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ABSTRACT. Copulas are important tools that are used to construct multivari-
ate distributions and to investigate dependence structures between random vari-
ables. Needless to say, they have many applications in Applied Probability. In
this paper, we view the copulas in the settings of Functional Analysis. We
provide a short survey of the set of copulas with reference to norms on the
set of copulas; the copula product of Darsow, Nguyen and Olsen (1992); their
connection with Markov operators; the scalar product of Siburg and Stoimenov
(2008); and their MacNeille completion. Many properties of copulas extend to
quasi-copulas. Counter examples are given to show that the copula product of
Darsow-Nguyen-Olsen does not extend to quasi-copulas, and that the connec-
tion between quasi-copulas and Markov operators does not extend to a suitable
set of positive operators.

1. INTRODUCTION

Suppose we are dealing with two real-valued random variables $X$ and $Y$ , and
we wish to compute the variance

$Var(Z) :=\mathbb{E}[(Z-\mathbb{E}Z)^{2}]$

of $Z=aX+bY$ , assuming that

$\mathbb{E}[X^{2}]<\infty$ and $\mathbb{E}[Y^{2}]<\infty.$

Knowing only the marginal distribution functions

$F(x)$ $:=\mathbb{P}[X\leq x]$ and $G(y)$ $:=\mathbb{P}[Y\leq y]$

of $X$ and $Y$ , respectively, is not enough. We need the joint distribution (cumulative
distribution function)

$H(x, y):=\mathbb{P}[X\leq x, Y\leq y]$

of the random vector $(X, Y)$ . A copula is a function which joins a multivariate
distribution function to its marginal (one-dimensional) distribution functions.

In this paper, we give a survey of the copulas in the settings of Functional
Analysis. In Section 2, we present the definition, examples, and differentiability
properties of copulas. We recall the scalar product of copulas, introduced by
Siburg and Stoimenov [12] which establishes geometrical properties of copulas in
Section 3. The set of copulas also has an algebraic property, given by the so-called
$*$-product (cf. Darsow et al. [3]). We recall the results concerning $the*$-product
and its connection with the scalar product in Section 4. The set of copulas $C$

is closed under convex combination. The linear span of $C$ is a vector space, and
furthermore, is a Banach space. We recall the norms for copulas (cf. Darsow
and Olsen [2]) in Section 5. The copulas also have a one-t -one correspondence
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to 1-preserving Markov operator (see Section 6). Finally, we consider the set
of quasi-copulas, which is the MacNeille completion of the copulas in Section 7.
Many properties of copulas extend to quasi-copulas. Counter examples are given to
show that $the*$-product does not extend to quasi-copulas, and that the connection
between quasi-copulas and Markov operators does not extend to a suitable set of
positive operators.

2. COPULAS

Throughout the text, we denote by $I$ the interval $[0$ , 1 $]$ and let $I^{2}=I\cross I.$

Definition 1. A copula $C$ is a function $C:I^{2}arrow I$ with the following properties:

(a) $C(u, 0)=C(0, v)=0$ for all $u,$ $v\in I,$

(b) $C(u, 1)=u$ and $C(1, v)=v$ for all $u,$ $v\in I.$

(c) $C(u_{1}, v_{1})-C(u_{1}, v_{2})-C(u_{2}, v_{1})+C(u_{2}, v_{2})\geq 0$ for every $u_{1},$ $ui,$ $v_{1},$ $v_{2}\in I$ such
that $u_{1}\leq u_{2}$ and $v_{1}\leq v_{2}.$

Sklar (cf. Nelsen [7]) noted the following important connection between distri-
bution functions and copulas.

Theorem 2 (Sklar’s Theorem). Let $H$ : $[-\infty, \infty]^{2}arrow \mathbb{R}$ be a joint distribution
function with margins $F$ and $G$ $(that is, F(x)=H(x, +\infty)$ and $G(y)=H(+\infty, y)$

for $x,$ $y\in[-\infty,$ $\infty$ Then there exists a copula $C$ such that

$H(x, y)=C(F(x), G(x))$

for all $x,$ $y\in$ $[$-00, $\infty]$ . If $F$ and $G$ are continuous, then this copula is unique.
0therwise, it is only unique on Ran$(F)\cross Ran(G)$ . Conversely, if $C$ : $I^{2}arrow I$ is
a copula and $F:[-\infty, \infty]arrow I$ and $G:[-\infty, \infty]arrow I$ are distribution functions,
then $H(x, y)=C(F(x), G(x))$ defines a joint $distr2$bution junction with margins
$F$ and $G.$

Example 3. (1) $W$ , defined by

$W(u, v)= \max\{u+v-1, 0\}$

for all $u,$ $v\in I$ , is a copula.
(2) $M$ , defined by

$M(u, v)= \min\{u, v\}$

for all $u,$ $v\in I$ , is a copula, called the Fr\’echet-Hoeffding copula.
(3) For any copula $C$ , we have

$W(u, v)\leq C(u, v)\leq M(u, v)$

for all $u,$ $v\in I.$

Copulas have the following differentiability properties: For any copula $C,$

(1) $C$ is uniformly continuous, as for all $u_{1},$ $u_{2},$ $v_{1},$ $v_{2}\in I$ ;

$|C(u_{2}, v_{2})-C(u_{1}, v_{1})|\leq|u_{2}-u_{1}|+|v_{2}-v_{1}|.$

(2) for any $v\in I$ , the partial derivative $\partial C/\partial u$ exists for almost all $u\in I$ ;
(3) for any $u\in I$ , the partial derivative $\partial C/\partial v$ exists for almost all $v\in I$ ;
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(4) for such $u,$ $v\in I,$

$0\leq\partial C(u, v)/\partial v\leq 1$ and $0\leq\partial C(u, v)/\partial u\leq 1$ ;

(5) $\frac{\partial^{2}C(u,v)}{\partial u\partial v}$ and $\frac{\partial^{2}C(u,v)}{\partial v\theta u}$ exist almost everywhere.

Furthermore, Darsow et al. [3] noted that any copula $C$ may be approximated

in the uniform norm by a copula $B$ for which $\frac{\partial^{2}B}{\partial x\theta y}$ and $\frac{\partial^{2}B}{\theta y\partial x}$ are equal and bounded
almost everywhere. A more precise formulation is given in the following theorem.

Theorem 4. Let $C$ be a copula. For every $\epsilon>0$ there exists a copula $B$ such that

(a) $\Vert C-B\Vert_{\infty}$ $:= \sup\{|C(u, v)-B(u,v)| : (u, v)\in I^{2}\}<\epsilon$ , and

(b) $\frac{\partial^{2}B}{\partial x\theta y}$ and $\frac{\partial^{2}B}{\theta y\partial x}$ are equal and bounded almost everywhere.

Another approximation result of Darsow et al. [3] is given in the following
theorem.

Theorem 5. Let $C$ denote the set of all copulas. Then $C$ is a compact convex
subset of all continuous real-valued functions defined on $I^{2}$ , under the topology of
uniform convergence.

3. SOBOLEV SPACES AND COPULAS

An $n$-dimensional multi-index is an $n$-tuple $\alpha=(\alpha_{1}, \cdots, \alpha_{n})$ , where each
$\alpha_{i}\in \mathbb{N}$ . For multi-indices $\alpha$ and $\beta$ , define

$\alpha+(-)\beta=(\alpha_{1}+(-)\beta_{1}, \cdots , \alpha_{n}+(-)\beta_{n})$ and $| \alpha|=\sum_{i=1}^{n}\alpha_{n}.$

If $\alpha=(\alpha_{1}, \cdots, \alpha_{n})$ is a multi-index and $|\alpha|=k\in \mathbb{N}$ , then $\alpha$ is said to be of order
$k$ . Define:

$D^{\alpha}f:= \frac{\partial^{|\alpha|}f}{\partial x_{1}^{\alpha 1}\partial x_{2}^{\alpha 2}\ldots\partial x_{n^{n}}^{\alpha}}.$

If $\zeta)$ be an open subset of $\mathbb{R}^{n},$ $k\in \mathbb{N}$ , and $1\leq p\leq\infty$ , then

$W^{k,p}(\Omega)$ $:=\{u\in L^{p}(\Omega)$ : $D^{\alpha}u\in If(\Omega)$ for all $|\alpha|\leq k\}$

is called the Sobolev space of order $k$ . We note that $\Vert\cdot\Vert_{W^{k,p}(fl)}$ defined by

$\Vert u\Vert_{W^{k,p}(f1)}=\{\begin{array}{ll}(p, 1\leq p<\infty\sum_{|\alpha|\leq k}\Vert D^{\alpha}u\Vert_{L^{\infty}(fl)}, p=\infty,\end{array}$

is a norm on $W^{k,p}(\zeta l)$ arld $W^{k,p}(f2)$ is a Bariach space. We rernark that $W^{k,p}(\Omega)$

is separable for $1\leq p<\infty.$

For any $1\leq p\leq\infty$ , and for $k=0$ or $k=1$ , we have that

$\mathcal{C}\subset W^{k,p}(I^{2})$ .

For any $1\leq p<\infty$ , we have $C$ is a complete metric space for the metric induced
by $\Vert\cdot\Vert_{W^{1,p}(I)}.$

Let
$W_{0}^{1,2}(I^{2}):=\{f\in W_{0}^{1,2}(I^{2}):f\in C^{0}(I^{2}), f(O)=0\}.$
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Then

$\langle f, g\rangle=\int_{I^{2}}\nabla f.\nabla_{9}d\lambda$

defines scalar product on $W_{0}^{1,2}(I^{2})$ . Define on $C,$

$\Vert C\Vert=(l_{xI}|\nabla C|^{2}d\lambda)^{\frac{1}{2}}$

and on $C\cross C$

$d(A, B)=(l_{\cross I}|\nabla A-\nabla B|^{2}d\lambda)^{\frac{1}{2}}$

Siburg and Stoimenov [12] established geometric properties of copulas in terms
of the metric $d.$

Theorem 6. Let $A,$ $B\in C$ . Then,

(a) $\frac{1}{2}\leq\langle A,$ $B\rangle\leq 1$ ;
(b) $\langle A,$ $B\rangle=1$ iff $\Vert A\Vert=1=\Vert B\Vert$ and $A=B$;
(c) $d(A, B)\leq 1$ ;
(d) $d(A, B)=1$ iff $\Vert A\Vert=1=\Vert B\Vert$ and $\langle A,$ $B \rangle=\frac{1}{2}.$

4. A PRODUCT OF COPULAS

Darsow et al. in [3] introduced an important product for copulas.

Definition 7. Let $C_{1}$ and $C_{2}$ be copulas. We define the product $C_{1}*C_{2}$ of $C_{1}$ and
$C_{2}$ by

$(C_{1}*C_{2})(u, v)= \int_{0}^{1}\partial_{2}C_{1}(u, t)\cdot\partial_{1}C_{2}(t, v)dt,$

for $(u, v)\in I^{2}$ (where $\partial_{i}$ denotes the partial derivative with respect to coordinate
$i)$ .

We have the following results for $the*$-product on $C$ , i.e. the set of all copulas.

Theorem 8. (a) Let $C_{1}$ and $C_{2}$ be copulas. Then $C_{1}*C_{2}$ is a copula.
(b) $The*$ -product is not commutative.
(c) As a binarlt operation on $C_{f}the*$ -product operation is right and left distributive

over convex combinations.

Definition 9. A copula $C\in C$ is left invertible if there exists $A\in C$ such that

$A*C=M (M(u, v)= \min\{u, v\})$

The definition is similar for right invertible. Furthermore, $A\in C$ is invertible
if $A$ is both right and left invertible.

Siburg and Stoimenov [12] related invertible copulas, with respect to the $*-$

product, to the norm $\Vert\cdot\Vert$ introduced in Section 3.

Theorem 10. Let $C\in C$ . Then,

$(a) \frac{2}{||3}\leq\Vert C\Vert^{2}\leq 1_{f}(b)C\Vert^{2}=\frac{2}{3}iffC=P$ $(here P(u, v)=uv$

(c) $\Vert C\Vert^{2}\in(\frac{5}{6},1]$ if $C$ is left or right invertible;
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(d) $\Vert C\Vert^{2}=1$ iff $C$ is invertible.

Theorem 11. Let $C\in C$ . Then the following are equivalent.$\cdot$

(i) $\Vert C\Vert=1$ ;
(ii) $\partial_{1}C,$ &C $\in$ $\{0$ , 1 $\}$ $a.e.$ ;
(iii) $C$ is invertible.

5. NORMS FOR COPULAS

The norms described in this section were introduced by Darsow and Olsen [2].
By span(C) we mean the linear span of the copulas. Any element $A\in span(C)$

can be written in the form
$A=sB-tC$

where $s$ and $t$ are nonnegative and $B$ and $C$ are copulas.

5.1. Minkowski norm. Let $\mathcal{B}=co(-C\cup C)$ denotes the convex hull of the set
$-C\cup C$ . Note that span $(C)= \bigcup_{t\geq 0}t\mathcal{B}$ . For any $A\in span(C)$ define

$\Vert A\Vert_{M} = \inf\{t>0|A\in t\mathcal{B}\}$

$=$ $\inf\{\mathcal{S}+t|s,$ $t\geq 0$ and $A=\mathcal{S}B-tC$ for some $B,$ $C\in C\}.$

We note that span(C) is a Banach algebra under the norm $\Vert\cdot\Vert_{M}$ (and $the*$-product
given in Section 4).

5.2. Sobolev norm. Denote $W^{rn,p}(\zeta)$ ) to be the Sobolev space

{ $f|f\in L^{p}(f1)$ and $D^{\alpha}f\in L^{p}(\zeta])$ , for all $\alpha$ where $|\alpha|\leq m$ },

where $fl\subset \mathbb{R}^{d}$ , a multi-index $\alpha$ is a $d$-tuple of nonnegative integers, $|\alpha|$ denotes the
sum of the components of $\alpha$ , and $D^{\alpha}$ denotes a distributional partial derivative.

We note that

(a) $C\subset W^{m,p}(I^{2})$ ;
(b) $C$ is a complete metric space under the Sobolev norms $\Vert\cdot\Vert_{1,p}.$

(c) On span(C) each of the Sobolev norms is dominated by, but not equivalent to,
$\Vert\cdot\Vert_{M}.$

(d) On $C,$ $the*$-product (cf. Section 4) is jointly continuous with respect to $\Vert\cdot\Vert_{1,p}.$

5.3. Jordan norm. In Darsow et al. [3], it is noted that any copula $C$ induces a
unique doubly stochastic probability measure $\mu_{C}$ on $I^{2}$ via the assignment

$\mu_{C}([x_{1}, x_{2}]\cross[y_{1}, y_{2}])=C(x_{1}, y_{1})-C(x_{2}, y_{1})-C(x_{1}, y_{2})+C(x_{2}, y_{2})$

as the measure of a rectangle. Conversely, for any doubly stochastic measure
$\mu$ , there is a unique copula $C_{\mu}$ defined via $C_{\mu}(x, y)=\mu([0, x]\cross[0,$ $y$ Any
$C\in span(C)$ induces a finite signed measure on $I^{2}$ via the definition of $\mu_{C}$ above.
For arly finite signed measure $\mu$ there exists measurable sets $E^{+}$ and $E^{-}$ such that

$E^{+}\cap E^{-}=\emptyset$ , and $E^{+}\cup E^{-}=I^{2}$

and for all measurable sets $F,$

$\mu(E^{+}\cap F)\geq 0$ , and $\mu(E^{-}\cap F)\leq 0.$
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It follows that $\mu^{+}$ and $\mu^{-}$ defined by

$\mu^{+}(F)=\mu(E^{+}\cap F) , \mu^{-}(F)=-\mu(E^{-}\cap F)$

are measures. Furthermore, $\mu^{+}$ and $\mu^{-}$ are unique. The decomposition $\mu=$

$\mu^{+}-\mu^{-}$ of a finite signed measure as the difference of two measures is called the
Jordan decomposition. The set of finite signed measures is closed under real linear
combination and that

$\Vert\mu\Vert_{J}=\mu^{+}(I^{2})+\mu^{-}(I^{2})$

defines a norm on the set under which the set is a Banach space. For $A\in span(C)$

we define the Jordan norm:
$\Vert A\Vert_{J}=\Vert\mu_{A}\Vert_{J}.$

The Jordan norm dominates, but is not equivalent to, the uniform norm and is
dominated by, but is not equivalent to the Minkowski norm. We remark that
span(C) is not complete with respect to the Jordan norm.

6. 1-PRESERVING MARKOV OPERATORS

Consider an operator $T$ : $L^{1}(I)arrow L^{1}(I)$ . Here, $L^{1}(I)$ denotes the space of all
Lebesgue integrable functions on $I$ . Denote $L_{+}^{1}(I)$ to be the set of all positive
functions in $L^{I}(I)$ .

Definition 12. We call $T$ a 1-preserving Markov operator if $T$ is a Markov
operator on $L^{1}(I)$ ; i.e., $T$ is positive, and $\Vert Tf\Vert_{1}=\Vert f\Vert_{1}$ for all $f\in L_{+}^{1}(I)$ , with
the additional property: $T1=1$ , where $1(x)=1$ almost everywhere for all $x\in I.$

Darsow et al. [3] established that 1-preserving Markov operators are in one-to-
one correspondence with copulas.

Theorem 13. Let $C$ : $I^{2}arrow I$ be a copula. Then the operator $T_{C}$ defined on
$L^{1}(I)$ , by

(1) $(T_{C}f)(x) := \frac{d}{dx}\int_{0}^{1}\partial_{2}C(x, t)f(t)dt$

for all $f\in L^{1}(I)$ , is a $1-pre\mathcal{S}$erving Markov operator. Conversely, let $T:L^{1}(I)arrow$

$L^{1}(I)$ be $a$ 1-preserving Markov operator. Then the function $C_{T}$ defined on $I^{2}$ by

(2) $C_{T}(x, y) := \int_{0}^{x}(T1_{[0,y]})(s)ds,$

for $(x, y)\in I^{2}$ , is a copula. Moreover, the maps $C\mapsto T_{C}$ and $T\mapsto C_{T}$ are inverses

of each other.

Idempotent copulas (with respect to $the*$-product given in Section 4) are related
to conditional expectations. We require a result noted by Douglas [4] to describe
the relationship.

Theorem 14. Let $(\zeta 2, \Sigma, \mu)$ be a probability pace and $1\leq p<\infty$ . If $T:L^{p}(\mu)arrow$

$L^{p}(\mu)$ is a positive contractive projection with $T1=1$ , then there exists a unique
$\sigma$ -algebra $\mathcal{F}\subseteq\Sigma$ such that

$Tf=\mathbb{E}(f|\mathcal{F})$ for all $f\in I\nearrow(\mu)$ .
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Every conditional expectation has the property

$\Vert \mathbb{E}(f|\mathcal{F})\Vert=\Vert f\Vert$ for all $f\geq 0,$ $f\in L^{1}$

Thus, the result of Douglas shows that if $T$ : $L^{1}arrow L^{1}$ is a positive contractive
projection with $T1=1$ , then $T$ is also a 1-preserving Markov operator. Hence,
there is a one-to-one correspondence between the class of Markov operators on
$L^{1}(I)$ which hold the 1 function invariant and are projections, and the conditional
expectations on $L^{1}(I)$ ; that is, a 1-preserving Markov operator is a conditional
expectation if, and only if, it is a projection.

The following result concerning the relationship between idempotent copulas
and conditional expectations, as mentioned above, can be found in Darsow et al.
[3].

Theorem 15. Let $C$ : $I^{2}arrow I$ be a copula with the properties that $\frac{\partial^{2}C}{\partial x\theta y}$ and
$\frac{\partial^{2}C}{\theta y\partial x}$ are bounded and equal almost everywhere. Let $T_{C}$ : $L^{1}(I)arrow L^{1}(I)$ denote the
corresponding 1-preserving Markov operator. Then $T_{C}$ is a conditional ezpectation
if, and only if, $C$ is idempotent with respect to $the*$ -product $(that is, C*C=C)$ .

7. QUASI-COPULAS

The concept of quasi-copula was introduced by Alsina et al. [1] in order to
characterise operations on distribution functions that can or cannot be derived
from operations on random variables [7, p. 1].

Definition 16. A function $S$ : $I^{2}arrow I$ for which $S(t, 0)=S(O, t)=0$ and
$S(t, 1)=S(1, t)=t$ for all $t\in I$ is called a quasi-copula if

(1) $S$ is non-decreasing in each component, and
(2) $|S(u_{1}, v_{1})-S(u_{2}, v_{2})|\leq|u_{1}-u_{2}|+|v_{1}-v_{2}|$ for all $u_{1},$ $u_{2},$ $v_{1},$ $v_{2}\in I.$

Denote by $\mathcal{Q}$ the set of all quasi-copulas. By their respective definitions, we get
that $C\subseteq \mathcal{Q}$ . Genest et al. [5] showed that there exists a quasi-copula which is not
a copula, which implies that the inclusion $C\subset \mathcal{Q}$ is strict.

Example 17. $Q:I^{2}arrow I$ , defined by

$Q(x, y)=xy+g(y)\sin(2\pi x)$ ,

where

$g(y)=\{\begin{array}{ll}0, 0\leq y\leq 1/4(4y-1)/24, 1/4\leq y\leq 1/2(1-y)/12, 1/2\leq y\leq 1\end{array}$

is a quasi-copula which is not a copula.

Denote the space of continuous functions on $I^{2}$ by $C(I^{2})$ . It is known that
$(C(I^{2}), \leq)$ is a partially ordered set, where $\leq is$ defined by

$B_{1}\leq B_{2}\Leftrightarrow B_{1}(u, v)\leq B_{2}(u, v)$ for all $u,$ $v\in I.$

We refer to $\leq$ as the pointwise order. Nelsen and \’Ubeda Flores [8] showed that
$(\mathcal{Q}, \leq)$ is a complete lattice (i.e., for any $S\subseteq \mathcal{Q}$ , the least upperbound $\fbox{Error::0x0000}S$ of $S$ is
in $\mathcal{Q}$ and the greatest lower bound $\wedge S$ of $S$ is in $\mathcal{Q}$); and $(C, \leq)$ is not a lattice.
They also showed that $\mathcal{Q}$ is the Dedekind-MacNeille completion of $(C, \leq)$ . The
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following is a theorem by Nelsen [7, Theorem 8.5.] which gives a characterisation
of quasi-copulas in terms of copulas:

Theorem 18. Let $Q$ : $I^{2}arrow I$ . Then $Q$ is a quasi-copula if and only if there
$exi_{\mathcal{S}}ts\emptyset\neq S\subset C$ such that for all $(u, v)\in I^{2},$ $Q(u, v)= \sup\{C(u, v):C\in S\}.$

Open problem. There are several definitions of stochastic order given in Shaked
and Shanthikumar [11]. Is there an appropriate ordering from these stochastic
orderings for which $C$ is a lattice?

7.1. Extension. Many properties of copulas extend to quasi-copulas. We give a
few examples:

Theorem 19. The set of all quasi-copulas $\mathcal{Q}$ is a convex compact subset of $C(I^{2})$ .

Proof. The convexity follows by the fact that $\mathcal{Q}$ is closed under convex combina-
tion. Since $I^{2}$ is a compact set, it is sufficient to show that $\mathcal{Q}$ is equicontinuous and
closed. Equicontinuity follows from Definition 16 (2). The quasi-copula properties
are preserved by limits, hence for any uniform convergent sequence in $\mathcal{Q}$ , the limit
is again a quasi-copula, which implies that $\mathcal{Q}$ is closed. $\square$

Theorem 20. Let $A$ be a quasi-copula and let $\epsilon>0$ be given. Then there exists
a quasi-copula $B$ such that

$\Vert A-B\Vert_{\infty}<\epsilon,$

where $B$ has the property that $\frac{\partial^{2}B}{\partial x\partial y}$ and $\frac{\partial^{2}B}{\partial y\partial x}$ are equal and bounded almost every-
where.

Proof. The proof follows similarly from Hawke [6, Proposition 7.15], by replacing
the definition of $V_{A}$ associated with a copula $A$ by

$W_{A}([u_{1}, v_{1}]\cross[u_{2}, v_{2}])=A(u_{2}, v_{2})-A(u_{1}, v_{1})$ if $0\leq u_{1}\leq u_{2}$ and $0\leq v_{1}\leq v_{2}$

where $A$ is a quasi-copula. $\square$

The following quantity exists for any $A,$ $B\in \mathcal{Q}$

$\langle A, B\rangle:=\int_{I^{2}}\nabla A\cdot\nabla Bd\lambda.$

Theorem 21. $\rangle$ defines an inner product on $\mathcal{Q}.$

Proof. By the properties of the partial derivatives, $\rangle$ is a symmetric bilinear
form with $\langle A,$ $A\rangle\geq 0$ for all $A\in \mathcal{Q}$ . If $\langle A,$ $A\rangle=0$ , then $\nabla A=0$ almost
everywhere. The Lipschitz continuity of quasi-copulas asserts that quasi-copulas
are absolutely continuous in each argument, so that it can be recovered from any
of its partial derivatives by integration. Together with the fact that $A(O, 0)=0,$

we conclude that $A=0.$ $\square$

Consequently, the definition of the metric $d$ in Section 3 and the geometric result
of Siburg and Stoimenov extend from copulas to quasi-copulas. More precisely,
the geometric result becomes:

Theorem 22. Let $A,$ $B\in \mathcal{Q}$ . Then,
(a) $\frac{1}{2}\leq\langle A,$ $B)\leq 1$ ;
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(b) $d(A, B)\leq 1$ ;
$(c)d(A, B)=1$ iff $\Vert A\Vert=1=\Vert B\Vert$ and $\langle A,$ $B \rangle=\frac{1}{2}$ ;

(d) $\langle A,$ $B\rangle=1$ iff $\Vert A\Vert=1=\Vert B\Vert$ and $A=B.$

7.2. Counter examples and open problems. There are properties of copulas

that do not extend to quasi-copulas and we discuss some of them in this subsection.

Recall the copula $C_{T}$ that can be defined for any 1-preserving Markov operator
$T$ :

$C_{T}= \int_{0}^{x}(T1_{[0,y]})(s)ds$ , for all $(x, y)\in I^{2}$

Since $C_{T}$ is a copula, it is also a quasi-copula. If we replace the copula $C$ in the

definition of $T_{C}$ :

$(T_{C}f)(x)$ $:= \frac{d}{dx}\int_{0}^{1}$ & $C$ ( $x$ , $t$ ) $f(t)dt$

with a quasi-copula $Q$ , the resulting operator $T_{Q}$ is not necessarily a positive

operator, as shown in the following example.

Example 23. Consider the proper quasi-copula $Q$ in Example 17 by Genest et
al. [5]. Let $f$ be the function

$f(t)=\{\begin{array}{l}0, 0\leq t\leq 1/41, 1/4\leq t\leq 1/20, 1/2\leq t\leq 1.\end{array}$

Clearly, $0\leq f\in L_{1}(I)$ . As

$T_{Q}f(x) = \frac{d}{dx}\int_{0}^{1}\partial_{2}Q(x, t)f(t)dt$

$= \frac{d}{dx}\int_{4}^{\frac{1}{2}}[x+\frac{1}{6}\sin(2\pi x)]dt$

$= \frac{1}{2}\frac{d}{dx}[x+\frac{1}{6}\sin(2\pi x)]=\frac{1}{2}[1+\frac{\pi}{3}\cos(2\pi x)],$

$T_{Q}f$ is strictly negative when $\cos(2\pi x)$ is close to $-1$ . Hence, $T_{Q}$ is not a positive

operator, thus $T_{Q}$ cannot be a Markov operator.

Since $T_{Q}f$ is, in general, not necessarily positive, we have

$\Vert T_{Q}f\Vert_{1} = \int_{0}^{1}|\frac{d}{dx}\int_{0}^{1}\partial_{?}Q(x,t)f(t)dt|dx$

$\geq \int_{0}^{1}\frac{d}{dx}\int_{0}^{1}\partial_{2}Q(x, t)f(t)dtdx$

$= \int_{0}^{1}(\partial_{?}Q(1, t)-\Phi Q(O, t))f(t)dt=\int_{0}^{1}f(t)dt=\Vert f\Vert_{1}.$
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for all $f\in L^{1}(I)$ with $f\geq 0$ almost everywhere. However, $T_{Q}$ is a 1-preserving
map, as

$T_{Q}1 = \frac{d}{dx}\int_{0}^{1}\partial_{2}Q(x, t)1(t)dt$

$= \frac{d}{dx}\int_{0}^{1}\partial_{2}Q(x, t)dt=\frac{d}{dx}[Q(x, 1)-Q(x, 0)]=\frac{d}{dx}x=1$

for all $x\in I.$

Remark 24. The above arguments show that for any quasi-copula $Q$ , the operator
$T_{Q}$ is not a 1-preserving Markov operator. This provides an alternative verification
of the fact that $C$ is strictly contained in $\mathcal{Q}$ , as the set of all operators $T_{Q}$ contains
the class of 1-preserving Markov operators (which is in one to one correspondence
with $C$).

Open Problem. Which class of operators is isometrically isomorphic to $\mathcal{Q}$?
Provided that such a class of operators can be found, is it possible to define an
ordering on the class in such a way that the isometric isomorphism is also an order
isomorphism if $\mathcal{Q}$ is endowed with an appropriate ordering from the stochastic
orderings given in Shaked and Shanthikumar [11]?

Any quasi-copula is non-decreasing in each component (by definition), which
implies that the partial derivative of a quasi-copula exist almost everywhere. Thus,
the quantity

$(P*Q)(u, v)= \int_{0}^{1}\partial_{2}P(u, t)\partial_{1}Q(t, v)dt$

exists for all $P,$ $Q\in \mathcal{Q}$ . However, the product $P*Q$ is not necessarily a quasi-
copula, as shown in the next example.

Example 25. $The*$-product (as given in Section 4) is not closed in $\mathcal{Q}.$

Proof. Consider the function $F$ : $I^{2}arrow \mathbb{R}$ defined for all $u,$ $v\in I$ by:

$F(u, v)=\{\begin{array}{l}\min\{u, v, \frac{1}{3}, u+v-\frac{2}{3}\}, \frac{2}{3}\leq u+v\leq\frac{4}{3};\max\{u+v-1, 0\}, otherwise.\end{array}$

We have

$\partial_{1}F(u, v)=\{\begin{array}{ll}0, u+v\leq\frac{2}{3};0011 \frac{\frac{2}{\S}}{113}\leq u+v\leq 1andu\geq\frac{}{\frac{}{}\frac{\frac{2}{\S}}{}\ddagger,3f}\leq u+v\leq andu\geq\leq u+v\leq\frac{4}{\frac{}{}\S,3}andu\leq\leq u+v\leq 1andu\leq 1, u+v\geq\frac{4}{3};\end{array}$

and

$\partial_{2}F(u, v)=\{\begin{array}{ll}0, u+v\leq\frac{2}{3};0011 \frac{}{113}\leq u+v\leq 1andv\geq\frac{2}{\S}\leq u+v\leq 1andv\leq\leq u+v\leq\frac{}{3}andv\geq\leq u+v\leq\frac{4}{2}andv\leq\frac{\frac{}{3}\frac{2}{\S}}{\frac{}{}\ddagger,3}1, u+v\geq\frac{4}{3}.\end{array}$
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In particular, we have

(3) $\partial_{1}F(t, \frac{1}{2})=\{0011 t\in(\frac{\ddagger}{},).;t\in[0,\frac{1}{\frac{q}{},\frac{\S}{6}})t\in(\frac{1}{},).,;t\in(\frac{\S}{6},1], =\partial_{2}F(\frac{1}{2}, t)$ ;

and

(4) $\partial_{q}F(t, \frac{3}{4})=\{\begin{array}{l}1, t\in[0, \frac{1}{3}) ;01, t\in(,\frac{7}{12,1}).;t\in(\frac{\frac{1}{*1}}{2},]\end{array}$

Thus, (3) and (4) give us

$(F*F)(\begin{array}{l}11\overline{2}’\overline{2}\end{array})$ $=$ $\int_{0}^{1}$ &F $( \frac{1}{2}, t)\partial_{1}F(t, \frac{1}{2})dt$

$= \int_{6}^{\frac{1}{2}}\partial_{1}F(t, \frac{1}{2})dt+\int_{6}^{1}\partial_{1}F(t, \frac{1}{2})dt=\frac{1}{2}$ ;

and

$(F*F) (\begin{array}{l}13\overline{2}’\overline{4}\end{array}) = \int_{0}^{1}\partial_{2}F(\frac{1}{2}, t)\partial_{1}F(t, \frac{3}{4})dt$

$= \int_{6}^{\frac{1}{2}}\partial_{1}F(t, \frac{3}{4})dt+\int_{6}^{1}\partial_{1}F(t, \frac{3}{4})dt$

$= \int_{6}^{\frac{1}{3}}dt+\int_{6}^{1}dt=\frac{1}{3}.$

We have $(F*F)( \frac{1}{2}, \frac{1}{2})>(F*F)(\frac{1}{2}, \frac{3}{4})$ , which shows that $F*F$ is not a quasi-
copula. $\square$

Open Problem. Can we define a product which is closed on $\mathcal{Q}$ and define a
norm on span(Q) in such a way that span(Q) is a Banach algebra?
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