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1 Introduction
In this short note, we consider the approximation of common fixed point, that is, the
problem to find a sequence converging to a point $z\in X$ such that $z=T_{i}z$ for every
$i\in I$ , where $\{T_{i}\}$ is a given farnily of mappings defined on a metric space $X.$

We will focus on the following iterative method proved by Takahashi, Takeuchi,

and Kubota [10], which is called the shrinking projection method.

Theorem 1 (Takahashi-Takeuchi-Kubota [10]). Let $H$ be a real Hilbert space and $C$

a nonempty closed convex subset of H. Let $T$ be a nonexpansive mapping of $C$ into

itself such that $F(T)=\{z\in C : z=Tz\}$ is nonempty. Let $\{\alpha_{n}\}$ be a sequence in
$[0, a]$ , where $0<a<1$ . For a point $x\in H$ chosen arbitrarily, generate a sequence
$\{x_{n}\}$ by the following iterative scheme: $x_{1}\in C,$ $C_{1}=C$ , and

$y_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n},$

$C_{n+1}=\{z\in C:\Vert z-y_{n}\Vert\leq\Vert z-x_{n} \cap C_{n},$

$x_{n+1}=P_{C_{n+1}}x$

for $n\in \mathbb{N}$ . Then, $\{x_{n}\}$ converges strongly to $P_{F(T)}x\in C$ , where $P_{K}$ is the metric
projection of $H$ onto a nonempty closed convex subset $K$ of $H.$

We remark that the original result of the theorem above deals with a family of
nonexpansive mappings. This method has been generalized to the setting of Banach
spaces; see also Kimura, Nakajo, and Takahashi [7], Kimura and Takahashi [8].
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Recently, the author proved the following result for a nonexpansive mapping defined
on a Hadamard space [6]:

Theorem 2 (Kimura [6]). Let $X$ be a Hadamard space and suppose that a subset
$\{z\in X : d(v, z)\leq d(u, z)\}$ is convex for every $u,$ $v\in X.$ Let $T$ : $Xarrow X$ be a
nonexpansive mapping such that the set $F(T)$ of fixed points is nonempty. Let $\{\epsilon_{n}\}$

be a sequence of nonnegative numbers and $\epsilon_{0}=\lim\sup_{narrow\infty}\epsilon_{n}$ . For given points
$x_{0}\in X,$ $x_{1}\in X$ and $C_{1}=X$ , generate a sequence $\{x_{n}\}$ as follows:

$C_{n+1}=\{z\in X:d(Tx_{n}, z)\leq d(x_{n}, z)\}\cap C_{n},$

$x_{n+1}\in C_{n+1}$ such that $d(x_{0}, x_{n+1})^{2}\leq d(x_{0}, C_{n+1})^{2}+\epsilon_{n+1}^{2},$

for each $n\in \mathbb{N}$ . Then,

$\lim_{narrow}\sup_{\infty}d(x_{n}, Tx_{n})\leq 2\epsilon_{0}.$

Moreover, if $\epsilon_{0}=0$ , then $\{x_{n}\}$ converges to $P_{F(T)}x0$ , where $P_{F(T)}$ is the metric
projection of $X$ onto $F(T)$ .

This result shows that the iterative sequence generated as above approximates a
fixed point in a certain sense even though we do not require for error terms to converge
to O.
In this paper, we study an iterative scheme generated by a modified version of the

shrinking projection method for a finite family of nonexpansive mappings defined on a
Hadamard space. We consider an error for obtaining the value of a metric projection
and show that the sequence still has a nice property for approximating a common
fixed point of the mappings. See also the related results [3, 4, 5, 6].

2 Preliminaries
Let $X$ be a metric space with a metric $d$ . For $x,$ $y\in X$ , a mapping $c:[0, l]arrow X$ with
$l\geq 0$ is called a geodesic with endpoints $x,$ $y$ if $c(O)=x,$ $c(l)=y$, and $d(c(t), c(s))=$
$|t-s|$ for $t,$ $s\in[0, l]$ . If a geodesic with endpoints $x,$ $y$ exists for every $x,$ $y\in X$ , then
we call $X$ a geodesic metric space. In what follows, we assume that a geodesic is
uniquely detarmined for every $x,$ $y\in X$ . The image of a geodesic with endpoints $x,$ $y$

is called a geodesic segment joining $x$ and $y$ , and we denote it by $[x, y]$ . A subset $C$

of $X$ is said to be convex if $[x, y]$ is included in $C$ for any $x,$ $y\in C.$

A geodesic triangle with vertices $x,$ $y,$ $z\in X$ is a union of geodesic segments $[x, y],$

$[y, z]$ , and $[z, x]$ . We denote it by $\triangle(x, y, z)$ . A comparison triangle $\triangle(\overline{x},\overline{y}, \overline{z})$ in $\mathbb{R}^{2}$

for $\triangle(x, y, z)$ is a triangle in the 2-dimensional Euclidean space $\mathbb{R}^{2}$ whose length of
each edge is equal to that of the corresponding edge. A point $\overline{p}\in[\overline{x}, \overline{y}]$ is called a
comparison point for $p\in[x, y]$ if $d(x,p)=|\overline{x}-\overline{p}|_{\mathbb{R}^{2}}$ . If for any $p,$ $q\in\triangle(x, y, z)$ and
their comparison points $\overline{p},$ $\overline{q}\in\triangle(X, \overline{y},\overline{z})$ , the inequality

$d(p, q)\leq|\overline{p}-\overline{q}|_{\mathbb{R}^{2}}$
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holds for all triangles in $X$ , we call $X$ a CAT(O) space. A complete CAT(O) space is

called a Hadamard space.
For $x,$ $y\in X$ and $t\in[O$ , 1$]$ , there exists a unique point $z\in[x, y]$ such that $d(x, z)=$

$(1-t)d(x, y)$ and $d(z, y)=td(x, y)$ . We denote it by $tx\oplus(1-t)y$ . By using the

CAT(O) inequality, we have that

$d(z,tx\oplus(1-t)y)^{2}\leq td(z, x)^{2}+(1-t)d(z, y)^{2}-t(1-t)d(x,y)^{2}$

for every $x,$ $y,$ $z\in X$ and $t\in[O$ , 1 $].$

A mapping $T$ : $Xarrow X$ is said to be nonexpansive if $d(Tx,Ty)\leq d(x, y)$ holds

for every $x,$ $y\in X$ . The set of all fixed points of $T$ is denoted by $F(T)$ , that is,

$F(T)=\{z\in X : Tz=z\}$ . We know that $F(T)$ is closed and convex if $T$ is

nonexpansive.
Let $C$ be a nonempty closed convex subset of a Hadamard space $X$ . Then for each

$x\in X$ , there exists a unique point $y_{x}\in C$ such that $d(x, y_{x})= \inf_{y\in C}d(x,y)$ . The

mapping $x\mapsto y_{x}$ is called a metric projection onto $C$ and is denoted by $P_{C}$ . We know

that $P_{C}$ is nonexpansive.
For more details of these notions, see [1].

We need the following lemma for the main theorem, which can be easily deduced

from the result in [2].

Lemma 1 (Kimura [2]). Let $X$ be a Hadamard space, $\{C_{n}\}$ a sequence of nonempty

closed convex subsets in $X$ , and $C_{0}= \bigcap_{n=1}^{\infty}C_{n}$ . If $C_{0}$ is nonempty, then $\{P_{C_{n}}x\}$

converges to $P_{C_{O}}x\in X$ for every $x\in X$ , where $P_{K}$ is the metric projection onto a

nonempty closed convex subset $K$ of $X.$

3 An approximate sequence to a common fixed $po\ovalbox{\tt\small REJECT} nt$

In this section, we show the main result of this work, which shows convergence of an
iterative sequence generated by a modified version of the $sl_{1}$rirlking projection method.

We consider a calculation error for each step, and give an upper bound of the limit

of the distance between a point in the sequence and its image of the mappings.

Theorem 3. Let $X$ be a Hadamard space and suppose that a subset $\{z\in X:d(v, z)\leq$

$d(u, z)\}$ is convex for every $u,$ $v\in X.$ Let $\{T_{j} : j=0, 1, . . . , k-1\}$ be a family

of nonempansive mappings such that $F= \bigcap_{j=0}^{k-1}F(T_{j})$ is nonempty. Let $\{\epsilon_{n}\}$ be a

sequence in [$0,$ $\infty[$ and let $\epsilon_{0}=\lim\sup_{narrow\infty}\epsilon_{n}$ . For a given point $u\in X$ generate a
sequence $\{x_{n}\}$ as follows: $x_{1}=u,$ $C_{1}=X$ , and

$C_{n+1}=\{z\in X:d(T_{(nmod k)}x_{n}, z)\leq d(x_{n}, z)\}\cap C_{n},$

$x_{n+1}\in C_{n+1}$ such that $d(u, x_{n+1})^{2}\leq d(u, C_{n+1})^{2}+\epsilon_{n+1}^{2},$

for each $n\in \mathbb{N}$ . Then
$\lim_{narrow}\sup_{\infty}d(x_{n}, T_{j}x_{n})\leq 4\epsilon_{0}$
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for every $j\in\{0, 1, . . . , k-1\}$ . Moreover, if $\epsilon_{0}=0$ , then $\{x_{n}\}$ converges to $P_{F}x_{0},$

where $P_{F}$ is the metric projection of $X$ onto $F.$

For the proof, we employ the technique used in [6]. For the sake of completeness,
we give the whole proof.

Proof. We first prove that $\{x_{n}\}$ is well defined by showing that each $C_{n}$ is nonempty.
Since $d(T_{j}x, z)\leq d(x, z)$ for every $x\in X,$ $z\in F$ , and $j=0$ , 1, . . . , $k-1$ , we have that
$F\subset C_{n}$ for all $n\in \mathbb{N}$ . By assumption $F$ is nonempty and so is $C_{n}$ . Thus the sequence
$\{x_{n}\}$ is well defined. By the continuity of the rnertic $d$ , we have that $C_{n}$ is closed.
Since $C_{n}$ is convex by the assumption of the space, we can define the metric projection
$P_{C_{n}}$ of $X$ onto $C_{n}$ . Let $p_{n}=P_{C_{n}}u$ for all $n\in \mathbb{N}$ . Then, by Lemma 1, $\{p_{n}\}$ converges
to $p_{0}=P_{C_{O}}u$ , where $C_{0}= \bigcap_{n=1}^{\infty}C_{n}$ . Since $x_{n}\in C_{n}$ and $d(u, C_{n})=d(u,p_{n})$ , we have
that

$d(u, x_{n})^{2}\leq d(u,p_{n})^{2}+\epsilon_{n}^{2}$

for every $n\in \mathbb{N}$ . We also have that

$d(p_{n}, u)^{2}\leq d(\alpha p_{n}\oplus(1-\alpha)x_{n}, u)^{2}$

$\leq\alpha d(p_{n}, u)^{2}+(1-\alpha)d(x_{n}, u)^{2}-\alpha(1-\alpha)d(p_{n}, x_{n})^{2}$

for $\alpha\in]0$ , 1 [, and hence

$\alpha d(p_{n}, x_{n})^{2}\leq d(x_{n}, u)^{2}-d(p_{n}, u)^{2}\leq\epsilon_{n}^{2}.$

Tending $\alphaarrow 1$ , we have that $d(p_{n}, x_{n})^{2}\leq\epsilon_{n}^{2}$ , that is,

$d(p_{n}, x_{n})\leq\epsilon_{n}$

for every $n\in \mathbb{N}$ . Since $p_{n}\in C_{n}$ , we also get that

$d(T_{(nmod}k)^{X_{n}}, p_{n})\leq d(x_{n}, p_{n})\leq\epsilon_{n}$

for every $n\in \mathbb{N}.$

Let $j\in\{0, 1, . . . , k-1\}$ and $n\in \mathbb{N}$ . Then there exists $i\in\{0, 1, . . . , k-1\}$ such
that

$(n+i)mod k=j.$

Then we have that

$d(x_{n}, T_{j}x_{n})\leq d(x_{n},p_{n+i})+d(p_{n+i}, T_{j}x_{n+i})+d(T_{j}x_{n+i}, T_{j}x_{n})$

$\leq d(x_{n},p_{n+i})+d(p_{n+i}, T_{j}x_{n+i})+d(x_{n+i}, x_{n})$

$\leq d(x_{n},p_{n+i})+d(pTx_{n+i})+d(x_{n+i}, x_{n})$

$\leq d(x_{n},p_{n+i})+d(p_{n+i}, x_{n+i})+d(x_{n+i}, x_{n})$

$\leq d(x_{n},p_{n+i})+\epsilon_{n+i}+d(x_{n+i}, x_{n})$ .
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On the other hand, since

$d(x_{n},p_{n+i})\leq d(x_{n},p_{n})+d(p_{n},p_{n+i})\leq\epsilon_{n}+d(p_{n},p_{n+i})$

and

$d(x_{n+i}, x_{n})\leq d(x_{n+i},p_{n+i})+d(p_{n+i},p_{n})+d(p_{n}, x_{n})$

$\leq\epsilon_{n+i}+\epsilon_{n}+d(p_{n+i},p_{n})$ ,

it follows that
$d(x_{n}, T_{j}x_{n})\leq 2(\epsilon_{n}+\epsilon_{n+i}+d(p_{n+i},p_{n}))$

for every $n\in \mathbb{N}$ . Since $i$ can be taken only a finite number of values, we have that

$\lim_{narrow}\sup_{\infty}d(x_{n}, T_{j}x_{n})\leq 4\epsilon_{0}.$

For the latter part of the theorem, suppose that $\epsilon_{0}=0$ . Then

$\lim_{narrow}\sup_{\infty}d(x_{n},p_{n})\leq\lim_{narrow}\sup_{\infty}\epsilon_{n}=0.$

It implies that $\lim_{narrow\infty}d(x_{n},p_{n})=0$ and thus $\{x_{n}\}$ converges to $p_{0}=P_{C_{O}}u$ . We also

have that $\{T_{j}x_{n}\}$ converges to $p_{0}$ for each $j\in\{0, 1, . . . , k-1\}$ since

$0 \leq\lim_{narrow}\inf_{\infty}d(x_{n}, T_{j}x_{n})\leq\lim_{narrow}\sup_{\infty}d(x_{n},T_{j}x_{n})\leq 4\epsilon_{0}=0.$

Since a nonexpansive mapping $T_{j}$ is continuous, we have that

$T_{j}p_{0}=T_{j}( \lim_{narrow\infty}x_{n})=\lim_{narrow\infty}T_{j}x_{n}=p_{0},$

that is, $p_{0} \in F=\bigcap_{j=0}^{k-1}F(T_{j})$ . Since $F\subset C_{0}$ , we get that

$p_{0}=P_{C_{O}}u=P_{F}u,$

which completes the proof. $\square$

We remark that there are a number of examples of the spaces satisfying the as-
sumptions in the main theorem, such as nonempty closed convex subsets of Hilbert

spaces, those of real Hilbert balls, and others. See, for example, [1, 9].

References
[1] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature,

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of

Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.

38



[2] Y. Kimura, Convergence of a sequence of sets in a Hadamard space and the
shrinking projection method for a real Hilbert ball, Abstr. Appl. Anal. (2010),
Art. ID 582475, 11.

[3] –, Approximation of afixed point of nonlinear mappings with nonsummable
errors in a Banach space, Proceedings of the Fourth International Symposium
on Banach and Function Spaces, 2012, pp. 303-311.

[4] –, Approximation of a fixed point of nonexpansive mappings with non-
summable errors in a geodiesic space, Proceedings of the 10th International Con-
ference on Fixed Point Theory and Applications, 2012, pp. 157-164.

[5] –, Approximation of a common fixed point of afinite family of nonexpansive
mappings with nonsummable errors in a Hilbert space, J. Nonlinear Convex Anal.
15 (2014), 429-436.

[6] –, A shrinking projection method for nonexpansive mappings with non-
summable errors in a Hadamard space, Ann. Oper. Res., to appear.

[7] Y. Kimura, K. Nakajo, and W. Takahashi, Strongly convergent iterative schemes

for a sequence of nonlinear mappings, J. Nonlinear Convex Anal. 9 (2008), 407-
416.

[8] Y. Kimura and W. Takahashi, A generalized proximal point algorithm and im-
plicit iterative schemes for a sequence of operators on Banach spaces, Set-Valued
Anal. 16 (2008), 597-619.

[9] W. A. Kirk, Fixed point theorems in CAT(O) spaces and $\mathbb{R}$-trees, Fixed Point
Theory Appl. (2004), 309-316.

[10] W. Takahashi, Y. Takeuchi, and R. Kubota, Strong convergence $theorem\mathcal{S}$ by
hybrid methods for families of nonexpansive mappings in Hilbert $\mathcal{S}paces$, J. Math.
Anal. Appl. 341 (2008), 276-286.

39


