On a Characterization of the Bilinear Forms Graphs $Bil_q(d \times d)$

Research on finite groups and their representations, vertex operator algebras, and algebraic combinatorics

Author(s)
Gavrilyuk, Alexander L.; Koolen, Jack H.

Citation
数理解析研究所講究録 2014, 1926: 132-139

Issue Date
2014-12

URL
http://hdl.handle.net/2433/223496

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
On a Characterization of the Bilinear Forms Graphs

$Bil_q(d \times d)$

Alexander L. Gavrilyuk, Jack H. Koolen

June 10, 2014

1 Introduction

Much attention has been paid to a problem of classification of all Q-polynomial distance-regular graphs with large diameter [1] (for the definitions, we refer the reader to Section 2). One of the steps towards solution of this problem is a characterization of known distance-regular graphs by their intersection arrays. For the current status of the classification of the Q-polynomial distance-regular graphs, we refer the reader to the survey paper [3] by Van Dam, Koolen and Tanaka.

The bilinear forms graph denoted here by $Bil_q(d \times n)$ is a graph defined on the set of $d \times n$-matrices over \mathbb{F}_q with two matrices being adjacent if and only if the rank of their difference is 1. We refer to [2, Chapter 9.5.A] for the detailed description of these graphs.

In 1999, K. Metsch [5] obtained the following result.

Result 1.1 The bilinear forms graph $Bil_q(d \times n)$ is characterized by its intersection array if:

- $q = 2$ and $n \geq d + 4$,
- $q \geq 3$ and $n \geq d + 3$.

Thus, the open cases are:

- $q = 2$ and $n \in \{d, d + 1, d + 2, d + 3\}$,
- $q \geq 3$ and $n \in \{d, d + 1, d + 2\}$.

In this paper, we discuss a problem of characterization of the bilinear forms graphs $Bil_q(d, d)$, $d \geq 3$, by their intersection arrays.
This paper is based on a talk given at RIMS, and describes a sketch of the proof of our main result (see Section 3). The details of the proof will be given elsewhere.

2 Definitions and preliminaries

All the graphs considered in this paper are finite, undirected and simple. Suppose that Γ is a connected graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$, where $E(\Gamma)$ consists of unordered pairs of adjacent vertices. The distance $d(x, y)$ between any two vertices x, y of Γ is the length of a shortest path connecting x and y in Γ.

For a subset X of the vertex set of Γ, we will also write X for the subgraph of Γ induced by X. For a vertex $x \in V(\Gamma)$, define $\Gamma_i(x)$ to be the set of vertices which are at distance precisely i from x (0 \leq i \leq D), where D := max{$d(x, y) \mid x, y \in V(\Gamma)$} is the diameter of Γ. In addition, define $\Gamma_{-1}(x) = \Gamma_{D+1}(x) = \emptyset$. The subgraph induced by $\Gamma_1(x)$ is called the neighborhood or the local graph of a vertex x. The ball of radius 1 around x is denoted by x^+, i.e. $x^+ = \{x\} \cup \Gamma_1(x)$. We write $\Gamma(x)$ instead of $\Gamma_1(x)$ for short, and we denote $x \sim y$ or simply $x \sim y$ if two vertices x and y are adjacent in Γ. For a graph G, a graph Γ is called locally G if any local graph of Γ is isomorphic to G.

For a set of vertices x_1, \ldots, x_n, let $\Gamma(x_1, \ldots, x_n)$ denote $\bigcap_{i=1}^{n} \Gamma_1(x_i)$. Moreover, if x and y are at distance 2 in Γ, we call $\Gamma(x, y)$ the μ-graph of x, y.

The eigenvalues of a graph are the eigenvalues of its adjacency matrix (recall that they are algebraic integers). If, for some eigenvalue η of Γ, its eigenspace contains a vector orthogonal to the all ones vector, we say the eigenvalue η is non-principal. If Γ is regular with valency k then all its eigenvalues are non-principal unless the graph is connected and then the only eigenvalue that is principal is its valency k.

For a graph Γ and its vertex x, we say that η is a local eigenvalue at x, if η is an eigenvalue of $\Gamma_1(x)$.

A connected graph Γ with diameter D is called distance-regular if there exist integers b_{i-1}, c_i (1 \leq i \leq D) such that, for any two vertices $x, y \in V(\Gamma)$ with $d(x, y)$ = i, there are precisely c_i neighbors of y in $\Gamma_{i-1}(x)$ and b_i neighbors of y in $\Gamma_{i+1}(x)$. In particular, any distance-regular graph is regular with valency $k := b_0$. We define $a_i := k - b_i - c_i$ for notational convenience and note that $a_i = |\Gamma(y) \cap \Gamma_1(x)|$ holds for any two vertices x, y with $d(x, y)$ = i (1 \leq i \leq D). The array $\{b_0, b_1, \ldots, b_{D-1}; c_1, c_2, \ldots, c_D\}$ is called the intersection array of the distance-regular graph Γ.

A distance-regular graph with diameter 2 is called a strongly regular graph. We say that a strongly regular graph Γ has parameters (ν, k, λ, μ), if $\nu = |V(\Gamma)|$, k is its valency, $\lambda := a_1$, and $\mu := c_2$.

If a graph Γ is distance-regular then, for all integers h, i, j (0 \leq h, i, j \leq D), and all vertices $x, y \in V(\Gamma)$ with $d(x, y)$ = h, the number

\[p^h_{ij} := |\{z \in V(\Gamma) \mid d(x, z) = i, d(y, z) = j\}| \]
does not depend on the choice of x, y. The numbers p_{ij}^h are called the intersection numbers of Γ.

Note that $c_i = p_{i+1}^i$, $a_i = p_{i}^i$, and $b_i = p_{1i}^i$.

For each integer i ($0 \leq i \leq D$), the ith distance matrix A_i of Γ has rows and columns indexed by the vertex of Γ, and, for any $x, y \in V(\Gamma)$,

$$(A_i)_{x,y} = \begin{cases} 1 & \text{if } d(x, y) = i, \\ 0 & \text{if } d(x, y) \neq i. \end{cases}$$

Then $A := A_1$ is just the adjacency matrix of Γ, $A_0 = I$, $A_i^T = A_i$ ($0 \leq i \leq D$), and

$$A_i A_j = \sum_{h=0}^{D} p_{ij}^h A_h \quad (0 \leq i, j \leq D),$$

in particular,

$$A_1 A_i = b_{i-1} A_{i-1} + a_i A_i + c_{i+1} A_{i+1} \quad (1 \leq i \leq D-1),$$

$$A_1 A_D = b_{D-1} A_{D-1} + a_D A_D,$$

and this implies that $A_i = p_i(A_1)$ for certain polynomial p_i of degree i.

The Bose-Mesner algebra \mathcal{M} of Γ is a matrix algebra generated by A_1 over \mathbb{C}. It follows that \mathcal{M} has dimension $D + 1$, and it is spanned by the set of matrices $A_0 = I, A_1, \ldots, A_D$, which form a basis of \mathcal{M}.

Since the algebra \mathcal{M} is semi-simple and commutative, \mathcal{M} also has a basis of pairwise orthogonal idempotents $E_0 := \frac{1}{|V(\Gamma)|} J, E_1, \ldots, E_D$ (the so-called primitive idempotents of \mathcal{M}):

$$E_i E_j = \delta_{ij} E_i \quad (0 \leq i, j \leq D),$$

$$E_i = E_i^T \quad (0 \leq i, j \leq D),$$

$$E_0 + E_1 + \ldots + E_D = I,$$

where J is the all ones matrix.

In fact, E_j ($0 \leq j \leq D$) is the matrix representing orthogonal projection onto the eigenspace of A_1 corresponding to some eigenvalue of Γ. In other words, one can write

$$A_1 = \sum_{j=0}^{D} \theta_j E_j,$$

where θ_j ($0 \leq j \leq D$) are the real and pairwise distinct scalars, known as the eigenvalues of Γ. We say that the eigenvalues are in natural order if $b_0 = \theta_0 > \theta_1 > \ldots > \theta_D$. We denote $\hat{\theta}_i = -1 - \frac{b_i}{\theta_i}$ for $i \in \{1, D\}$.

The Bose-Mesner algebra \mathcal{M} is also closed under entrywise (Hadamard or Schur) matrix multiplication, denoted by \circ. Then the matrices A_0, A_1, \ldots, A_D are the primitive idempotents of \mathcal{M} with respect to \circ, i.e., $A_i \circ A_j = \delta_{ij} A_i$, and $\sum_{i=0}^{D} A_i = J$. This implies that

$$E_i \circ E_j = \sum_{h=0}^{D} q_{ij}^h E_h \quad (0 \leq i, j \leq D)$$
holds for some real numbers q_{ij}^{h}, known as the Krein parameters of Γ.

Let Γ be a distance-regular graph, and E be a primitive idempotent of its Bose-Mesner algebra. The graph Γ is called Q-polynomial (with respect to E) if there exist real numbers $c_{i}^{*}, a_{i}^{*}, b_{i-1}^{*}$ $(1 \leq i \leq D)$ and an ordering of primitive idempotents such that $E_{0} = \frac{1}{|V(\Gamma)|}J$ and $E_{1} = E$, and

$$E_{1} \circ E_{i} = b_{i-1}^{*}E_{i-1} + a_{i}^{*}E_{i} + c_{i+1}^{*}E_{i+1} \quad (1 \leq i \leq D - 1),$$

$$E_{1} \circ E_{D} = b_{D-1}^{*}E_{D-1} + a_{D}^{*}E_{D}.$$

Note that a Q-polynomial ordering of the eigenvalues/idempotents does not have to be the natural ordering.

Further, the dual eigenvalues of Γ associated with E are the real scalars $\theta_{i}^{*} (0 \leq i \leq D)$ defined by

$$E = \frac{1}{|V(\Gamma)|} \sum_{i=0}^{D} \theta_{i}^{*}A_{i}.$$

We say that a distance-regular graph Γ has classical parameters (D, b, α, β) if the diameter of Γ is D, and the intersection numbers of Γ satisfy

$$c_{i} = \left[\begin{array}{c} i \\ 1 \end{array} \right] \left(1 + \alpha \left[\begin{array}{c} i - 1 \\ 1 \end{array} \right] \right),$$

(1)

so that, in particular, $c_{2} = (b + 1)(\alpha + 1),$

$$b_{i} = \left(\left[\begin{array}{c} D \\ 1 \end{array} \right] - \left[\begin{array}{c} i \\ 1 \end{array} \right] \right) \left(\beta - \alpha \left[\begin{array}{c} i \\ 1 \end{array} \right] \right),$$

(2)

where

$$\left[\begin{array}{c} j \\ 1 \end{array} \right] := 1 + b + b^{2} + \ldots + b^{j-1}.$$

The following important fact about Q-polynomial distance-regular graphs was proven in [7].

Result 2.1 Let Γ be a Q-polynomial distance-regular graph with diameter $D \geq 3$. Then, for any $i = 2, \ldots, D - 1$, there exists a polynomial T_{i} of degree 4 such that, for any vertex $x \in V(\Gamma)$ and any non-principal eigenvalue η of the local graph of x, $T_{i}(\eta) \geq 0$ holds. The polynomials T_{i}, $i = 2, \ldots, D - 1$, differ only in a scalar multiple.

We call these polynomials the Terwilliger polynomials of Γ. The existence of these polynomials was established in [7]. In [4], the polynomial T_{2} was calculated explicitly.
Result 2.2 Suppose that Γ has classical parameters (D, b, α, β). Then the Terwilliger polynomial $T_2(\lambda)$ of Γ is

$$T_2(\lambda) = \frac{-b_2}{\alpha + 1} \left(-\lambda^2 + \alpha \left[\frac{D}{1} \right] + \beta - \alpha - 1 - (\alpha + 1)(b + 1) + \beta \left[\frac{D}{1} \right] - (\alpha + 1)(b + 1) \right) \times \left(\lambda^2 + \lambda(2 - \alpha b) - \alpha b + 1 \right) - b_2^2 (\lambda + 1)^2. \quad (\text{3})$$

Furthermore, the roots of $T_2(\lambda)$ are

$$\beta - \alpha - 1, -1, -b - 1, \alpha b \frac{b^{D-1} - 1}{b - 1} - 1.$$

Note that the bilinear forms graph $Bil_q(d \times n)$, $n \geq d$, has classical parameters $(D, b, \alpha, \beta) = (d, q, q - 1, q^n - 1)$. In particular, if Γ is a distance-regular graph with the same intersection array as $Bil_q(d \times d)$, $d \geq 3$, then, for any vertex $x \in V(\Gamma)$ and any non-principal eigenvalue η of the local graph of x, one has:

$$\eta \in [-q - 1, -1] \text{ or } \eta = q^n - q - 1, \quad (\text{4})$$

3 Main result

In this section, we suppose that Γ is a distance-regular graph with the same intersection array as $Bil_2(d \times d)$, $d \geq 3$.

Proposition 3.1 The local graph of any vertex x of Γ is the $(2^d - 3) \times (2^d - 3)$-grid.

Proof: By (4), for $q = 2$, a local non-principal eigenvalue η at any vertex $x \in \Gamma$ satisfies:

$$\eta \in [-3, -1] \text{ or } \eta = 2^d - 3.$$

Claim 3.2 $\Gamma_1(x)$ has only integral eigenvalues, i.e., $-3, -2, -1, \text{ or } 2^d - 3$.

Proof: Recall that the eigenvalues of a graph are algebraic integers, and their product is an integer. Let η_1, \ldots, η_s be all irrational eigenvalues of $\Gamma_1(x)$. Then $\eta_i \in (-3, -1)$ and $\Pi_{i=1}^s \eta_i$ is an integer, and thus $\Pi_{i=1}^s (\eta_i + 2)$ is an integer. Now $\eta_i \in (-3, -1) \Rightarrow |\eta_i + 2| < 1 \Rightarrow \Pi_{i=1}^s (\eta_i + 2) = 0$. The claim is proved.

Claim 3.3 $\Gamma_1(x)$ has spectrum $2(2^n - 2)^1$, $(2^n - 3)^2(2^n - 2)$, $(-2)^{(2^n - 1)^2}$.

Proof: Recall the following basic fact from algebraic graph theory. Let $\theta_0^{m_0}, \theta_1^{m_1}, \ldots, \theta_s^{m_s}$ be the spectrum of a regular (with valency k) graph on v vertices, and A be its adjacency matrix. Then:

$$\sum_{i=0}^{s} m_i = v, \quad tr(A) = \sum_{i=0}^{s} m_i \theta_i = 0, \quad tr(A^2) = \sum_{i=0}^{s} m_i \theta_i^2 = vk,$$

(5)

where we may put $\theta_0 = k$ and, moreover, $m_0 = 1$ if the graph is connected.

Apply this fact to $\Gamma_1(x)$. In our notation:

$$b_0 = v = (2^n - 1)^2, \quad \theta_0 = k = a_1 = 2(2^n - 2),$$

$$\theta_1 = 2^n - 3, \quad \theta_2 = -1, \quad \theta_3 = -2, \quad \theta_4 = -3,$$

and m_1, m_2, m_3, m_4 are unknown multiplicities of $\theta_1, \theta_2, \theta_3, \theta_4$, respectively, while $m_0 = 1$ (as $\Gamma_1(x)$ is connected).

Then (5) gives a system of (three) linear equations with respect to (four) unknowns m_1, \ldots, m_4. One can show that this system has the only non-negative integral solution:

$$m_1 = 2(2^n - 2), \quad m_2 = 0, \quad m_3 = (2^n - 1)^2, \quad m_4 = 0,$$

which shows the claim.

We now see that $\Gamma_1(x)$ is a regular graph with exactly 3 distinct eigenvalues. This yields that $\Gamma_1(x)$ is a strongly regular graph with smallest eigenvalue -2. It now easily follows from Seidel's classification of strongly regular graphs with smallest eigenvalue -2, see [9], that $\Gamma_1(x)$ is a $(2^d - 3) \times (2^d - 3)$-grid.

Lemma 3.4 For every pair of vertices $x, y \in \Gamma$ with $d(x, y) = 2$, the induced subgraph $\Gamma(x) \cap \Gamma(y)$ is a 6-gon.

Proof: The lemma easily follows from Proposition 3.1 and the fact that $c_2 = 6$.

We now see that Γ has the same local graphs as $Bil_2(d \times d)$.

Let \mathcal{H} denote the bilinear forms graph $Bil_2(d \times d)$. For vertices $x \in \mathcal{H}, x \in \Gamma$, an isomorphism $\varphi : x^+ \to x^+$ is called extendable if there is a bijection $\varphi' : x^+ \cup \mathcal{H}_2(x) \to x^+ \cup \Gamma_2(x)$, mapping edges to edges, such that $\varphi'|_{x^+} = \varphi$ (in this case φ' is called the extension of φ). We say that Γ has distinct μ-graphs if $\Gamma(x, y) = \Gamma(x, z)$ for $y, z \in \Gamma_2(x)$ implies $y = z$. This property yields that the extension φ' above is unique.

A graph Δ is called triangulable if every cycle in it can be decomposed into a product of triangles (see [6, Section 6]).

For the following result, see [6, Theorem 7.1].
Result 3.5 Assume:

(1) Γ has distinct μ-graphs.

(2) There exist a vertex x of H and a vertex x of Γ, and an extendable isomorphism $\varphi : x^\perp \rightarrow x^\perp$.

(3) If x, x are vertices of H, Γ, respectively, $\varphi : x^\perp \rightarrow x^\perp$ is an extendable isomorphism, φ' is its extension, and $w \in H(x)$, then $\varphi'|_w : w^\perp \rightarrow \varphi(w)^\perp$ is extendable.

(4) H is triangulable.

Then Γ is covered by H.

Indeed, since Γ and H have the same intersection arrays, Result 3.5 implies that $\Gamma \cong H$.

It is not difficult to see that Γ satisfies Conditions (1) and (4) of Result 3.5.

Let $\Gamma(x) := \{w_{ij}\}_{i,j}$, and, as usually, for distinct pairs (i, j) and (i', j'), $w_{ij} \sim w_{i'j'}$ holds if and only if $i = i'$ or $j = j'$. Denote by L_i the maximal clique of $\Gamma(x)$ that contains the vertices w_{ij} for all j, and by L_j^T the maximal clique of $\Gamma(x)$ that contains the vertices w_{ij} for all i. For a vertex $x \in \Gamma$, x^\perp denotes $\{x\} \cup \Gamma(x)$.

Without loss of generality, we may assume that there is a vertex $z \in \Gamma_2(x)$ such that $\Gamma(x, z) \subset L_1 \cup L_2 \cup L_3$. Define a subgraph Σ induced in Γ by the vertex subset

$$\{x\} \cup L_1 \cup L_2 \cup L_3 \cup \{z' \in \Gamma_2(x) \mid \Gamma(x, z') \subset L_1 \cup L_2 \cup L_3\},$$

so that $\Sigma(x) = L_1 \cup L_2 \cup L_3$.

In order to show that Γ satisfies Conditions (2) and (3) of Result 3.5, one has to show the following.

Lemma 3.6 Σ is isomorphic to $\text{Bil}_2(2, d)$.

The main result of this work is the following theorem.

Theorem 3.7 The bilinear forms graphs $\text{Bil}_2(d, d)$, $d \geq 3$, are uniquely determined by their intersection arrays.

Acknowledgements. Part of this work was done while the first author was visiting Tohoku University as a JSPS Postdoctoral Fellow.
References

ALG:
Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, JAPAN
and
N.N. Krasovsky Institute of Mathematics and Mechanics UB RAS, Kovalevskaya str., 16, Ekaterinburg 620990, RUSSIA
E-mail address: alexander.gavriliouk@gmail.com

JHK:
School of Mathematical Sciences
University of Science and Technology of China, Hefei, 230026, Anhui, PR CHINA
E-mail address: koolen@ustc.edu.cn