<table>
<thead>
<tr>
<th>Title</th>
<th>GENERALIZATION OF YOUNG DIAGRAMS AND HOOK FORMULA (Algebraic Combinatorics related to Young diagram and statistical physics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>仲田 研登</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2014, 1913: 106-111</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/223273</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Institution</td>
<td>理学研究科</td>
</tr>
</tbody>
</table>

京都大学
GENERALIZATION OF YOUNG DIAGRAMS AND HOOK FORMULA

KENTO NAKADA
OKAYAMA UNIVERSITY

1. Preliminaries

First, we give several notations for root systes. We always fix a root datum \((\mathcal{A}, h, h^*, \Pi, \Pi^\vee)\):

\[A = (a_{i,j})_{i,j \in I} : \text{a generalized Cartan matrix}. \]

\[h : \mathbb{R} - \text{vector space}, \]

\[h^* : \text{the dual space of } h, \]

\[\langle , \rangle : h^* \times h \to \mathbb{R} : \text{the canonical bilinear form}. \]

\[\Pi := \{ \alpha_i | i \in I \} \subset h^* : \text{linearly independent subset} \]

\[\Pi^\vee := \{ \alpha_i^\vee | i \in I \} \subset h : \text{linearly independent subset such that } \langle \alpha_j, \alpha_i^\vee \rangle = a_{i,j}. \]

For each \(i \in I\), we define the simple reflection \(s_i \in \text{GL}(h^*)\) by:

\[s_i : \lambda \mapsto \lambda - \langle \lambda, \alpha_i^\vee \rangle \alpha_j, \lambda \in h^*. \]

equivalently, \(s_i : h \mapsto h - \langle \alpha_j, h \rangle \alpha_i^\vee, \ h \in h. \)

\[W := \langle s_i | i \in I \rangle : \text{the Weyl group} \]

We define a (real) root system and a (real) coroot system:

\[\Phi := W \Pi \left(\bigoplus_{i \in I} \mathbb{Z} \alpha_i \right) : \text{(real) root system} \]

\[\Phi_+ := \Phi \cap \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i : \text{(real) positive root system} \]

\[\Phi_- := \Phi \cap \bigoplus_{i \in I} \mathbb{Z}_{\leq 0} \alpha_i : \text{(real) negative root system} \]

\[\Phi = \Phi_+ \coprod \Phi_- : \text{(disjoint union)} \]

\[\Phi^\vee := W \Pi^\vee \left(\bigoplus_{i \in I} \mathbb{Z} \alpha_i^\vee \right) : \text{(real) coroot system} \]

\[\Phi^\vee_+ := \Phi^\vee \cap \bigoplus_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i^\vee : \text{(real) positive coroot system} \]

\[\Phi^\vee_- := \Phi^\vee \cap \bigoplus_{i \in I} \mathbb{Z}_{\leq 0} \alpha_i^\vee : \text{(real) negative coroot system} \]

\[\Phi^\vee = \Phi^\vee_+ \coprod \Phi^\vee_- : \text{(disjoint union)} \]

For a real root \(\beta = w(\alpha_i) \in \Phi\), we define the dual coroot \(\beta^\vee \in \Phi^\vee\) of \(\beta\) by:

\[\beta^\vee = w(\alpha_i^\vee). \]

Remark 1. This is independent from the choice of \(w \in W\) and \(\alpha_i \in \Pi\).
The map $\phi: \beta \mapsto \beta^\vee \in \Phi^\vee$ is a bijection.

For each $\beta \in \Phi$, we define the reflection $s_\beta \in W$ by:

\[s_\beta(\lambda) = \lambda - \langle \lambda, \beta^\vee \rangle \beta, \quad \lambda \in \mathfrak{h}^*, \]
\[s_\beta(h) = h - \langle \beta, h \rangle \beta^\vee, \quad h \in \mathfrak{h}. \]

Definition 1. Let $w \in W$. We define the inversion set $\Phi(w)$ of w by:

\[\Phi(w) := \{ \gamma \in \Phi_+ | w^{-1}(\gamma) < 0 \}. \]

Definition 2. Let $w \in W$. We denote by $\text{Red}(w)$ the set of reduced decompositions of w:

\[\text{Red}(w) := \{ s_{i_1} s_{i_2} \cdots s_{i_d} | \text{reduced decompositions of } w \}. \]

Definition 3. An element $\lambda \in \mathfrak{h}^*$ is said to be an integral weight if:

\[\langle \lambda, \alpha_i^\vee \rangle \in \mathbb{Z}, \quad i \in I. \]

The set of integral weights is denoted by P.

Definition 4. An integral weight $\lambda \in P$ is said to be dominant if:

\[\langle \lambda, \alpha_i^\vee \rangle \in \mathbb{Z}_{\geq 0} = \mathbb{N}, \quad i \in I. \]

The set of dominant integral weights is denoted by $P_{\geq 0}$.

2. **MINUSCULE ELEMENTS AND PETERSON-PROCTOR HOOK FORMULA**

Definition 5 (Peterson (see [1])). Let $\Lambda \in P_{\geq 0}$. An element $w \in W$ is said to be Λ-minuscule if there exists a reduced decomposition $s_{i_1} s_{i_2} \cdots s_{i_d} \in \text{Red}(w)$ of w such that

\[\langle s_{i_{k+1}} \cdots s_{i_d}(\Lambda), \alpha_i^\vee \rangle = 1, \quad k = 1, 2, \ldots, d. \]

Remark 2. This definition is independent from the choice of reduced decompositions of w.

Example 1. A Grassmannian permutation is a Λ-minuscule element in the Weyl group of type A (symmetric group).

Theorem 2.1 (Proctor (see e.g. [7])). Suppose that the underlying generalized Cartan matrix is simply-laced. Then there exists a one-to-one correspondence between $\{(\Lambda, w)\}$ and d-complete posets.

Theorem 2.2 (Peterson-Proctor (see [1])). Let $\Lambda \in P_{\geq 0}$ and $w \in W$ a Λ-minuscule element. Then we have:

\[\#\text{Red}(w) = \frac{\ell(w)!}{\prod_{\beta \in \Phi(w)} h_t(\beta)}. \]

This hook formula is, of course, a generalization of hook length formula for a Young diagram due to Frame-Robinson-Thrall [2], and a shifted Young diagram due to Thrall [9].

In terms of d-complete posets, this counts the number of linear extensions of the d-complete posets.

Now, we have three approaches to prove Peterson-Proctor hook formula.

<table>
<thead>
<tr>
<th>multivariate hook formula</th>
<th>colored hook formula</th>
<th>probabilistic algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. (preprint)</td>
<td></td>
<td>N.-Okamura (preprint)</td>
</tr>
</tbody>
</table>
3. Finite predominant integral weights

Definition 6. An integral weight $\lambda \in P$ is said to be pre-dominant if:
$$\langle \lambda, \beta^\vee \rangle \geq -1, \ \beta \in \Phi_+. $$

The set of pre-dominant integral weights is denoted by $P_{\geq -1}$.

Definition 7. Let $\lambda \in P_{\geq -1}$. We define a set $D(\lambda)$ by:
$$D(\lambda) := \{ \beta \in \Phi_+ \mid \langle \lambda, \beta^\vee \rangle = -1 \}.$$

The set $D(\lambda)$ is called a diagram of λ. A pre-dominant integral weight λ is said to be finite if $\#D(\lambda) < \infty$. The set of finite pre-dominant integral weights is denoted by $P_{\geq -1}^{\text{fin}}$.

Example 2. As an example, we consider how Young diagram \[\begin{array}{cccc}
0 & 1 & 2 & 3 \\
-1 & & & + \\
-2 & + & & - \\
-3 & & 0 & - \\
0 & & &
\end{array} \] is realized as $D(\lambda)$.

According to the above picture, we put $\lambda := 1\Lambda_{-2} + (-1)\Lambda_0 + 1\Lambda_1 + (-1)\Lambda_2 + 1\Lambda_3$, in the root system of type A_6 with index $I = \{-2, -1, 0, 1, 2, 3\}$, where Λ_i denotes i-th fundamental weight. Then we have $\lambda \in P_{\geq -1}^{\text{fin}}$ such that $(D(\lambda); <)$ is order-isomorphic to the original Young diagram.

Thus, we recover the original Young diagram.

Theorem 3.1. Let $\Lambda \in P_{\geq 0}$ and $w \in W$ a Λ-minuscule element. Then we have $w(\Lambda) \in P_{\geq -1}^{\text{fin}}$. Furthermore, this correspondence is bijective between $P_{\geq -1}^{\text{fin}}$ and the set of such pairs (Λ, w).

\[\begin{array}{ccc}
\alpha_{-1} + \alpha_0 + \alpha_1 + \alpha_2 & \alpha_0 + \alpha_1 + \alpha_2 & \alpha_2 \\
\alpha_{-1} + \alpha_0 & \alpha_0 & \\
\end{array} \]

Thus, we recover the original Young diagram.
Put $\lambda := w(\Lambda)$. Then we have

$$\Phi(w) = D(\lambda).$$

Definition 8. Let $\lambda \in P_{\geq -1}^{\text{fin}}$ and $\beta \in D(\lambda)$. We define a set $H_\lambda(\beta)$ by:

$$H_\lambda(\beta) := \{ \gamma \in D(\lambda) \mid s_\beta(\gamma) < 0 \} = D(\lambda) \cap \Phi(s_\beta).$$

We call the set $H_\lambda(\beta)$ the hook at β.

Proposition 3.2. Let $\lambda \in P_{\geq -1}^{\text{fin}}$ and $\beta \in D(\lambda)$. Then we have:

1. $\#H_\lambda(\beta) = ht(\beta)$.
2. $s_\beta(\lambda) \in P_{\geq -1}^{\text{fin}}$.
3. $D(s_\beta(D(\lambda) \setminus H_\lambda)) = s_\beta(D(\lambda) \setminus H_\lambda(\beta))$.

Definition 9. Let $\lambda \in P_{\geq -1}^{\text{fin}}$. A sequence $(\beta_1, \beta_2, \cdots, \beta_l)$ $(l \geq 0)$ of positive real roots is said to be a λ-path if:

$$\beta_k \in D(s_{\beta_{k-1}} \cdots s_{\beta_1}(\lambda)), \quad (k = 1, 2, \cdots, l).$$

The set of λ-paths is denoted by $\text{Path}(\lambda)$.

Definition 10. Let $\lambda \in P_{\geq -1}^{\text{fin}}$. A λ-path of maximal length is called a maximal λ-path. The set of maximal λ-paths is denoted by $\text{MPath}(\lambda)$.

Note that if $\#D(\lambda) = d$ then length of maximal λ-path is d, and hence that maximal λ-path is of a form $(\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_d})$.

Example 3. Back to Example 2, put $\lambda := \Lambda_{-1} - \Lambda_0 + \Lambda_1 - \Lambda_2 + \Lambda_3$. Then we have 5 maximal λ-paths below:

\[
\begin{align*}
& (\alpha_0, \alpha_{-1}, \alpha_2, \alpha_1, \alpha_0) \cdots \begin{array}{c} 5 \ 4 \ 3 \\ 2 \ 1 \end{array} \\
& (\alpha_0, \alpha_2, \alpha_{-1}, \alpha_1, \alpha_0) \cdots \begin{array}{c} 5 \ 4 \ 2 \\ 3 \ 1 \end{array} \\
& (\alpha_2, \alpha_0, \alpha_{-1}, \alpha_1, \alpha_0) \cdots \begin{array}{c} 5 \ 4 \ 1 \\ 3 \ 2 \end{array} \\
& (\alpha_0, \alpha_2, \alpha_1, \alpha_{-1}, \alpha_0) \cdots \begin{array}{c} 5 \ 3 \ 2 \\ 4 \ 1 \end{array} \\
& (\alpha_2, \alpha_0, \alpha_1, \alpha_{-1}, \alpha_0) \cdots \begin{array}{c} 5 \ 3 \ 1 \\ 4 \ 2 \end{array}
\end{align*}
\]

Now we restate the Peterson-Proctor hook formula:

Theorem 3.3. Let $\lambda \in P_{\geq -1}^{\text{fin}}$. Put $d := \#D(\lambda)$. Then we have:

$$\#\text{MPath}(\lambda) = \frac{d^!}{\prod_{\beta \in D(\lambda)} \text{ht(\beta)}}.$$

We give two of three approaches to prove the above theorem in section 4 and 5.
4. Colored Hook Formula

Let $\lambda \in P_{\geq -1}^{\text{fin}}$, and put $d = D(\lambda)$. Then we have:

Theorem 4.1 ([4]).

$$\sum_{(\beta_1, \beta_2, \ldots, \beta_d) \in \text{Path}(\lambda)} \frac{1}{\beta_1} \frac{1}{\beta_1 + \beta_2} \cdots \frac{1}{\beta_1 + \cdots + \beta_d} = \prod_{\beta \in D(\lambda)} \left(1 + \frac{1}{\beta}\right).$$

Taking the lowest degree, we get:

Corollary 4.2.

$$\sum_{(\alpha_1, \alpha_2, \ldots, \alpha_d) \in \text{MPath}(\lambda)} \frac{1}{\alpha_1} \frac{1}{\alpha_1 + \alpha_2} \cdots \frac{1}{\alpha_1 + \cdots + \alpha_d} = \prod_{\beta \in D(\lambda)} \frac{1}{\beta}.$$

Taking the specialization $\alpha_i \mapsto 1$, we get:

Corollary 4.3 (Peterson-Proctor hook formula).

$$\#\text{MPath}(\lambda) = \frac{d!}{\prod_{\beta \in D(\lambda)} \text{ht}(\beta)}.$$

5. Probabilistic Algorithm

For simplicity of description, we assume that the underlying root datum is simply-laced.

We call the following algorithm the algorithm A for Γ:

GNW1.: Set $k := 0$ and set $\lambda_0 := \lambda$.

GNW2.: (Now $D(\lambda_k)$ has $d - k$ roots.) Pick a root $\beta \in D(\lambda_k)$ with the probability $1/(d - k)$.

GNW3.: If $\#H_{\lambda_k}(\beta) - \{\beta\} \neq 0$, then pick a $\gamma \in H_{\lambda_k}(\beta) - \{\beta\}$ with the probability $1/\#(H_{\lambda_k}(\beta) - \{\beta\})$, put $\beta := \gamma$ and repeat GNW3.

GNW4.: (Now $\#(H_{\lambda_k}(\beta) - \{\beta\}) = 0$.) Let $\alpha_{i+1} := \alpha_i$ and set $\lambda_{k+1} := s_i(\lambda_k)$.

GNW5.: Set $k := k + 1$. If $k < d$, return to GNW2; if $k = d$, terminate.

Then, by the definition of the algorithm A for λ, the sequence $(\beta =) (\alpha_1, \ldots, \alpha_d)$ generated above is a maximal λ-path. We denote by $\text{Prob}_A(\mathcal{B})$ the probability we get $\mathcal{B} \in \text{MPath}(\lambda)$ by the algorithm A. The algorithm A for λ gives a probability measure $\text{Prob}_A()$ over a finite set $\text{MPath}(\lambda)$.

Theorem 5.1 (S. Okamura [6], N-S. Okamura [5]). Let $\mathcal{B} \in \text{MPath}(\lambda)$. Then we have:

$$(5.1) \quad \text{Prob}_A(\mathcal{B}) = \frac{\prod_{\beta \in D(\lambda)} \text{ht}(\beta)}{d!}. $$

Since the right-hand side of (5.1) is independent from the choice of $\mathcal{B} \in \text{MPath}(\lambda)$, the probability measure is uniform. Hence, taking the inverse, we get:

Corollary 5.2 (Peterson-Proctor hook formula).

$$\#\text{MPath}(\lambda) = \frac{d!}{\prod_{\beta \in D(\lambda)} \text{ht}(\beta)}. $$

REFERENCES

