Triple Systems and Applications to Gauge Theories

Matsuo Sato
Department of Natural Science，Faculty of Education，Hirosaki University
Bunkyo－cho 1，Hirosaki，Aomori 036－8560，Japan

1 Introduction

It has been expected that there exists M－theory，which unifies string theories．In M－theory， some structures of 3 －algebras were found recently．First，it was found that field theories applied with $u(N) \oplus u(N)$ hermitian 3－algebras are the Chern－Simons gauge theories that describe effective actions of N coincident supermembranes［1－5］，which are fundamental objects in M－theory．In a certain limit，a novel Higgs mechanism works，where the Chern－ Simons gauge theories become the Yang－Mills theories that describe effective actions of D－branes in string theory．Second，3－algebra models of M－theory themselves have been proposed and were studied in［6－13］．

The hermitian 3－algebras［14－51］are special cases，where $\langle a b c\rangle=-\langle c b a\rangle$ ，of hermitian generalized Jordan triple systems $\langle a b c>[52-74]$ ．Therefore，it is natural to extend the $u(N) \oplus u(N)$ hermitian 3－algebras to more general hermitian generalized Jordan triple systems．Moreover，it is interesting to find a hermitian generalized Jordan triple system with which a Chern－Simons field theory reduces to a Yang－Mills theory in a certain limit．

In the following section，we review some results concerning with［75，76］．

2 Definitions

Let us start with a definition of a hermitian generalized Jordan triple systems．
Definition．A triple system U is said to be a hermitian generalized Jordan triple systems if relations（0）－（iv）satisfy；

0）U is a Banach space，
i）$[L(a, b), L(c, d)]=L(<a b c>, d)-L(c,<b a d>)$ ，
ii）$<x y z>$ is C－linear operator on x, z and \mathbf{C}－anti－linear operator on y ，
iii）$\langle a b c>$ continuous with respect to a norm \｜\｜\｜hat is，there exists $K>0$ s．t．

$$
\|<x x x>\| \leq K\|x\|^{3} \text { for all } x \in U .
$$

iv）${ }^{1}$ There is a metric (x, y) that satisfies $(L(x, y) z, w)+(z, L(x, y) w)=0$ and $(x, y)=\overline{(y, x)}$.

[^0]
3 Generalization of the hermitian 3-algebra

In this section, we extend the $u(N) \oplus u(M)$ 3-algebras to a hermitian generalized Jordan triple system.

Let $D_{N, M}^{*}$ be the set of all $N \times M$ matrices with operation

$$
<x y z>=x \bar{y}^{T} z-z \bar{y}^{T} x+z x^{T} \bar{y}-\bar{y} x^{T} z .
$$

Then $D_{N, M}^{*}$ is a hermitian generalized Jordan triple system. In fact, it satisfies the conditions in the previous section with the metric $(x, y):=\operatorname{tr}\left(x \bar{y}^{T}\right)$. This is an extension of the $u(N) \oplus u(M)$ hermitian 3-algebras $\left\langle x y z>=x \bar{y}^{T} z-z \bar{y}^{T} x\right.$.

4 Application to field theory

In this section, we apply the hermitian generalized Jordan triple system in the previous section to a field theory.

We start with

$$
\begin{aligned}
S=\int d^{3} x & \operatorname{tr}\left(-\mathbf{D}_{\mu} Z^{A}{\overline{\mathbf{D}} \bar{Z}_{A}}^{T}\right. \\
& +L \epsilon^{\mu \nu \lambda}\left(-A_{\mu \overline{b c}} \partial_{\nu} A_{\lambda \bar{d} a} \bar{T}^{T \bar{d}}\left[T^{c}, \bar{T}^{\bar{b}}, T^{a}\right]\right. \\
& \left.\left.+\frac{2}{3} A_{\mu \bar{d} a} A_{\nu \bar{b} c} A_{\lambda \bar{f} e}\left[T^{c}, \bar{T}^{\bar{b}}, T^{a}\right]\left[T^{f}, \bar{T}^{\bar{c}}, T^{d}\right]\right)\right)
\end{aligned}
$$

where

$$
\mathbf{D}_{\mu} Z^{A}=\partial_{\mu} Z^{A}-A_{\mu \bar{b} a}\left[T^{a}, \bar{T}^{\bar{b}}, Z^{A}\right] .
$$

Z^{A} and A_{μ} are matter and gauge fields, respectively. A runs from 1 to p , whereas μ runs from 0 to 2 . This action is invariant under the transformations generated by the operator $L(x, y)-L(y, x)$. Here, we apply $[x, \bar{y}, z]:=\langle x y z\rangle=\left(x \bar{y}^{T}-\bar{y} x^{T}\right) z-z\left(\bar{y}^{T} x-x^{T} \bar{y}\right)$ to this action.

The covariant derivative is explicitly written down as

$$
\mathbf{D}_{\mu} Z^{A}=\partial_{\mu} Z^{A}-i A_{\mu}^{L} Z^{A}+i Z^{A} A_{\mu}^{R}
$$

where $A_{\mu}^{R}:=-i A_{\mu \bar{b} a}\left(\bar{T}^{T \bar{b}} T^{a}-T^{T a} \bar{T}^{\bar{b}}\right)$ and $A_{\mu}^{L}:=-i A_{\mu \bar{b} a}\left(T^{a} \bar{T}^{T \bar{b}}-\bar{T}^{\bar{b}} T^{T a}\right)$ are real antisymmetric matrices, which generate the $o(N)$ and $o(M)$ Lie algebras, respectively. The action can be rewritten in a covariant form with respect to $o(N)$ and $o(M)$ and we obtain a Chern-Simons gauge theory,

$$
\begin{aligned}
S= & \int d^{3} x \operatorname{tr}\left(-\left(\partial_{\mu} Z^{A}-i A_{\mu}^{L} Z^{A}+i Z^{A} A_{\mu}^{R}\right) \overline{\left(\partial_{\mu} Z_{A}-i A_{\mu}^{L} Z_{A}+i Z_{A} A_{\mu}^{R}\right.}\right)^{T} \\
& \left.+L \epsilon^{\mu \nu \lambda}\left(\frac{1}{2}\left(A_{\mu}^{L} \partial_{\nu} A_{\lambda}^{L}-A_{\mu}^{R} \partial_{\nu} A_{\lambda}^{R}\right)+\frac{i}{3}\left(A_{\mu}^{L} A_{\nu}^{L} A_{\lambda}^{L}-A_{\mu}^{R} A_{\nu}^{R} A_{\lambda}^{R}\right)\right)\right) .
\end{aligned}
$$

In this action, A_{μ}^{L} and A_{μ}^{R} transform as adjoint representations of $o(N)$ and $o(M)$, respectively, whereas Z^{A} transforms as a bi-fundamental representation of $o(N) \oplus o(M)$;

$$
\begin{aligned}
\delta A_{\mu}^{R} & =\left[i \Lambda^{R}, A_{\mu}^{R}\right] \\
\delta A_{\mu}^{L} & =\left[i \Lambda^{L}, A_{\mu}^{L}\right] \\
\delta Z^{A} & =i \Lambda^{L} Z^{A}-Z^{A}\left(i \Lambda^{R}\right),
\end{aligned}
$$

where gauge parameters Λ^{R} and Λ^{L} are defined in the same way as A_{μ}^{R} and A_{μ}^{L}, respectively.

Next, let us examine whether the Novel Higgs mechanism works in this theory when $\mathrm{M}=\mathrm{N}$. By redefining the gauge fields as

$$
\begin{aligned}
A_{\mu}^{L} & =A_{\mu}+B_{\mu} \\
A_{\mu}^{R} & =A_{\mu}-B_{\mu}
\end{aligned}
$$

we can separate a non-dynamical mode B_{μ} as

$$
\begin{gathered}
S=\int d^{3} x \operatorname{tr}\left(-\left(D_{\mu} Z^{A}-i\left\{B_{\mu}, Z^{A}\right\}\right){\overline{\left(D_{\mu} Z^{A}-i\left\{B_{\mu}, Z^{A}\right\}\right)}}^{T}\right. \\
\left.+L \epsilon^{\mu \nu \lambda}\left(B_{\mu} F_{\nu \lambda}+\frac{2 i}{3} B_{\mu} B_{\nu} B_{\lambda}\right)\right)
\end{gathered}
$$

where

$$
\begin{aligned}
D_{\mu} Z^{A} & =\partial_{\mu} Z^{A}-i\left[A_{\mu}, Z^{A}\right] \\
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i\left[A_{\mu}, A_{\nu}\right] .
\end{aligned}
$$

We divide Z^{A} into two real matrices as

$$
Z^{A}=i X^{A}+X^{p+A},
$$

and consider fluctuations around a background solution as $X^{p}=v I+\tilde{X}^{p}$. If we rescale L and B_{μ} as

$$
\begin{aligned}
L & =\mathcal{O}(v) \\
B_{\mu} & =\mathcal{O}\left(\frac{1}{v}\right)
\end{aligned}
$$

and use the equation of motion of B_{μ},

$$
B^{\mu}=\frac{L}{8 v^{2}} \epsilon^{\mu \nu \lambda} F_{\nu \lambda}-\frac{1}{2 v} D^{\mu} X^{2 p}+\mathcal{O}\left(\frac{1}{v^{2}}\right),
$$

the action reduces to

$$
S \rightarrow \int d^{3} x \operatorname{tr}\left(-g^{2} F_{\mu \nu}^{2}-\left(D_{\mu} X^{i}\right)^{2}\right)
$$

in $v \rightarrow \infty$, where $g=\frac{L}{v}$ and i runs from 1 to $2 \mathrm{p}-1$. Therefore, we conclude that the Novel Higgs mechanism works in the Chern-Simons gauge theory with the hermitian generalized Jordan triple system in the previous section with $\mathrm{M}=\mathrm{N}$, and we obtain a Yang-Mills theory in this limit.

References

[1] J. Bagger, N. Lambert, "Modeling Multiple M2's," Phys. Rev. D75: 045020, 2007, hep-th/0611108.
[2] A. Gustavsson, "Algebraic structures on parallel M2-branes," Nucl. Phys. B811: 66, 2009, arXiv:0709.1260 [hep-th].
[3] J. Bagger, N. Lambert, "Gauge Symmetry and Supersymmetry of Multiple M2Branes," Phys. Rev. D77: 065008, 2008, arXiv:0711.0955 [hep-th].
[4] O. Aharony, O. Bergman, D. L. Jafferis, J. Maldacena, "N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals," JHEP 0810: 091, 2008, arXiv:0806.1218 [hep-th]
[5] J. Bagger, N. Lambert, "Three-Algebras and N=6 Chern-Simons Gauge Theories," Phys. Rev. D79: 025002, 2009, arXiv:0807.0163 [hep-th]
[6] M. Sato, " Covariant Formulation of M-Theory," Int. J. Mod. Phys. A24 (2009), 5019, arXiv:0902.1333 [hep-th]
[7] M. Sato, "Model of M-theory with Eleven Matrices," JHEP 1007 (2010) 026, arXiv:1003.4694 [hep-th]
[8] M. Sato, "Supersymmetry and the Discrete Light-Cone Quantization Limit of the Lie 3-algebra Model of M-theory," Phys. Rev. D85 (2012) 046003, arXiv:1110.2969 [hep-th]
[9] M. Sato, "Zariski Quantization as Second Quantization," Phys. Rev. D85 (2012) 126012, arXiv:1202.1466 [hep-th]
[10] M. Sato, "3-Algebras in String Theory," Linear Algebra - Theorems and Applications, Edited by Hassan Abid Yasser, InTech, Croatia, 2012
[11] M. Sato, "Three-Algebra BFSS Matrix Theory," Int.J.Mod.Phys. A28 (2013) 1350155, arXiv:1304.4430 [hep-th]
[12] M. Sato, "Extension of IIB Matrix Model by Three-Algebra," Int.J.Mod.Phys. A28 (2013) 1350083, arXiv:1304.4796 [hep-th]
[13] M. Sato, "Four-algebraic extension of the IIB matrix model," PTEP 2013 (2013) 7, 073 B04, arXiv:1304.7904 [hep-th]
[14] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D7 (1973) 2405.
[15] V. T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26, No. 6, (1985) 126140.
[16] E. Bergshoeff, E. Sezgin, P.K. Townsend, Supermembranes and Eleven-Dimensional Supergravity, Phys. Lett. B189 (1987) 75.
[17] H. Awata, M. Li, D. Minic, T. Yoneya, On the Quantization of Nambu Brackets, JHEP 0102 (2001) 013.
[18] B. de Wit, J. Hoppe, H. Nicolai, On the Quantum Mechanics of Supermembranes, Nucl. Phys. B305 (1988) 545.
[19] D. Minic, "M-theory and Deformation Quantization," arXiv:hep-th/9909022.
[20] J. Figueroa-O'Farrill, G. Papadopoulos, "Pluecker-type relations for orthogonal planes," J. Geom. Phys. 49 (2004) 294, math/0211170]
[21] G. Papadopoulos, "M2-branes, 3-Lie Algebras and Plucker relations," JHEP 0805 (2008) 054, arXiv:0804.2662 [hep-th]
[22] J. P. Gauntlett, J. B. Gutowski, "Constraining Maximally Supersymmetric Membrane Actions," JHEP 0806 (2008) 053, arXiv:0804.3078 [hep-th]
[23] D. Gaiotto, E. Witten, "Janus Configurations, Chern-Simons Couplings, And The Theta-Angle in N=4 Super Yang-Mills Theory," arXiv:0804.2907[hep-th]
[24] Y. Honma, S. Iso, Y. Sumitomo, S. Zhang, "Janus field theories from multiple M2 branes," Phys.Rev.D78:025027,2008, arXiv:0805.1895 [hep-th].
[25] K. Hosomichi, K-M. Lee, S. Lee, S. Lee, J. Park, "N=5,6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds," JHEP 0809 (2008) 002, arXiv:0806.4977[hep-th]
[26] M. Schnabl, Y. Tachikawa, "Classification of N=6 superconformal theories of ABJM type," arXiv:0807.1102[hep-th]
[27] S. Mukhi, C. Papageorgakis, M2 to D2, JHEP 0805 (2008) 085.
[28] J. Gomis, G. Milanesi, J. G. Russo, "Bagger-Lambert Theory for General Lie Algebras," JHEP 0806: 075, 2008, arXiv:0805.1012 [hep-th].
[29] S. Benvenuti, D. Rodriguez-Gomez, E. Tonni, H. Verlinde, "N=8 superconformal gauge theories and M2 branes," JHEP 0901: 078, 2009, arXiv:0805.1087 [hep-th].
[30] P.-M. Ho, Y. Imamura, Y. Matsuo, "M2 to D2 revisited," JHEP 0807: 003, 2008, arXiv:0805.1202 [hep-th].
[31] M. A. Bandres, A. E. Lipstein, J. H. Schwarz, "Ghost-Free Superconformal Action for Multiple M2-Branes," JHEP 0807: 117, 2008, arXiv:0806.0054 [hep-th]
[32] P. de Medeiros, J. Figueroa-O'Farrill, E. Me'ndez-Escobar, P. Ritter, "On the Lie-algebraic origin of metric 3-algebras," Commun. Math. Phys. 290 (2009) 871, arXiv:0809.1086 [hep-th]
[33] S. A. Cherkis, V. Dotsenko, C. Saeman, "On Superspace Actions for Multiple M2Branes, Metric 3-Algebras and their Classification," Phys. Rev. D79 (2009) 086002, arXiv:0812.3127 [hep-th]
[34] P.-M. Ho, Y. Matsuo, S. Shiba, "Lorentzian Lie (3-)algebra and toroidal compactification of M/string theory," arXiv:0901.2003 [hep-th]
[35] P. de Medeiros, J. Figueroa-O'Farrill, E. Mendez-Escobar, P. Ritter, "Metric 3-Lie algebras for unitary Bagger-Lambert theories," JHEP 0904: 037, 2009, arXiv:0902.4674 [hep-th]
[36] H. Nishino, S. Rajpoot, Triality and Bagger-Lambert Theory, Phys. Lett. B671 (2009) 415, arXiv:0901.1173.
[37] A. Gustavsson, S-J. Rey, Enhanced N=8 Supersymmetry of ABJM Theory on R(8) and $R(8) / Z(2)$, arXiv:0906.3568 [hep-th].
[38] O. Aharony, O. Bergman, D. L. Jafferis, Fractional M2-branes, JHEP 0811 (2008) 043, arXiv:0807.4924.
[39] M. Hanada, L. Mannelli, Y. Matsuo, Large-N reduced models of supersymmetric quiver, Chern-Simons gauge theories and ABJM, arXiv:0907.4937 [hep-th].
[40] G. Ishiki, S. Shimasaki, A. Tsuchiya, Large N reduction for Chern-Simons theory on S^{3}, Phys. Rev. D80 (2009) 086004, arXiv:0908.1711.
[41] H. Kawai, S. Shimasaki, A. Tsuchiya, Large N reduction on group manifolds, arXiv:0912.1456 [hep-th].
[42] G. Ishiki, S. Shimasaki, A. Tsuchiya, A Novel Large-N Reduction on S^{3} : Demonstration in Chern-Simons Theory, arXiv:1001.4917 [hep-th].
[43] Y. Pang, T. Wang, From N M2's to N D2's, Phys. Rev. D78 (2008) 125007, arXiv:0807.1444.
[44] J. DeBellis, C. Saemann, R. J. Szabo, Quantized Nambu-Poisson Manifolds in a 3-Lie Algebra Reduced Model, JHEP 1104 (2011) 075, arXiv:1012.2236.
[45] M. M. Sheikh-Jabbari, Tiny Graviton Matrix Theory: DLCQ of IIB Plane-Wave String Theory, A Conjecture, JHEP 0409 (2004) 017, arXiv:hep-th/0406214.
[46] J. Gomis, A. J. Salim, F. Passerini, Matrix Theory of Type IIB Plane Wave from Membranes, JHEP 0808 (2008) 002, arXiv:0804.2186.
[47] K. Hosomichi, K. Lee, S. Lee, Mass-Deformed Bagger-Lambert Theory and its BPS Objects, Phys.Rev. D78 (2008) 066015, arXiv:0804.2519.
[48] L. Smolin, "M theory as a matrix extension of Chern-Simons theory," Nucl.Phys.B591(2000) 227, hep-th/0002009.
[49] L. Smolin, "The cubic matrix model and a duality between strings and loops," hepth/0006137.
[50] T. Azuma, S. Iso, H. Kawai, Y. Ohwashi, "Supermatrix Models," Nucl.Phys.B610(2001) 251, hep-th/0102168.
[51] J. Palmkvist, "Unifying $N=5$ and $N=6$," JHEP 1105 (2011) 088, arXiv:1103.4860.
[52] N.Kamiya,;A structure theory of Freudenthal-Kantor triple systems,J.Alg. 110 (1987) 108-123.
[53] N.Kamiya,;A structure theory of Freudenthal-Kantor triple systems II,Comm. Math.Univ.Sancti Pauli.,38(1989)41-60.
[54] N.Kamiya,;A structure theory of Freudenthal-Kantor triple systems III, Mem.Fac. Sci.Shimane Univ. 23(1989)33-51.
[55] N.Kamiya,;The construction of all Simple Lie algebras over C from balanced Freudenthal-Kantor triple systems, Contributions to General Algebra 7,Verlag Hoder-Pichler-Tempsky, Wien,Veralg.G.Teubner,Stutugart(1991) 205-213.
[56] N.Kamiya,;On Freudenthal-Kantor triple systems and generalized structurable algebras, Proceeding in International conference of nonassociative algebras and its applications, Mathematics and Its Applications 303(1994) 198-203,Kluwer Academic Publisher,
[57] N.Kamiya,;On the Peirce decompostions for Freudenthal-Kantor triple systerns, Comm. in Alg. 25,(6),(1997),1833-1844.
[58] N.Kamiya, Examples of Peirce decomposition of generalized Jordan triple system of second order,-balanced cases-, Contemmporary Math., vol.391,AMS.(2005), Noncommutative Geometry and Representation theory an Mathematical Physics,(ed)Fuchs, p157-165.
[59] N.Kamiya and S.Okubo, On δ-Lie supertriple systems associated with (ε, δ)-Freudenthal-Kantor triple systems, Proc. Edinb. Math.Soc. 43(2000),243-260.
[60] I.L.Kantor and N.Kamiya, A Peirce decomposition for generalized Jordan triple systems of second order, Comm in Alg.,31(2003),5875-5913.
[61] I.L.Kantor,;Models of exceptional Lie algebras, Soviert Math.Dokl.14(1973) 254-258.
[62] I.L.Kantor,;Some generalization of Jordan algebras,Trudy Sem.Vektor, Tensor Ana1.16(1972)407-499(Russian).
[63] W.Kaup,;Algebraic characterization of symmetric complex Banach manifoleds, Math. Ann.228. (1977)39-64.
[64] I.Loos,;Bounded symmetric domains and Jordan pairs,Mathematical Lectures.Invine: University of California at Irwine,1977.
[65] K.Meyberg;;Lecture on algebras and triple systems,Lecture Notes,the Univ. ofVirginia,1972.
[66] E.Neher;;On the radical of J*-triples, Math.Z.211. (1992)323-332.
[67] B.N.Allison,; A class of nonassociative algebras with involution containing class of Jordan algebras, Math.Ann., 1978,237(2),133-156.
[68] N.Jacobson,;Structure and representations of Jordan algebras. Amer. Math. Soc.,Providence.R.1.,1968.
[69] S.Okubo,;Introduction to Octonion and Other Non-associative Algebras in Physics, Cambridge Univ.Press. 1995.
[70] 1.Satake,;Algebraic structure of symmetric domains,Princeton University press.1980.
[71] R.D.Shafer,;An introduction to Non-associative Algebras,Academicpress, 1966.
[72] N.Kamiya and D.Mondoc; A new class of nonassociative algebras with involution, Proc.Japan Acad.,84 Ser.A(2008),no5,68-72,
[73] N.Kamiya and S.Okubo,; A construction of simple Lie superalgebras of certain type from triple systems, Bull.Australia Math.Soc. vol.69,(2004) 113-123.
[74] N.Kamiya and S.Okubo,; Construction of Lie superalgebrasD(2,1, α), $G(3)$ and $F(4)$ from some triple systems. Proc. Edinburgh Math. Soc. (2003) 46, 87-98.
[75] N. Kamiya, M. Sato, "Hermitian generalised Jordan triple systems and certain applications to field theory," International Journal of Modern Physics A29 (2014) 1450071.
[76] N.Kamiya and M.Sato, "Hermitian ($\epsilon, \delta)$-Freudenthal-Kantor triple systems and certain applications of *-generalized Jordan triple systems to field theory," Advances in High Energy Physics 2014 (2014) 310264.

[^0]: ${ }^{1}$ This definition is slightly different with that in $[75,76]$ ．

