<table>
<thead>
<tr>
<th>Title</th>
<th>On transversal designs and their automorphism groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>平峰, 豊</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2014), 1926: 25-34</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2014-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/223510</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
On transversal designs and their automorphism groups

Yutaka Hiramine
Department of Mathematics, Faculty of Education, Kumamoto University, Kurokami, Kumamoto, Japan
hiramine@kumamoto-u.ac.jp

In this talk we consider automorphism groups SCTs of transversal designs acting regularly on the set of point classes and determine the relations among SCTs, RDSs and λ-planar functions.

1 Transversal Designs and Difference Matrices

Definition 1.1. A transversal design $TD_\lambda(k,u)$ ($u > 1$) is an incidence structure $D = (\mathbb{P}, \mathbb{B})$, where

(i) \mathbb{P} is a set of uk points partitioned into k classes C_1, \ldots, C_k (called point classes), each of size u,

(ii) \mathbb{B} is a collection of k-subsets of \mathbb{P} (called blocks),

(iii) Any two distinct points in the same point class are incident with no blocks and any two points in distinct point classes are incident with exactly λ blocks.

By definition, $|\mathbb{P}| = uk$, $|\mathbb{B}| = u^2\lambda$ and every block B_j of \mathbb{B} intersects in each point class C_ℓ ($1 \leq \ell \leq k$) in exactly one point.

Example 1.2. Set $F = GF(q)$. Then the following is a $TD_1(q,q)$.

$\mathbb{P} = F \times F$, $\mathbb{B} = \{y = ax + b \mid a, b \in F\}$, $\mathfrak{C} = \{C_i := \{i\} \times F \mid i \in F\}$.

\[
\begin{array}{cccc}
C_1 & \vdots \\
\vdots & \vdots \\
C_\ell & \vdots \\
\vdots & \vdots \\
C_k & \vdots \\
\end{array}
\]

B_j

$|\mathbb{P}| = uk$

$|\mathbb{B}| = u^2\lambda$

u
Transversal designs and their automorphism groups

Let $\mathcal{D}=(\mathbb{P}, \mathbb{B})$ be a TD$_{\lambda}(k,u)$ with k point classes C_1, \cdots, C_k and let U be a subgroup of Aut(\mathcal{D}) acting regularly on each C_i. Choose $p_i \in C_i (1 \leq i \leq k)$ and let $B_1U, \cdots, B_{u\lambda}U$ be the U-orbits on \mathbb{B}. Then a $k \times u\lambda$ matrix
\[
\begin{bmatrix}
d_{1,1} & \cdots & d_{1,u\lambda} \\
\vdots & & \vdots \\
d_{k,1} & \cdots & d_{k,u\lambda}
\end{bmatrix}
\]
defined by $p_i d_{ij} \in B_j$ ($d_{ij} \in U$) has the following property.
\[
d_{i,1}d_{\ell,1}^{-1} + \cdots + d_{i,u\lambda}d_{\ell,u\lambda}^{-1} = \lambda U \ (\in \mathbb{Z}[U]), \ \forall i \neq \ell
\]

Difference matrices

Definition 1.3. Let U be a group of order u and $k, \lambda \in \mathbb{N}$

A $k \times u\lambda$ matrix
\[
\begin{bmatrix}
d_{1,1} & \cdots & d_{1,u\lambda} \\
\vdots & & \vdots \\
d_{k,1} & \cdots & d_{k,u\lambda}
\end{bmatrix}
\]
(d_{ij} \in U) is called a (u,k,λ)-difference matrix over U (a (U,k,λ)-DM) if
\[
d_{i,1}d_{\ell,1}^{-1} + \cdots + d_{i,u\lambda}d_{\ell,u\lambda}^{-1} = \lambda U \in \mathbb{Z}[U] \ (\forall i \neq \ell)
\]

Example 1.4. The following is a $(3,3,1)$-DM over $(\mathbb{Z}_3, +)$.
\[
M = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{bmatrix}
\]

Transversal designs obtained from difference matrices

Definition 1.5. Let $D = [d_{ij}]$ be a (u,k,λ)-difference matrix over a group U of order u. A transversal design TD$_{\lambda}(k,u)$ $\mathcal{D}_D(\mathbb{P}, \mathbb{B})$ is obtained from D in the following way:

$\mathbb{P} = \{1, \cdots, k\} \times U$

$\mathbb{B} = \{\{(1, d_{1,j}g), (2, d_{2,j}g), \cdots, (k, d_{k,j}g)\} \ | \ 1 \leq j \leq u\lambda, \ g \in U\}$

We note that $\{1\} \times U, \cdots, \{k\} \times U$ is the point classes of (\mathbb{P}, \mathbb{B}).

Example 1.6. The following is a TD$_1(3,3)$ obtained from M in Example 1.4.

$\mathbb{P} = \{1, 2, 3\} \times \mathbb{Z}_3$,

$\mathbb{B} = \\{(1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2)\}$

\mathfrak{C} (the point classes): $\{1\} \times \mathbb{Z}_3$, $\{2\} \times \mathbb{Z}_3$, $\{3\} \times \mathbb{Z}_3$.
Difference matrices and orthogonal arrays

Let $U = \{g_1, \cdots, g_u\}$ be a group of order u. A $k \times u\lambda$ (U, k, λ)-DM $D = [d_{ij}]$ is said to be normalized if each entry in its first row and column is equal to the identity of U.

Remark 1.7. Let notations be as mentioned above. Assume $[d_{ij}]$ is normalized. Then $(Dg_1, Dg_2, \cdots, Dg_u)$ is an OA$_{\lambda}(k, u)$ ([13]) with entries from U. Denote by $d_i = (d_{i1}, \cdots, d_{iu\lambda})$ the i-th row of $[d_{ij}]$. If $\lambda = 1$, then the following is a set of $k - 1$ mutually orthogonal Latin squares.

$$
\begin{bmatrix}
d_{2g_1} & \cdots & d_{kg_1} \\
\vdots & \ddots & \vdots \\
d_{2g_u} & \cdots & d_{kg_u}
\end{bmatrix}
$$

The following results on difference matrices are well known.

Result 1.8. (D. Jungnickel ([6])) If there exist a (u, k, λ)-DM then $k \leq u\lambda$.

The above result says that the TD$_{\lambda}(k, u)$ obtained from a (u, k, λ)-DM must satisfy $k \leq u\lambda$. However, in general, the following holds.

Result 1.9. (Drake-Jungnickel [7]) If there exists a TD$_{\lambda}(k, u)$, then

$$
(*) \quad k \leq (u^2\lambda - 1)/(u - 1).
$$

Example 1.10. Examples are known satisfying the equality in $(*)$ ([13] Proposition I.7.10). For example, there actually exist a TD$_2(7, 2)$ and a TD$_3(11, 2)$.

Given $u > 0$ and $\lambda > 0$, the number of rows k of a (u, k, λ)-DM over a group U of order u depends on the group of U.

Result 1.11. (D. A. Drake [3]) Let U be any group of even order u with a cyclic Sylow 2-subgroup. If M is a (u, k, λ)-DM over U with $2 \nmid \lambda$, then $k \leq 2$.

For example, it is well known that no $(2, 2n, n)$-DM (i.e. Hadamard matrix) exists for any odd integer $n > 1$. In general, if $2 \nmid \lambda$, there exists no $(2, k, \lambda)$-DM for $k \geq 3$.

In what follows we use a notation $I_m = \{1, 2, \cdots, m\}$ for positive integer m.
2 SCT groups

Definition 2.1. Let $\mathcal{D}(\mathbb{P}, \mathbb{B})$ be a transversal design $TD_\lambda(k, u)$ with the set of point classes $\mathfrak{C} = \{C_i | i \in I_k\}$, where $|\mathbb{P}| = uk$, $|\mathbb{B}| = u^2\lambda$ and $|C_i| = u$, $i \in I_k$. Let G be an automorphism group of \mathcal{D}. We say G is class-transitive if G is transitive on \mathfrak{C}. If G is a class-transitive group of order k and acts semi-regularly on \mathbb{B}, we say G is an $SCT(u, k, \lambda)$ group. We note that G is semiregular on \mathbb{P}.

\[G \text{-orbits on } \mathbb{P} \]

C₁

⋮

Cₖ

u

In the rest of this article we use the following notations.

Notation 2.2. Let $\mathcal{D}(\mathbb{P}, \mathbb{B})$ be a transversal design $TD_\lambda(k, u)$, where $|\mathbb{P}| = uk$ and $|\mathbb{B}| = u^2\lambda$ with the set of point classes $\{C_1, \cdots, C_k\}$. We fix a point class $C(\in \{C_1, \cdots, C_k\})$ of $D(\mathbb{P}, \mathbb{B})$. Assume a group $G (\leq \text{Aut}(\mathcal{D}))$ is an $SCT(u, k, \lambda)$ group of \mathcal{D}. Let $\mathbb{P}_1, \mathbb{P}_2, \cdots, \mathbb{P}_u$ be the G-orbits on \mathbb{P} ($|\mathbb{P}|/|G| = u$) and set $\{p_i\} = \mathbb{P}_i \cap C$ for each $i \in I_u$. Moreover, let $\mathbb{B}_1, \mathbb{B}_2, \cdots, \mathbb{B}_r$ be the G-orbits on \mathbb{B}, where $r = |\mathbb{B}|/|G|$, and choose blocks $B_1 \in \mathbb{B}_1$, $B_2 \in \mathbb{B}_2$, \cdots and $B_r \in \mathbb{B}_r$.

A matrix obtained from an SCT group of $TD_\lambda(k, u)$

Hypothesis 2.3. Under Notation 2.2, we define a $u \times r$ matrix $M = [D_{ij}]$ $(D_{ij} \subseteq G)$ over G of order k in the following manner.

\[D_{ij} = \{g \in G \mid p_i^g \in B_j\}, \quad i \in I_u, \quad j \in I_r, \]

\[M = \begin{bmatrix} D_{11} & D_{12} & \cdots & D_{1r} \\ \vdots & \vdots & \ddots & \vdots \\ D_{u1} & D_{u2} & \cdots & D_{ur} \end{bmatrix} \]
Theorem 2.4. Under Hypothesis 2.3, we have
\[(i) \sum_{i \in I_u} |D_{ij}| = k \quad \forall j \in I_r \text{ and}
(ii) \sum_{j \in I_r} D_{ij} D_{ij}^{(-1)} = \begin{cases} u\lambda + \lambda(G-1) & \text{if } i = \ell, \\ \lambda(G-1) & \text{otherwise}. \end{cases}\]

We define SCT matrices.

Definition 2.5. Let G be a group of order k and $M = [D_{ij}]$ a $u \times r$ matrix over $\mathbb{Z}[G]$, where $D_{ij} \subset G$ for $i \in I_u, j \in I_r$. We say M is an $SCT(u, k, \lambda)$ matrix over G if the following conditions are satisfied.
\[(i) \sum_{i \in I_u} |D_{ij}| = k \quad \forall j \in I_r \quad \text{and}
(ii) \sum_{j \in I_r} D_{ij} D_{ij}^{(-1)} = \begin{cases} u\lambda + \lambda(G-1) & \text{if } i = \ell, \\ \lambda(G-1) & \text{otherwise}. \end{cases}\]

Example 2.6. The following is an $SCT(2,5,5)$ over $\mathbb{Z}_5 = \langle a \rangle$.
\[
\begin{bmatrix}
1 & 1 + a & 1 + a^3 & 1 + a + a^2 + a^3 \\
1 + a^2 + a^3 + a^4 & a^2 + a^3 + a^4 & a^2 + a^4 & a^4
\end{bmatrix}
\]

We define an incidence structure corresponding to an $SCT(u, k, \lambda)$ matrix over a group G in the following manner.

Definition 2.7. Let $M = [D_{ij}]$ be a $u \times r$ SCT(u, k, λ) matrix over a group G of order k. We define an incidence structure $\mathcal{D}_M = (\mathbb{P}, \mathbb{B})$ in the following manner.
\[
\mathbb{P} = \{1, 2, \cdots, u\} \times G, \quad \mathbb{B} = \{B_{j,g} \mid j \in I_r, g \in G\}
\]
where $B_{j,g} = (B_j)g$ and $B_j = (1, D_{1j}) \cup (2, D_{2j}) \cup \cdots \cup (u, D_{uj}) (\subset \mathbb{P})$.

The converse of Theorem 2.4 is true, as shown below.

Theorem 2.8. Let M be an SCT(u, k, λ) matrix over a group $G = \{g_1, \cdots, g_k\}$ of order k and $\mathcal{D}_M = (\mathbb{P}, \mathbb{B})$ the incidence structure defined in Definition 2.7. Then the following holds.
\[(i) \mathcal{D}_M \text{ is a } TD_\lambda(k, u) \text{ with the point classes}
\quad C_1 = I_u \times \{g_1\}, \cdots, C_k = I_u \times \{g_k\},
\quad \text{(ii) } G \text{ acts on } \mathcal{D}_M \text{ as an SCT(u, k, λ) group under the action}
\quad (i, w)g = (i, wg) \text{ for } i \in \{1, \cdots, u\} \text{ and } w, g \in G.
\]

We now give a result on SCT($2, k, \lambda$) matrices with $k = \lambda$.

Proposition 2.9. Let G be a group of order λ and let D_1, D_2, D_3, D_4 be subsets of G satisfying
\[(*) \quad D_1D_1^{(-1)} + D_2D_2^{(-1)} + D_3D_3^{(-1)} + D_4D_4^{(-1)} = \lambda + \lambda G
\]
Then the following is a SCT($2, \lambda, \lambda$) matrix over G, from which we obtain a class transitive $TD_\lambda(\lambda, 2)$:
\[
M = \begin{bmatrix}
D_1 & D_2 & D_3 & D_4 \\
G - D_1 & G - D_2 & G - D_3 & G - D_4
\end{bmatrix}
\]
Using some difference sets we can give $\text{SCT}(2, \lambda, \lambda)$ matrices.

Proposition 2.10. Let G be a group of order $v := 4m^2$ and D_i a (v, k_i, λ_i) difference set (DS) of order $n_i := k_i - \lambda_i$ in G for $i \in \{1, 2, 3, 4\}$. If $4m^2 = \sum \lambda_i = \sum n_i$, then $\{D_1, \cdots, D_4\}$ satisfies the condition (\star) and we obtain a $\text{TD}_v(v, 2)$ admitting G as a $\text{SCT}(2, v, v)$ group.

For example, if we choose D_1, \cdots, D_4 as $(4m^2, 2m^2 \pm m, m^2 \pm m)$ DSs (Hadamard DSs), then the condition is satisfied.

Remark 2.11. For each odd integer $n > 1$, there exists a $(4n^4, 2n^4 \pm n^2, n^4 \pm n^2)$-difference set (an Hadamard difference set of order n^4) in an abelian group of order $4n^4$ (Haemer-Xiang[10]). From this we obtain an $\text{SCT}(2, 4n^4, 4n^4)$ group acting on a $\text{TD}_{4n^4}(4n^4, 2)$ applying Proposition 2.10.

Example 2.12. By computer search we can verify that there exists an $\text{SCT}(2, q, q)$ matrix for $q \in \{3, 5, 9, 11, 13, 17, 19\}$. From this we have a $\text{TD}_q(q, 2)$. We note that this is unable to obtain from difference matrices applying Drake's result. For example, the following is a $\text{SCT}(2, 19, 19)$ matrix over $\mathbb{Z}_{19} = \langle a \rangle$.

$$
\begin{bmatrix}
D_{11} & D_{12} & D_{13} & D_{14} \\
G - D_{11} & G - D_{12} & G - D_{13} & G - D_{14}
\end{bmatrix},
$$

where

$D_{11} = 1 + a + a^2 + a^6 + a^{13} + a^{14}$,

$D_{12} = 1 + a + a^2 + a^3 + a^4 + a^5 + a^6 + a^9 + a^{10} + a^{13}$,

$D_{13} = 1 + a + a^2 + a^4 + a^5 + a^8 + a^{10} + a^{11} + a^{13} + a^{15}$, and

$D_{14} = 1 + a + a^2 + a^4 + a^5 + a^7 + a^9 + a^{11} + a^{12} + a^{14} + a^{15} + a^{17}$.

We also have the following result on $\text{SCT}(2, k, \lambda)$ matrices with $k = 2\lambda$.

Proposition 2.13. Let G be a group of order $4m^2$. If subsets A and B of G satisfies (\star) $AA^{(-1)} + BB^{(-1)} = 4m^2 + 2m^2(G - 1)$, then $\begin{bmatrix}
A & G - A \\
G - B & B
\end{bmatrix}$ is an $\text{SCT}(2, 4m^2, 2m^2)$ matrix over G.

Example 2.14. (i) Let G be a group of order $4m^2$ and let C and D be any $(4m^2, 2m^2 - m, m^2 - m)$ and $(4m^2, 2m^2 + m, m^2 + m)$ difference sets of G, respectively. Then we can verify that $CC^{(-1)} + DD^{(-1)} = 4m^2 + 2m^2(G - 1)$ and so by Proposition above we obtain an $\text{SCT}(2, 4m^2, 2m^2)$ matrix $\begin{bmatrix}
C & G - C \\
G - D & D
\end{bmatrix}$ over G. From this we have a $\text{TD}_{2m^2}(4m^2, 2)$ admitting G as an $\text{SCT}(2, 4m^2, 2m^2)$ automorphism group of order $4m^2$.

(ii) There are exactly 14 groups of order 16. Nine of them have $(16, 6, 2)$-difference sets and so have $\text{SCT}(2, 16, 8)$ matrices by Proposition 2.13. On the other hand, five groups \mathbb{Z}_{16}, $\mathbb{Z}_2 \times \mathbb{Z}_8$, $\mathbb{Z}_4 \times \mathbb{Z}_4$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$ and D_{16} have no difference sets. However, we can verify that each of these contains subsets A and B satisfying the condition (\star) of Proposition 2.13. Hence there exists an $\text{SCT}(2, 16, 8)$ matrix over any group of order 16.
3 Spreads, SCT matrices and \(\lambda\)-planar functions

Definition 3.1. Let \(G\) be a group of order \(n^2\). A set of subgroups \(\{H_1, \ldots, H_{n+1}\}\) of \(G\) is called a **spread** of \(G\) if

1. \(|H_1| = \cdots = |H_{n+1}| = n\) and
2. \(G = H_i H_j\) \((1 \leq i \neq j \leq n+1)\).

Remark 3.2. \(G^* = H_1^* \cup H_2^* \cup \cdots \cup H_{n+1}^*\) is a disjoint union.

By Theorems 4.4.9 and 4.9.14 of [15] we can show the following. A shorter proof was communicated to the author by N. Chigira [14].

Lemma 3.3. Let \(G\) be a group of order \(n^2\). If there exists a spread in \(G\), then \(G\) is an elementary abelian \(p\)-group for a prime \(p\).

Example 3.4. Set \(G = (V(2, q), +)\). Then the set of 1-dimensional \(GF(q)\)-subspaces \(H_1, \ldots, H_{q+1}\) of \(V(2, q)\) is a spread of \(G\).

We can construct \(SCT(p^m, q^2, q^2/p^m)\) matrices using a spread of an elementary abelian\(p\)-group of order \(q^2\).

Proposition 3.5. Let \(q\) be a power of a prime \(p\) and \(G \simeq E_{q^2}\). For a spread \(S = \{H_1, \ldots, H_{q+1}\}\) of \(G\), set \(r = q/p^m\) \((1 < p^m \leq q)\) and \(A_i = H_{ir+1}^* + \cdots + H_{i(r+1)}^*\) \((0 \leq i \leq p^m - 2\), \(A_{p^m-1} = H_{(p^m-1)r+1}^* + H_{(p^m-1)r+2}^* + \cdots + H_{p^m.r+1}^* + H_{p^m.r+1+1}^*\).

Let \([n_{ij}]\) be any Latin square of order \(p^m\) with entries from \(\{0, 1, \ldots, p^m - 1\}\). Then the following is a \(SCT(p^m, q^2, q^2/p^m)\) matrix, which gives a \(TD_{q^2/p^m}(q^2, p^m)\).

\[
\begin{bmatrix}
 A_{n1,1} & A_{n1,2} & \cdots & A_{n1,p^m} \\
 A_{n2,1} & A_{n2,2} & \cdots & A_{n2,p^m} \\
 \vdots & \vdots & \ddots & \vdots \\
 A_{np^m,1} & \cdots & A_{np^m,p^m-1} & A_{np^m,p^m}
\end{bmatrix}
\]

Definition 3.6. Let \(\mathcal{G}\) be a group of order \(u^2 \lambda\) and \(U(\triangleleft \mathcal{G})\) its normal subgroup of order \(u\). A \(u\lambda\)-subset \(D\) of \(\mathcal{G}\) is called a \((u\lambda, u, u\lambda, \lambda)\)-relative difference set (RDS) relative to \(U\) if \(DD^{(-1)} = u\lambda + \lambda(\mathcal{G} - U)\). The subgroup \(U\) is called a **forbidden subgroup**. We note that from \(U\) we obtain a \((u, u\lambda, \lambda)\)-difference matrix over \(U\).

Remark 3.7. Denote by \(\pi(n)\) the set of primes dividing an integer \(n > 1\). In the known examples \(\mathcal{G}\) satisfies \(\pi(|\mathcal{G}|) \in \{\{p\}, \{3, 7\}, \{2, p\}\}\) for a prime \(p\) ([1],[4],[5],[8],[12]) and \(U\) is a \(p\)-group. Moreover, in most cases \(U\) is abelian.

We shall consider a relation between RDSs and \(SCT(u, u\lambda, \lambda)\) matrices by generalizing the notion of planar functions.
Theorem 3.8. Let G be a group of order $u\lambda$ and U a group of order u. Let $D_y (y \in U)$ be subsets of G. If a $u \times u$ matrix $D = [D_{yz^{-1}}]_{y,z \in U}$ over $\mathbb{Z}[G]$ whose rows and columns are indexed by the elements of U is a $SCT(u, u\lambda, \lambda)$ matrix, then the following holds.

(i) $G = \sum_{y \in U} D_y$ (the disjoint union of u subsets D_y).

(ii) A function $f : G \rightarrow U$ defined by $f(D_y) = y$ ($y \in U$) satisfies the following:

(\star) $\# \{x \in G \mid f(ax)f(x)^{-1} = b \} = \lambda$ ($\forall a \in G \setminus \{1\}, \forall b \in U$)

Definition 3.9. Let G and U be groups. We call a function $f : G \rightarrow U$ a λ-planar function if f satisfies (\star).

Remark 3.10. (i) A 1-planar function is just a planar function in the usual sense (A. Pott [11]).

(ii) We can show $|G| = |U| \lambda$ by counting the number of pairs $(x, f(tx)f(x)^{-1})$ with $x \in G$ in two ways.

Proof of Theorem 3.8

As D is an $SCT(u, u\lambda, \lambda)$ matrix over G, we have $\sum_{z \in U} D_{a_1z^{-1}}D_{a_2z^{-1}}^{(-1)} = \sum_{z \in U} D_{a_1a_2^{-1}(a_2z^{-1})}D_{a_2z^{-1}}^{(-1)}$. Hence,

(\star) $\sum_{y \in U} D_{by}D_{y}^{(-1)} = \begin{cases} u\lambda + \lambda(G - 1) & \text{if } b = 1, \\ \lambda(G - 1) & \text{otherwise.} \end{cases}$

Then, by (\star), we have $\sum_{y \in G} |D_y| = u\lambda$ and $D_y \cap D_z = \phi$ ($y \neq z$) by putting $b = 1$ and $b \neq 1$, respectively. Thus we have (i).

Let $a \in G \setminus \{1\}$ and $b \in G$ and consider the equation $f(ax)f(x)^{-1} = b$. Set $y = f(x)$. Then $f(ax) = by$. Hence,

$f(x) = y, f(ax) = by \iff x \in D_y, ax \in D_{by}$.

By (\star), there exist exactly λ distinct elements $(t_i, x_i) \in D_{by_i} \times D_{y_i}$ such that $a = t_ix_i^{-1}$ for $i \in \{1, \cdots, \lambda\}$. As $t_i = ax_i$, $f(t_i) = by_i$, and $f(x_i) = y_i$, we have $f(ax_i)f(x_i)^{-1} = b$ and so (ii) holds. \square

We now show that relations among λ-planar functions, SCTs, and RDSs.

Theorem 3.11. Let G be a group of order $u\lambda$ and U a group of order u. If $f : G \rightarrow U$ is a λ-planar function, then the following holds.

(i) A $u \times u$ matrix $D = [D_{y,z}]$ defined by $D_{y,z} = f^{-1}(yz^{-1})$ ($y, z \in U$) is an $SCT(u, u\lambda, \lambda)$ matrix.

(ii) A subset $D = \{(x, f(x)) \mid x \in G\}$ of $G := G \times U$ is a $(u\lambda, u, u\lambda, \lambda)$ relative difference set in a group G relative to U.
Proof. (i) Fix $a_1, a_2 \in U$ and let $y \in U$. Then, for any $t \in G$,
$$t \in \text{D}_{a_1, y} \text{D}_{a_2, y} \iff t = x_1x_2^{-1}, \exists x_1 \in \text{D}_{a_1, y}, \exists x_2 \in \text{D}_{a_2, y}$$
$$\iff x_1 = x_2, f(tx_2) = a_1y^{-1}, f(x_2) = a_2y^{-1}, \exists x_2 \in \text{D}_{a_2, y}$$
$$\iff t = x_1x_2^{-1}, f(tx_2)f(x_2)^{-1} = a_1a_2^{-1}, \exists x_2 \in \text{D}_{a_2, y}.$$
Thus,
$$\sum_{y \in U} \text{D}_{a_1, y} \text{D}_{a_2, y} \equiv \begin{cases} |G| + \lambda (G - 1) & \text{if } a_1 = a_2, \\
\lambda (G - 1) & \text{otherwise.} \end{cases}$$

(ii) $(t, b) \in (x_1, f(x_1))(x_2, f(x_2))^{-1}, \exists x_1, x_2 \in G$
$$\iff t = x_1x_2^{-1}, f(x_1)f(x_2)^{-1} = b, \exists x_1, x_2 \in G$$
$$\iff f(tx_2)f(x_2)^{-1} = b, x_1 = tx_2, \exists x_2 \in G. \quad \Box$$

Two Groups G, U corresponding to a λ-planar function f

Assume there exists a λ-planar function from G to U. Many examples are known where $|G|$ is not a power of a prime ([1],[4],[5],[8],[12]). These satisfy $\pi(|G|) \in \{3, 7\}$. However, every known example of U is a p-group for a prime p and in most cases U is abelian. What is the possible group theoretic structure of G or U? When $\lambda = 1$, the following result is known.

Result 3.12. (Blokhuis-Jungnickel-Schmidt [9]) Let G and H be abelian groups of order n. If there exists a 1-planar function from G to H, then $n = p^e$ for a prime p and the p-rank of $G \times H$ is at least $e + 1$.

We now construct a λ-planar function with λ a prime power.

Theorem 3.13. Let p be a prime and U any group of order p^n. Let G be an elementary abelian p-group of order p^{2n} with $n \geq m$. Then there exists a p^{2n-m}-planar function from G to U.

Proof. Let $G, q, p^n, H_i (i \in I_{q+1})$ be as in Proposition 3.5 and consider an $\text{SCT}(p^n, p^{2n}, p^{2n-m})$ with $q = p^n$. Let U be any group of order $p^m (\leq q)$ and $\cup_{y \in U} T_y$, a partition of the spread $\{H_1, \cdots, H_{q+1}\}$ such that $|T_1| = r + 1$ and $|T_y| = r (y \in U^*)$, where $r = q/p^m$. Let D_y be the set of non-identity elements of T_y for $y \in U^*$ and D_1 the set of elements of T_1. Then a matrix $L = [z_{y_1, y_2}]$ defined by $z_{y_1, y_2} = y_1y_2^{-1} (y_1, y_2 \in U)$ is a Latin square of order p^m with entries from U. Hence, by Proposition 3.5, $[D_{y_1}y_2^{-1}]_{y_1, y_2 \in U}$ is an $\text{SCT}(p^n, p^{2n}, p^{2n-m})$ matrix, which gives a p^{2n-m}-planar function from G to U by Theorem 3.8. \[\Box \]

By Theorems 3.13 and 3.11, we have the following.

Theorem 3.14. Any p-group can be a forbidden subgroup of an RDS.

As a corollary we have the following, which gives another proof of de Launey's result on DMs (Corollary 2.8 of [2]).

Corollary 3.15. There exists a (p^n, p^{2n}, p^{2n-m})-difference matrix over any group of order p^n whenever $n \geq m$.
References

[10] W.H. Haemers and Q. Xiang, Strongly regular graphs with parameters $(4m^4, 2m^4 + m^2, m^4 + m^2, m^4 + m^2)$ exist for all $m > 1$.

