B RAT IR SC AT R ZE 6k
%1906 % 2014 4F 48-58 48

Generalized Split Feasibility Problems
and Nonlinear Analysis

BISHBBAZEHRBERERE Y 4 —, BEENFILKRZSABER

H#&#5 (Wataru Takahashi)

Keio Research and Education Center for Natural Sciences, Keio University, Japan and
Department of Applied Mathematics, National Sun Yat-sen University, Taiwan

E-mail address: wataru@a00.itscom.net

Abstract. In this article, motivated by the idea of the split feasibility problem and results for
solving the problem, we consider generalized split feasibility problems. Then, using nonlinear
analysis, we establish weak and strong convergence theorems which are related to the problems.
As applications, we get well-known and new weak and strong convergence theorems which are
connected with fixed point problem, split feasibility problem and equilibrium problem.

1 Introduction

Let H be a real Hilbert space and let C be a non-empty, closed and convex subset of H. A
mapping U : C — H is called inverse strongly monotone if there exists a > 0 such that

(z -y, Uz —Uy) > a||Uzx - Uy|?, Vz,yeC.

Such a mapping U is called a-inverse strongly monotone. Let H; and Hs be two real Hilbert
spaces. Let D and Q be non-empty, closed and convex subsets of H; and Hj, respectively.
Let A : H; — H, be a bounded linear operator. Then the split feasibility peoblem (6] is to find
z € H; such that z € DN A~1Q. Recently, Byrne, Censor, Gibali and Reich [5] considered
the following problem: Given set-valued mappings A; : H; — 2f1 1<i<m,and B;: Hy —
2H2 1 < j < n, respectively, and bounded linear operators T; : H; — Ha, 1 < j < n, the
split common null point problem [5] is to find a point 2z € H; such that

z € (N A710) N (N7, 75 1(B;10)),
where A;'0 and B 10 are null point sets of 4; and Bj;, respectively. Defining U = A*(I-FPg)A
in the split feasibility peoblem, we have that U : H; — H; is an inverse strongly monotone

operator [2], where A* is the adjoint operator of A and Py is the metric projection of Hz onto
Q. Furthermore, if D N A~1Q is non-empty, then z € DN A~1Q is equivalent to

2= Pp(I — MA*(I — Pg)A)z, (1.1)

where A > 0 and Pp is the metric projection of H; onto D. Using such results regarding
nonlinear operators and fixed points, many authors have studied the split feasibility and



generalized split feasibility problems including the split common null point problem; see,
for instance, [5, 7, 17, 33]. In the study, the authors used established results for solving the
problems. In particular, established convergence theorems have been used for finding solutions
of the problems. We also know many existence and convergence theorems for inverse strongly
monotone mappings in Hilbert spaces; see, for instance, [9, 12, 16, 18, 23, 24, 28|.

In this article, motivated by the idea of the split feasibility problem and results for solving
the problem, we consider generalized split feasibility problems. Then, using nonlinear analysis,
we obtain weak and strong convergence theorems which are related to the problems. We first
obtain some fundamental properties for inverse strongly monotone mappings and resolvents
of maximal monotone operators in Hilbert spaces. For example, we extend the result of (1.1)
from metric projections to nonexpansive mappings. Then using these properties, we establish
two weak convergence theorems and two strong convergence theorems for finding solutions of
the generalized split feasibility peoblems. The results are generalizations of weak and strong
convergence theorems which have already been obtained. As applications, we get well-known
and new weak and strong convergence theorems which are connected with fixed point problem,
the split feasibility problem and an equilibrium problem.

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of real
numbers. Let H be a Hilbert space with the inner product (-, -) and the norm ||-|. When
{zn} is a sequence in H, we denote the strong convergence of {r,} to z € H by z,, — x
and the weak convergence by z, — x. From [27] we know the following basic equality. For
z,y € H and XA € R we have that

1Az + (1 = Xgl? = Alz]l* + (1 = Mgl = A1 = Wz~ y))*. (2.1)
We also know that for z,y,u,v € H
2(@ —yu—v) =z —vl” +|ly — u|® ~ Iz — ul* — ly - v||*. (2.2)
A Hilbert space satisfies Opial’s condition, that is,
linn_li.réf lzn — | < linnli£f |zn — vl

if z, — v and u # v; see [19]. Let C be a non-empty, closed and convex subset of H and let
T: C — H be a mapping. We denote by F(T') be the set of fixed points of T. A mapping
T : C — H is called nonezpansive if |Tx — Ty|| < ||z — y|| for all z,y € C. A mapping
T :C — H is called firmly nonezpansive if |Tz — Ty||?> < (Tx — Ty,z —vy) for all z,y € C. If
a mapping 7' is firmly nonexpansive, then it is nonexpansive. If T': C — H is nonexpansive,
then F(T) is closed and convex; see [27]. For a non-empty, closed and convex subset C of H,
the nearest point projection of H onto C is denoted by Pg, that is, ||z — Poz| < ||z — y|| for
all z € H and y € C. Such a mapping P¢ is also called the metric projection of H onto C.
We know that the metric projection P is firmly nonexpansive, i.e.,

|Pox — Poy|* < (Poz — Pey,z — y)

for all z,y € H. Furthermore, (x — Pox,y — Pcx) < 0 holds for all z € H and y € C; see,
for instance, [25]. Let B be a set-valued mapping of H into 2f. The effective domain of B
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is denoted by D(B), that is, D(B) = {z € H : Bz # 0}. A set-valued mapping B is said
to be monotone on H if (x — y,u —v) > 0 for all z,y € D(B), u € Bz, and v € By. A
monotone mapping B on H is said to be mazimal if its graph is not properly contained in
the graph of any other monotone operator on H. For a maximal monotone operator B on
H and r > 0, we may define a single-valued operator J, = (I +rB)~': H — D(B), which
is called the resolvent of B for r > 0. Let B be a maximal monotone operator on H and
let B~'0 = {z € H : 0 € Bz}. It is known that the resolvent J; is firmly nonexpansive
and B710 = F(J,) for all r > 0. The following lemma is crucial in order to prove the main
theorems.

Lemma 2.1 ([24]). Let H be a Hilbert space and let B be a mazimal monotone operator on
H. Forr >0 and x € H, define the resolvent J.x. Then the following holds:

s—t

(Joz — iz, Joz — ) > || Jsz — Je||?

s
for all s,t >0 and x € H.

From Lemma 2.1, we have that
Tz — Jez|| < (s —t] /s) |l — Joz| (2.3)

for all 5,¢ > 0 and = € H; see also [10, 25]. The following lemmas are also used to prove the
main theorems.

Lemma 2.2 ([22]). Let H be a real Hilbert space, let {an} be a sequence of real numbers such
that 0 < a < ap, < b< 1 for alln € N and let {v,} and {w,} be sequences in H such that
limsup,,_, ||vn]] < ¢, limsup,_,o ||wn|l < ¢ and limsup,,_,, |lanvn + (1 — an)ws| = c for
some c. Then lim,—, [|Un — wp] = 0.

Lemma 2.3 ([29]). Let H be a Hilbert space and let E be a non-empty, closed and convex
subset of H. Let {z,} be a sequence in H. If ||tn41 — z|| < ||l2n — 7| foralin e Nandz € E,
then { Pgz,} converges strongly to some z € E, where Pg is the metric projection on H onto
E.

Using Opial’s theorem [19], we have the following lemma; see, for instance, [27].

Lemma 2.4. Let H be a Hilbert space and let {z,} be a sequence in H such that there exists
a non-empty subset E C H satisfying (i) and (i):

(i) For every z* € E, limp_,0 ||Tn — =*|| exists:
(i) if a subsequence {zn;} C {xn} converges weakly to z*, then z* € E.
Then there exists g € E such that x, — xg.
We also know the following lemmas:

Lemma 2.5 ([3], [32]). Let {s.} be a sequence of nonnegative real numbers, let {c,} be a
sequence of [0,1] with Y o | an = 00, let {Bn} be a sequence of nonnegative real numbers with
Yoo 1 Bn <00, and let {yn} be a sequence of real numbers with limsup,,_, ., ¥» < 0. Suppose

that
Sn+1 < (1 - an)sn + anyn + ﬁn

foralln=1,2,.... Thenlim, o s, =0.
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Lemma 2.6 ([14]). Let {T'n} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {T'n,} of {U',} which satisfies T'n, < T'n 41 for all
t € N. Define the sequence {T(n)}n>n, of integers as follows:

7(n) = max{k <n: Ty < Tx41},

where ng € N such that {k < ng : Ty < Tx41} # 0. Then, the floowing hold:

(i) T(no) <7(no+1) <... and 7(n) — oo;
(ZZ) FT(TL) S Pr(n)+1 and Fn S F‘r(n)+1, Vn 2 nO‘

3 Weak Convergence Theorems

Let H be a Hilbert space and let S be a firmly nonexpansive mapping of H into itself with
F(S) # 0. Then we have that
(x— Sz,Sz—y) >0 (3.1)

for all z € H and y € F(S). In fact, we have that for all z € H and y € F(S)

(z—Sz,Sz—y)=(z—y+y— Sz,5z —y)
= (¢ —-y,52 - y) + (y - Sz,5z —y)
> ||Sz — yl* ~ ||Sz - y|?
=0.

The following lemmas which were proved by Takahashi, Xu and Yao [30] are crucial for proving
our main theorems.

Lemma 3.1 ([30]). Let H, and Hy be Hilbert spaces. Let A : Hy — Hy be a bounded linear
operator such that A # 0. Let T : Hy — H, be a nonezpansive mapping. Then a mapping
A*(I-T)A: H, — H, is m-inverse strongly monotone.

Lemma 3.2 ([30]). Let H1 and Hy be Hilbert spaces. Let B : Hy — 2H1 be a mazimal
monotone mapping and let Jy = (I+AB)~! be the resolvent of B for A > 0. Let T : Hy — Ho
be a nonezpansive mapping and let A : Hi — Hy be a bounded linear operator. Suppose that
B 10NATIF(T) # 0. Let A\,r > 0 and z € Hy. Then the following are equivalent:

(i) 2= J\(I —rA*(I - T)A)z;
(i) 0 € A*(I — T)Az + Bz;
(i) z € B~10N A71F(T).
Now we can prove a weak convergence theorem which is related to the split feasibility

problem and generalizes Reich’s theorem [20] in a Hilbert space.

Theorem 3.3 ([30]). Let Hy and Hy be Hilbert spaces. Let B : Hy — 2H1 be a mazimal
monotone mapping and let Jy = (I+AB)™! be the resolvent of B for A\ > 0. Let T : Hy — Hy
be a nonexpansive mapping. Let A : Hy — Hj be a bounded linear operator. Suppose that
B~Y0NA7YF(T) # 0. For any x; = x € Hy, define

Tnt1 = BnZn + (1 = Bn) I, (I — M A*(I — T)A)zp, Vn €N,
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where {B,} C (0,1) and {\n} C (0,00) satisfy the following:
Z,@n(l—,@n)=oo, 0<a§)\n$——1*— and Z|)\n—)\n+1|<oo.
= lAA]| =

Then z, — zg € B"*0N A~ F(T), where zy = limp_.o0 Pp-10na-1 F(T)Tn-

Let H be a Hilbert space and let C be a non-empty subset of H. A mapping T: C — H is
called generalized hybrid [13] if there exist o, 3 € R such that

a|Tz — Tyl + (1 - e)llc — Tyll? < BITz |2 + (1 - Blle —yl%, VeyeC.  (3:2)

We prove a weak convergence theorem which is governed generalized hybrid mappings.

Theorem 3.4 ([30]). Let H; and Hp be real Hilbert spaces and let C be a non-empty, closed
and conver subset of Hy. Let B : H; — 201 be a mazimal monotone mapping such that the
domain of B is included in C and let Jy = (I + AB)™! be the resolvent of B for A > 0. Let
S :C — C be a generalized hybrid mapping and let T : Hy — Hy be a nonezpansive mapping.
Let A: H; — H, be a bounded linear operator. Suppose that F(S)NB~'0N A~1F(T) # 0.
For any x1 = x € C, define

Tnt1 = BnZn + (1 = Bn)S(Ir. (I — A\ A*(I —T)A)zs), €N,

where {B,} and {\,} satisfy the following:

1

0<c<Pp<d<land0<a<A, <b< 0.
" | AA*|

Then the sequence {z,} converges weakly to a point zo € F(S) N B~0N A~YF(T), where
20 = limy .00 Pr(s)nB-10na-1F(T)(%n)-

4 Strong Convergence Theorems

In this section, we first prove a strong convergence theorem which generalizes Wittmann’s
strong convergence theorem [31] in a Hilbert space.

Theorem 4.1 ([1]). Let Hy and Hy be Hilbert spaces. Let B : Hy — 211 pe o mazimal
monotone mapping and let Jy = (I+AB)~! be the resolvent of B for A > 0. LetT : H, — H>
be a nonezpansive mapping. Let A : Hy — Hy be a bounded linear operator. Suppose that
B 10NA-YF(T) #0. Let {un} be a sequence in Hy such that u, — u. Let z1 =z € Hy and
let {xn} C Hi be a sequence generated by

Tp+l = Qpln + (1 - an)JA,. (I — A A* (I - T)A):En
for all n € N, where {\,} C (0,00) and {an} C (0,1) satisfy

1 oo
<A < — -
0<a< A< ”A*A”’ r;l’\n /\n+1|<0°,
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(o o] o0
lim o, =0, Zan =00, and Z |apt+1 — @y < 0.

n—00
n=1 n=1

Then {z,} converges strongly to 20 € B~10N A~1F(T), where zo = Ppg-10n4-1 p(T)U-
Next, we prove another strong convergence theorem.

Theorem 4.2 ([1]). Let H; and Hy be Hilbert spaces. Let B : Hy — 21 be a mazimal
monotone mapping and let Jy = (I+AB)~! be the resolvent of B for A > 0. Let T : Hy — Hy
be a nonerpansive mapping. Let A : Hi — H, be a bounded linear operator. Suppose that
B 10N A~F(T) # 0. Let {u,} be a sequence in Hy such that u, — u. Let t, =z € H; and
let {z,} C Hy be a sequence generated by

Tn+1 = ﬂnxn + (1 - /Bn)(anun + (1 - a‘n)‘]/\n (I - )‘nA*(I - T)A):L‘n)

for alln € N, where {\,} C (0,00), {8} C (0,1) and {a,} C (0,1) satisfy

O<a< A\, < 0<e<B,<d<1,

1
= [lAxA)

o0
lim a, =0 and E ay, = 0.
n—oo 1
n=

Then {zn} converges strongly to zo € B~'0N A~ F(T), where 20 = Pg-10na-1p(T)U-

5 Applications

Let H be a Hilbert space and let f be a proper, lower semicontinuous and convex function
of H into (—oo,00]. Then the subdifferential 8f of f is defined as follows:

Of(x) ={2 € H: f(z) +(z,y —=) < f(y), Yy€ H}

for all z € H. By Rockafellar [21], it is shown that Of is maximal monotone. Let C be a
non-empty, closed and convex subset of H and let ic be the indicator function of C, i.e.,

io(z) = 0, ifxeC,
7 Vo, ifzgcC.

Then ic : H — (—00,00] is a proper, lower semicontinuous and convex function on H and
hence 0i¢ is a maximal monotone operator. Thus we can define the resolvent Jy of 8ic for

A > 0 as follows:
Iz =+ M) e, VeeH, A>0.

On the other hand, for any u € C, we also define the normal cone Ng(u) of C' at u as follows:

No(u)={z€ H:{(z2,y—u) <0, VyeC}.
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Then we have that for any z € C

dic(z) = {z € H :ic(z) + (2,y — x) <ic(y), Yy € H}
={z€H:{(z,y—z) <0, VyeC}
= N¢(z).

Thus we have that

u=Jyz & ([ +MNic) te=u ez €u+ Mic(u)
o zreu+AINc(u) &z —u € ANc(u)
s{z—uy-u <0, VWwel
@Pc(:l:)=’u.

Putting B = dic in Theorems 3.3 and 3.4, we have J), = P¢ for any n € N. Using this fact,
we have the following theorem of Reich [20] from Theorem 3.3; see also Takahashi [26].

Theorem 5.1 ([20]). Let C be a non-empty, closed and convex subset of a Hilbert space H
and let U : C — C be a nonezpansive mapping such that F(U) # 0. For any x; =z € C,
define

Tnt1 = ﬂnwn + (1 - ,Bn)ana VneN,

where {8} C (0,1) satisfies
Zﬂn(l — PBn) = 0.
n=1

Then z, — 29 € F(U), where zg = limy .00 Pr(v)Zn-

Proof. Set Hy = Hy = H, B = 8ic, T = UP¢ and A = I in Theorem 3.3. Then we have that
F(T) = F(U) and J = P¢ for all A > 0. Furthermore, putting A, = 1 for all n € N, we have
that forz; =re€Candn €N

Tn41 = BnZn + (1 — Bn)Uzn
= Ppzn + (1 = Bp)PcUPcz,
= Bnzn + (1 — Bn)PcTz,
= Bnn + (1 = Bn)Pc(@n — (I = T)zn)
= Bpzn+ (1 —=Bp)Pc(I-1-I"(I - T))zy.
Thus we have the desired result from Theorem 3.3. a
Using Theorem 4.1, we also have Wittmann’s strong convergence theorem [31].

Theorem 5.2 ([31]). Let C be a nonempty, closed and conver subset of a Hilbert space H.
Let U be a nonezpansive mapping of C into itself such that F(U) # 0. Letu e C, z1 =z €C
and let {z,} be a sequence in C generated by

Tnt1 = anu+ (1 — an)Uzy
for all n € N, where {a,} C (0,1) satisfies

o o) oo
lim a, =0, E a, =00 and E |an — ant1| < 0o.
n—o00
n=1 n=1



Then {z} converges strongly to a point zy of F(U), where zg = Pr)u.

Let C be a non-empty, closed and convex subset of a real Hilbert space H, let f : CxC — R
be a bifunction. Then we consider the following equilibrium problem: Find z € C such that

f(z,y) 20, VYyeC. (5.1)
The set of such z € C is denoted by EP(f), i.e.,
EP(f)={z€C: f(2,y) 20, Wy e C}.

For solving the equilibrium problem, let us assume that the bifunction f satisfies the following
conditions:

(A1) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e., f(z,y) + f(y,z) <0 for all z,y € C;
(A3) for all z,y,2z € C,
limsup f(tz + (1 - t)z,y) < f(z,y);
£10

(A4) f(x,-) is convex and lower semicontinuous for all z € C.
We know the following lemmas; see, for instance, [4] and [8].

Lemma 5.3 ([4]). Let C be a nonempty closed convex subset of H, let f be a bifunction from
C x C to R satisfying (A1)-(A4) and let r > 0 and z € H. Then, there ezists z € C' such that

1
flay)+ (y—22-2)20, Vel
Lemma 5.4 ([8]). For r > 0 and x € H, define the resolvent T, : H — C of f forr > 0 as

follows:
1
Trccz{zeC:f(z,y)+;(y—-z,z—a:>20, VyeC’}, Vx € H.

Then, the following hold:

(i) T, is single-valued;
(i) T, is firmly nonexpansive, i.e., for all z,y € H,

”T,-:E - Try“z < (Trx - Try,z —y);

(iii) F(T;) = EP(f);
(iv) EP(f) is closed and convez.

Takahashi, Takahashi and Toyoda [24] showed the following.

Theorem 5.5 ([24]). Let C' be a no-nempty, closed and convex subset of a Hibert space H
and let f : C x C — R be a bifunction satisfying the conditions (A1)-(A4). Define As as
follows:

{z€eH: f(z,y) > (y—=,2), Vye C}, ifzeC,
Af(z) = .
0, ifz & C.

Then EP(f) = A;I(O) and Ay is mazimal monotone which the domain of Ay is included in

C. Furthermore,
To(x) = (I +r4f)"Y(z), ¥r>0.

5153
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We obtain the following theorem from Theorem 3.3.

Theorem 5.6. Let H, and Ho be Hilbert spaces. Let C be a non-empty, closed and convex
subset of H,. Let f : CxC — R satisfy the conditions (A1)-(A4) and let Ty, be the resolvent of
Ay for Ap > 0 in Lemma 5.5. Let T : Hy — Hy be a nonezpansive mapping. Let A : Hy — Hy
be a bounded linear operator. Suppose that EP(f) N A™1F(T) # 0. For z, = x € H, define

Tns1 = PnZn + (1 — Bp)Ta,(I — A\nA*(I - T)A)z,), Vn €N,
where {Bn} C (0,1) and {\} C (0,00) satisfy the following:

oo 1 )
Zﬂn(l—ﬁn)=oo, O<G,S/\n$m and le\n—/\n+1l<00.
n=1 n=1

Then x, — 29 € EP(f) N A~YF(T), where 29 = limp,_,oo Pgp(f)na-1F(T)Tn-

Proof. Define Ay for the bifunction f and set B = Ay in Theorem 3.3. Thus we have the
desired result from Theorem 3.3. O

As in the proof of Theorem 5.6, we obtain the following result from Theorem 3.4.

Theorem 5.7. Let H, and H, be Hilbert spaces. Let C be a non-empty, closed and convex
subset of a real Hilbert space Hy. Let f : C x C — R satisfy the conditions (A1)-(A4) and let
Ty, be the resolvent of Ay for A, > 0 in Lemma 5.5. Let S : C — C be a generalized hybrid
mapping and let T : Hy — Hs be a nonezpansive mapping. Let A : Hy — Ha be a bounded
linear operator. Suppose that F(S)N EP(f)N A~1F(T) #0. For z; =z € C, define

ZTnt1 = BnZn + (1 - ,Bn)ST)\n I- /\nA*(I - T)A):L‘n, Yn €N,
where {B,} and {\,} satisfy

1
0<c<Prn<d<l and 0<a<I<b< m
Then the sequence {,} converges weakly to a point zo € F(S) N EP(f) N A~'F(T), where
2o = limy 00 Pr(s)nEP(f)NA-1F(T)Zn-
Using Theorem 4.1, we obtain the following strong convergence theorem.

Theorem 5.8. Let H; and Hy be Hilbert spaces. Let C be a non-empty, closed and conver
subset of Hy. Let f : CxC — R satisfy the conditions (A1)-(A4) and let Ty, be the resolvent of
Ay for A, > 0 in Lemma 5.5. Let T : Hy — Hj be a nonexpansive mapping. Let A : Hy — Hy
be a bounded linear operator. Suppose that EP(f)NA™1F(T) #0. Letu € Hy, z; =z € Hy
and let {x,} C H; be a sequence generated by

Tnt1 = anu+ (1 —an)Th, (I — MA*(I —T)A)z,
for all n € N, where {\,} C (0,00) and {an} C (0,1) satisfy

1 o0
0<as <5 An — Ant1| < 00,
STEAD 2P

o o) [o o]
lim a, =0, E an, =00, and E |@n4+1 — an| < 00.
n—-—+00
n=1 n=1

Then {x,} converges strongly to a point zo of EP(f)NA'F(T), where 20 = Pgp(f)na-1F(T)U-



Proof. Define Ay for the bifunction f and set B = Ay and set u, = u for all n € N in Theorem
4.1. Thus we have the desired result from Theorem 4.1. O

As in the proof of Theorem 5.8, we obtain the following result from Theorem 4.2.

Theorem 5.9. Let H, and Hy be Hilbert spaces. Let C be a non-empty, closed and convex
subset of a real Hilbert space Hy. Let f : C x C — R satisfy the conditions (A1)-(A4) and
let T, be the resolvent of Ay for A, > 0 in Lemma 5.5. Let S : C — C be a generalized
hybrid mapping and let T : Hy — Hy be a nonexpansive mapping. Let A : Hy — Hy be a
bounded linear operator. Suppose that EP(f)N A~YF(T) # 0. Letu € Hy, 1 =z € Hy and
let {z,} C Hy be a sequence generated by

Tnt1 = Bntn + (1 = Bn)(anu + (1 — an) T, (I = A A*(I = T)A)zn)

for alln € N, where {\,} C (0,00), {8} C (0,1) and {an} C (0,1) satisfy

O0<a< A\ <

1
= A% AlL? O<CSﬁnSd<17
| A* Al

[0 ]
lim a, =0 and E Qay = 00.
n—o0 1

n=

Then {x,} converges strongly to a point zo ofEP(f)ﬂA“lF(T), where 20 = Pgp(f)na-1 F(T)U-

References

[1] S. Akashi, Y. Kimura and W. Takahashi, Strong iterative methods for generalized split
feasibility problems in Hilbert spaces, to appear.

[2] S. M. Alsulami and W. Takahashi, The split common null point problem for mazimal
monotone mappings in Hilbert spaces and applications, J. Nonlinear Convex Anal., to
appear.

[3] K. Aoyama, Y. Kimura, W. Takahashi, Wataru and M. Toyoda, Approzimation of com-
mon fized points of a countable family of nonexpansive mappings in a Banach space,
Nonlinear Anal. 67 (2007), 2350-2360.

[4] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium
problems, Math. Student 63 (1994), 123-145. ‘

[5] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J.
Nonlinear Convex Anal. 13 (2012), 759-775.

[6] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a
product space, Numer. Algorithms 8 (1994), 221-239.

[7] Y. Censor and A. Segal, The split common fized-point problem for directed operators, J.
Convex Anal. 16 (2009), 587-600.

[8] P. L. Combettes and A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Non-
linear Convex Anal. 6 (2005), 117-136.

[9] H. Cui and F. Wang, Strong convergence of the gradient-projection algorithm in Hilbert
spaces, J. Nonlinear Convex Anal. 14 (2013), 245-251.

[10] K. Eshita and W. Takahashi, Approzimating zero points of accretive operators in general
Banach spaces, JP J. Fixed Point Theory Appl. 2 (2007), 105-116.

[11] B. Halpern, Fized points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-
961.

57



58

[12] H. liduka and W. Takahashi, Weak convergence theorem by Cesdro means for nonez-
pansive mappings and inverse-strongly monotone mappings, J. Nonlinear Convex Anal. 7
(2006), 105-113.

[13] P. Kocourek, W. Takahashi and J.-C. Yao, Fized point theorems and weak convergence
theorems for genelalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010),
2497-2511.

[14] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and
nonstrictly conver minimization, Set-Valed Appl. 16, (2008), 899-912.

[15] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 508-510.

[16) A.Moudafi, Weak convergence theorems for nonezpansive mappings and equilibrium prob-
lems, J. Nonlinear Convex Anal. 9 (2008), 37-143.

(17] A. Moudafi, The split common fized point problem for demicontractive mappings, Inverse
Problems 26 (2010), 055007, 6 pp.

[18] N. Nadezhkina and W. Takahashi, Strong convergence theorem by hybrid method for non-
expansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16
(2006), 1230-1241.

[19] Z. Opial, Weak covergence of the sequence of successive approzimations for nonezpansive
mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.

[20] S. Reich, Weak covergence theorems for nonezpansive mappings in Banach spaces, J.
Math. Anal. Appl. 67 (1979), 274-276.

[21] R. T. Rockafellar, On the mazimal monotonicity of subdifferential mappings, Pacific J.
Math. 33 (1970), 209-216.

[22] J. Schu, Weak and strong convergence to fizxed points of asymptotically nonexpansive map-
pings, Bull. Austral. Math. Soc. 43 (1991), 153-159.

[23] S. Takahashi and W. Takahashi, Viscosity approzimation methods for equilibrium prob-
lems and fized point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), 506-515.

[24] S. Takahashi, W. Takahashi and M. Toyoda, Strong convergence theorems for mazimal
monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl.
147 (2010), 27-41.

[25] W. Takahashi, Nonlinear Functional Analysis, Fized Point Theory and its Applications,
Yokohama Publishers, Yokohama 2000.

[26] W. Takahashi, Convez Analysis and Approzimation of Fized Points (Japanese), Yoko-
hama Publishers, Yokohama, 2000.

[27] W. Takahashi, Introduction to Nonlinear and Convezx Analysis, Yokohama Publishers,
Yokohama, 2009.

[28] W. Takahashi, Strong convergence theorems for mazimal and inverse-strongly monotone
mappings in Hilbert spaces and applications, J. Optim. Theory Appl. 157 (2013), 781-802.

[29] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings
and monotone mappings, J. Optim. Theory Appl. 118 (2003), 417-428.

[30] W. Takahashi, H. K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility
problems in Hilbert spaces, to appear.

[31] R. Wittmann, Approzimation of fixed points of nonexpansive mappings, Arch. Math. 58
(1992), 486-491.

[32] H. K. Xu, Another control condition in an ilerative method for nonexpansive mappings,
Bull. Austral. Math. Soc. 65 (2002), 109-113.

[33] H. K. Xu, A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility
problem, Inverse Problems 22 (2006), 2021-2034.



