=\mu(\xi(B))$ for any Borel-measurable subset
$B$ of $\check{L}$ . Clearly it satisfies

(1) $R(\check{L}\backslash \langle x\rangle^{*})=\check{\varphi}(x)$ for all $x\in\check{L}$ and $R(\{i\})=0.$
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It should be noted that $R(\check{L})=\varphi(i)$ .
Conversely, suppose that $R$ represents $\check{\varphi}$ in the sense of (1). Then $\varphi^{*}(x)=$

$R(\langle x\rangle^{*})$ is completely monotone on the dual $\check{L}^{*}$ by Proposition 2.2. Since
the increasing net $\check{L}\backslash \langle z\rangle^{*},$ $z\in\langle\langle x\rangle\rangle$ , converges to $\check{L}\backslash \langle x\rangle^{*}$ , by MCT we
have $R( \check{L}\backslash \langle x\rangle^{*})=\sup_{z\in\langle\langle\rangle\rangle}xR(\check{L}\backslash \langle z\rangle^{*})$ . Hence, we found $\varphi$ completely
$s$-alternating.

Proposition 3.2. The following statements are equivalent: (i) $\varphi$ is com-
pletely $s$-altemating;(ii) there exists a unique Radon measure $R$ on $\check{L}$ sat-
isfying (1).

Let $R$ be the representation of $\varphi$ in Proposition 3.2, and let $\check{L}\backslash \langle\langle z\rangle\rangle^{*},$ $z\in$

$L^{*}$ , be a decreasing net which converges to $\{\hat{0}\}$ . Then we obtain $R(\{\hat{0}\})=$

$\inf_{z\in L}*R(\check{L}\backslash \langle\langle z\rangle\rangle^{*})$ , which is equal to $\inf_{z\in L}*R(\check{L}\backslash \langle z\rangle^{*})=\inf_{z\in L}\varphi(z)$ .
Thus, $R$ is nondegenerate at $\hat{0}$ if $\varphi$ satisfies $\inf_{z\in L}\varphi(z)=0$ , and we simply
call $\varphi$ nondegenerate in such a case.

Corollary 3.3. If $\varphi$ is completely $s$-monotone and nondegenerate then there
$exi_{\mathcal{S}}ts$ a unique Radon $mea\mathcal{S}ureR$ on $L$ such that $\varphi^{*}(x)=R(\langle x\rangle^{*})$ for all
$x\in L.$

4. MAIN RESULTS

The lattice $L$ is distributive if for any nonempty finite subset $A$ of $L$ we
have

(2) $x\wedge\vee A=\vee(x\wedge A)$ ,

where $\fbox{Error::0x0000}A$ denotes the least upper bound of $A$ and $x\vee A:=\{x\vee z:z\in A\}.$

The distributivity (2) is dually characterized by $x\vee\wedge A=\wedge(x\vee A)$ . It
allows us to construct a finite distributive sublattice of $L$ by first generating
a $\sup$-subsemilattice (or a subsemilattice, instead) then extending it to a
subsemilattice $( a \sup-$subsemilattice, respectively) .

Proposition 4.1. The following $\mathcal{S}tatement\mathcal{S}$ are equivalent:

(i) $\varphi$ is completely monotone and completely alternating,$\cdot$

(ii) $\varphi$ is monotone, and $\mathcal{S}$atisfies

(3) $\varphi(x)+\varphi(y)=\varphi(x\wedge y)+\varphi(x\vee y)$

for any $x,$ $y\in L.$

A monotone function $\varphi$ is called valuation (or module) if (3) holds. In
what follows we assume that $L$ is multiplicative and distributive, and that
$\varphi$ is completely $s$-monotone. By Proposition 4.1 the valuation $\varphi$ has a rep-
resentation of $\varphi$ on $\mathcal{L}$ and another on $\mathcal{F}$. In fact, we will see in Corollary 4.4
that they are the same, uniquely representing $\varphi$ on the intersection $\mathcal{L}\cap \mathcal{F}.$
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The notion of valuation can be generalized. For $k=1$ , 2, $\cdots$ , $\varphi$ is called
$k$ -valuation if

(4) $\nabla_{B}\varphi(\bigwedge_{\{x,y\}\subseteq B}x\vee y)=0$

holds for every $(k+1)$-element antichain $B$ [i.e., a subset $B$ consisting of $(k+$

1) pairwise incomparable elements]. It should be noted that a 1-valuation
is simply a valuation, and that $k$-valuation $\varphi$ is not necessarily $k’$-valuation
if $k>k’.$

Proposition 4.2. A $k$ -valuation $\varphi$ is also $k’$ -valuation if $k<k’.$

Consider the complete lattice $\check{L}$ for which the distributivity of $L$ is inher-
ited. An element $x$ of $\check{L}$ is called prime if $\check{L}\backslash \langle x\rangle$ is a filter in $L$ . An element
$z$ of $\check{L}$ is called irreducible if $z=x\wedge y$ implies $z=x$ or $z=y$ . The lattice $\check{L}$

is distributive, and the notions of being irreducible and prime are identical
except for the top element $i$ which is irreducible but not prime.

By $\check{P}$ we denote the collection of prime elements in $\check{L}$ . Observe that
$\hat{0}\in\check{P}$ , and that

$\mathcal{P}:=\mathcal{L}\cap \mathcal{F}=\{\check{L}\backslash \langle z\rangle:z\in\check{P}\}$

is a compact subset of $S.$

We define a continuous map $\pi_{k}$ from $(V_{1}, \ldots, V_{k})\in \mathcal{P}^{k}$ to $\mathcal{F}$ by setting
$\pi_{k}(V_{1}, \ldots, V_{k})=\bigcap_{i=1}^{k}V_{i}$ . Since the product space $\mathcal{P}^{k}$ is compact, so is the
image

$\pi(\mathcal{P}^{k})=\{\check{L}\backslash \langle A\rangle : A\subseteq\check{P}, 1\leq|A|\leq k\},$

which we denote by $\mathcal{P}_{k}.$

For each $w\in\check{L}$ we can consider the complete sublattice $\langle w\rangle^{*}$ of $\check{L}$ , and the
corresponding surjective map $\lambda_{w}$ from $U\in \mathcal{F}$ to $\lambda_{w}(U)\in \mathcal{F}_{w}:=\mathcal{F}\cap\langle w\rangle^{*}$

by setting $\lambda_{w}(U)$ $:=U\cap\langle w\rangle^{*}$ . Here $\lambda_{\hat{0}}$ is the identity map from $\check{\mathcal{F}}$ to itself.
It is easily verified that $\mathcal{F}_{w}$ is compact, and that $\lambda_{w}$ is continuous.

By $\mathcal{P}_{w,k}$ we denote the compact subset $\lambda_{w}(\mathcal{P}_{k})$ of $\mathcal{F}_{w}$ ; in fact, we can
express it as

$\mathcal{P}_{w,k}=\{\langle w\rangle^{*}\backslash \langle A\rangle : A\subseteq\check{P}_{w}, 0\leq|A|\leq k\},$

where $\check{P}_{w}:=\check{P}\cap\langle w\rangle^{*}$ is the collection of prime elements in $\langle w\rangle^{*}.$

Proposition 4.3. Let $\mathbb{F}$ be the poset of finite sublattices of L. Then there
exists a net $\{\mu_{F}\}_{F\in F}$ of measures on $\mathcal{F}$ so that each $\mu_{F}$ represents $\varphi$ on $F,$

and satisfies for $w\in F,$

(5) $\mu_{F}(\overline{ノ,}\backslash \lambda_{w}^{-1}(\check{\mathcal{P}}_{w,k}))\leq\sum\nabla_{B}\varphi(\bigwedge_{\{x,y\}\subseteq B}x\vee y)$

where the summation is over antichains $B$ of $F\cap\langle w\rangle^{*}$ with $|B|\geq k+1.$
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Suppose that $\mu$ is the limit of a converging subnet $\{\mu_{F’}\}$ of Proposition 4.3.
Then by Proposition 2.3 $\mu$ must be unique, for which we can establish the
following properties of valuations.

Corollary 4.4. A $k$ -valuation $\varphi ha\mathcal{S}$ a unique representation on $\mathcal{P}_{k}.$

In the next corollary we also assume that there is a countable sequence
$\{w_{i}\}$ of $L$ such that $L= \bigcup_{i=1}^{\infty}\langle w_{i}\rangle^{*}$ , that is, that $L$ possesses $\sigma$ -compactness
property. Then we can construct the $F_{\sigma}$ set $\mathcal{P}_{w,\infty}:=\bigcup_{k=1}^{\infty}\lambda_{w}^{-1}(\mathcal{P}_{w,k})$ , and
the $F_{\sigma\delta}$ set $\mathcal{P}_{\infty}=\bigcap_{i=1}^{\infty}\mathcal{P}_{w_{i},\infty}.$

We call $\varphi$ a locally finite valuation if for any $w\in L$ and $\delta>0$ we cari find
some integer $n$ so that for every finite sublattice $F$ of $\langle w\rangle^{*},$

$\sum\nabla_{B}\varphi(\bigwedge_{\{x,y\}\subseteq B}x\vee y)\leq\delta$

where the summation is over antichains $B$ of $F$ with $|B|\geq n.$

Corollary 4.5. If $\varphi$ is completely $s$-monotone and locally finite valuation
then it has a unique representation on $\mathcal{P}_{\infty}.$
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