1 < |t| < 2 に対する Lawson-Lim-Pálfia による作用素冪平均について

Operator Power means due to Lawson-Lim-Pálfia for 1 < |t| < 2

大阪教育大学·数学教育講座 瀬尾祐貴 Yuki Seo

Department of Mathematics Education, Osaka Kyoiku University

1. Introduction

This paper is based on [6].

For a weight vector $\omega = (\omega_1, \ldots, \omega_n)$ such as $\omega_i \geq 0$ for $i = 1, \ldots, n$ and $\sum_{i=1}^n \omega_i = 1$ and positive invertible operators $\mathbb{A} = (A_1, \ldots, A_n)$, the power mean $P_t(\omega; \mathbb{A})$ for $t \in [-1, 1] \setminus \{0\}$ due to Lawson-Lim-Pálfia [4, 5] is defined by the unique positive invertible solution of the following non-linear equation:

$$X = \sum_{i=1}^{n} \omega_i(X \sharp_t A_i) \quad \text{for } t \in (0, 1]$$

$$X = \left[\sum_{i=1}^{n} \omega_i(X^{-1} \sharp_{-t} A_i^{-1}) \right]^{-1} \quad \text{for } t \in [-1, 0)$$

where $A\sharp_t B = A^{1/2}(A^{-1/2}BA^{-1/2})^tA^{1/2}$ is the t-weighted geometric mean of A and B. For a weight vector $\omega = (\omega_1, \ldots, \omega_n)$ and positive invertible operators $\mathbb{A} = (A_1, \ldots, A_n)$, the Karcher mean $G_K(\omega; \mathbb{A})$ of A_1, \ldots, A_n is defined by the unique positive invertible solution of the Karcher equation:

$$\sum_{i=1}^{n} \omega_i \log(X^{-\frac{1}{2}} A_i X^{-\frac{1}{2}}) = 0.$$

The power mean $P_t(\omega; \mathbb{A})$ is monotone increasing for t:

$$P_t(\omega; \mathbb{A}) \leq P_s(\omega; \mathbb{A})$$
 for $-1 \leq t \leq s \leq 1$

and the Karcher mean is realized as the strong limit of the power means:

$$s-\lim_{t\to 0} P_t(\omega; \mathbb{A}) = G_K(\omega; \mathbb{A})$$

under the strong-operator topology.

Problem: The range in which the power means $P_t(\omega; \mathbb{A})$ are defined, is $[-1,1]\setminus\{0\}$. However, the range in which the power arithmetic means $(\sum_{i=1}^n \omega_i A_i^t)^{1/t}$ are defined, is the set of all real numbers \mathbb{R} . It is then natural to ask the following question: Is it possible to extend the range in which the power means are defined?

The purpose of this paper is to extend the range of the definition of power means $P_t(\omega; \mathbb{A})$ defined by Lawson-Lim-Pálfia [4, 5].

2. PRELIMINARY

Let B(H) be the C^* -algebra of all bounded linear operators on a Hilbert space H equipped with the operator norm, S(H) the set of all bounded self-adjoint operators, and $\mathbb{P} = \mathbb{P}(H)$ be the open convex cone of all positive invertible operators. For $X, Y \in S(H)$, we write $X \leq Y$ if Y - X is positive, and X < Y if Y - X is positive invertible.

For $A, B \in \mathbb{P}$ and $t \in [0, 1]$, the t-geometric operator mean is defined as

$$A \sharp_t B = A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2}.$$

For convenience, we use the notation h_t for the binary operation

$$A \downarrow_t B = A^{1/2} (A^{-1/2}BA^{-1/2})^t A^{1/2}$$
 for $t \notin [0, 1]$,

whose formula is the same as \sharp_t . Though $A\sharp_t B$ for $t\in[0,1]$ has the monotonicity, $A\natural_s B$ for $s\not\in[0,1]$ has not it.

Lemma 1. Let $A, B, X, Y \in \mathbb{P}$ and $1 < t \le 2$. Then

(i) If $X \leq Y$, then $Y \mid_t A \leq X \mid_t A$.

(ii) If
$$A \leq B$$
 with $m_1 \leq A \leq M_1$ and $m_2 \leq B \leq M_2$ and $m \leq X \leq M$, then

$$X
\mid_t A \leq K(m_i/M, M_i/m, t) X \mid_t B \text{ for } i = 1, 2,$$

where the generalized Kantorovich constant K(m, M, t) is defined by

(1)
$$K(m, M, t) = \frac{mM^t - Mm^t}{(t - 1)(M - m)} \left(\frac{t - 1}{t} \frac{M^t - m^t}{mM^t - Mm^t}\right)^t$$

for any real number $t \in \mathbb{R}$, see [3, Theorem 2.53].

(iii) If $m \leq A \leq M$, then

$$||X||^{1-t} m^t \le X |_t A \le ||X^{-1}||^{-(1-t)} M^t.$$

Proof. We only prove (i): For $1 < t \le 2$

$$\begin{split} Y & \natural_t \ A = A \ \natural_{1-t} \ Y = A^{1/2} \left(A^{-1/2} Y A^{-1/2} \right)^{1-t} A^{1/2} \\ & = A^{1/2} \left(A^{1/2} Y^{-1} A^{1/2} \right)^{t-1} A^{1/2} \\ & \leq A^{1/2} \left(A^{1/2} X^{-1} A^{1/2} \right)^{t-1} A^{1/2} \qquad \text{by } 0 < t-1 < 1 \text{ and } Y^{-1} \leq X^{-1} \\ & = X \ \natural_t \ A. \end{split}$$

The Thompson metric on \mathbb{P} is defined by

$$d(A, B) = \log \max\{M(A/B), M(B/A)\}\$$

where

$$M(A/B) = \inf\{\lambda > 0 : A \le \lambda B\} = ||B^{-1/2}AB^{-1/2}|| = r(B^{-1}A).$$

It is known that d is a complete metric on \mathbb{P} and

$$d(A, B) = \|\log B^{-1/2}AB^{-1/2}\| = \|\log A^{-1/2}BA^{-1/2}\|,$$

see [7]. We list some basic properties of the Thompson metric:

Lemma 2 (see
$$[1, 2]$$
). For $A, B, C, D \in \mathbb{P}$

(i)
$$d(A, B) = d(A^{-1}, B^{-1}) = d(T^*AT, T^*BT)$$
 for invertible $T \in B(H)$;

- (ii) $d(A+B,C+D) \le \max\{d(A,C),d(B,D)\};$
- (iii) $d(A^t, B^t) \le td(A, B)$ for $t \in [0, 1]$;
- (iv) $d(\alpha A, \alpha B) = d(A, B)$ for positive real number $\alpha > 0$;
- (v) $d(A \sharp_t B, C \sharp_t D) \le (1 t)d(A, C) + td(B, D)$ for $t \in [0, 1]$.

For $A, B \in \mathbb{P}$, a map $\gamma_{A,B} : \mathbb{R} \mapsto \mathbb{P}$ defined by $\gamma_{A,B}(t) = A \natural_t B$ for $t \in \mathbb{R}$ is a path joining A and B. In particular, it is known that $\gamma_{A,B}(t)$ for $t \in [0,1]$ is a path joining A to B in \mathbb{P} . Then we have the following:

Theorem 3. Let $A, B \in \mathbb{P}$. Then

$$d(A
atural_s B, A
atural_t B) = |s - t| d(A, B)$$
 for all $s, t \in \mathbb{R}$.

Proof. By definition of the Thompson metric and Lemma 2

$$d(A \natural_s B, A \natural_t B) = d((A^{-1/2} B A^{-1/2})^s, (A^{-1/2} B A^{-1/2})^t)$$

$$= d((A^{-1/2} B A^{-1/2})^{s-t}, I) = \|\log(A^{-1/2} B A^{-1/2})^{s-t}\|$$

$$= |s - t| \|\log A^{-1/2} B A^{-1/2}\| = |s - t| d(A, B).$$

We have the following extimate in the case of 1 < t < 2, which corresponds to (v) of Lemma 2:

Theorem 4. Let $A, B, C, D \in \mathbb{P}$ such that $m_1 A \leq C \leq M_1 A$ and $m_2 B \leq D \leq M_2 B$ for some scalars $0 < m_1 \leq M_1$ and $0 < m_2 \leq M_2$. For each 1 < t < 2

$$d(A \natural_t B, C \natural_t D) \le (t-1)d(A,C) + td(B,D) + \log K(t)$$

where $K(t) = \max\{K(m_1, M_1, t), K(m_2, M_2, t)\}$ and the generalized Kantorovich constant K(m, M, t) is defined by (1).

3. MAIN RESULT

In this section, we extend to the range in which the power means due to Lawson-Lim-Pálfia are defined. For this, we need the following Lemma:

Lemma 5. Let $X, Y, A \in \mathbb{P}$ and $1 < t \le 2$. Then

$$d(X
atural_t A, Y
atural_t A) \le (t-1)d(X, Y).$$

Proof. For $1 < t \le 2$,

$$\begin{split} d(X \natural_t \ A, Y \natural_t \ A) &= d(A \natural_{1-t} X, A \natural_{1-t} \ Y) \\ &= d((A^{1/2} X^{-1} A^{1/2})^{t-1}, (A^{1/2} Y^{-1} A^{1/2})^{t-1}) \quad \text{by (i) of Lemma 2} \\ &\leq (t-1) d(A^{1/2} X A^{1/2}, A^{1/2} Y A^{1/2}) \quad \text{by (iii) of Lemma 2} \\ &= (t-1) d(X, Y) \quad \text{by (i) of Lemma 2}. \end{split}$$

Theorem 6. Let $A_1, A_2, \ldots, A_n \in \mathbb{P}$ and a weight vector $\omega = (\omega_1, \ldots, \omega_n)$. Then for each 1 < t < 2, the following equation has a unique positive invertible solution:

$$X = \sum_{i=1}^{n} \omega_i(X \natural_t A_i).$$

Proof. We will show that the map $f: \mathbb{P} \to \mathbb{P}$ defined by $f(X) = \sum_{i=1}^n \omega_i(X \natural_t A_i)$ is a strict contraction with respect to the Thompson metric. Let X, Y > 0

$$\begin{split} d(f(X),f(Y)) &\leq \max_{1\leq i\leq n} \{d(\omega_i(X\natural_t\ A_i),\omega_i(Y\natural_t\ A_i))\} \quad \text{by (ii) of Lemma 2} \\ &= \max_{1\leq i\leq n} \{d(X\natural_t\ A_i,Y\natural_t\ A_i)\} \quad \text{by (iv) of Lemma 2} \\ &\leq (t-1)d(X,Y) \quad \text{by Lemma 5}. \end{split}$$

Since 1 < t < 2, it follows that f is a strict contraction and hence f has a unique fixed point.

Definition 7. Let $\mathbb{A} = (A_1, \ldots, A_n) \in \mathbb{P}^n$ and a weight vector $\omega = (\omega_1, \ldots, \omega_n)$. For $t \in (1,2)$, we denote by $P_t(\omega; \mathbb{A})$ the unique positive invertible solution of

$$X = \sum_{i=1}^{n} \omega_i(X \natural_t A_i).$$

For $t \in (-2, -1)$, we define $P_t(\omega; \mathbb{A}) = P_{-t}(\omega; \mathbb{A}^{-1})^{-1}$, where $\mathbb{A}^{-1} = (A_1^{-1}, \dots, A_n^{-1})$. In fact, $X = P_t(\omega; \mathbb{A})$ is the unique positive invertible solution of $X = (\sum_{i=1}^n \omega_i (X \natural_{-t} A_i)^{-1})^{-1}$ and $X^{-1} = \sum_{i=1}^n \omega_i (X^{-1} \natural_{-t} A_i^{-1})$ if and only if $X^{-1} = P_{-t}(\omega; \mathbb{A}^{-1})$.

Let $t \in (1,2)$. Put $f: \mathbb{P} \mapsto \mathbb{P}$ defined by $f(X) = \sum_{i=1}^n \omega_i(X \natural_t A_i)$. By Theorem 6, f is a strict contraction for the Thompson metric and by the Banach fixed point theorem

$$\lim_{k\to\infty} f^k(X) = P_t(\omega; \mathbb{A}) \quad \text{for any } X \in \mathbb{P}.$$

Similarly, the map $g(X) = (\sum_{i=1}^n \omega_i (X \natural_{-t} A_i)^{-1})^{-1}$ is a strict contraction for the Thompson metric and $\lim_{k \to \infty} g^k(X) = P_{-t}(\omega; \mathbb{A})$ for any $X \in \mathbb{P}$.

For $\mathbb{A} = (A_1, \dots, A_n) \in \mathbb{P}^n, M \in B(H), \omega = (\omega_1, \dots, \omega_n)$ and for a permutation σ on *n*-letters, we set

$$MAM^* = (MA_1M^*, \dots, MA_nM^*), \quad A_{\sigma} = (A_{\sigma(1)}, \dots, A_{\sigma(n)})$$

$$\hat{\omega} = \frac{1}{1 - \omega_{\sigma}}(\omega_1, \dots, \omega_{n-1}).$$

We list some basic properties of $P_t(\omega; \mathbb{A})$ for $t \in (-2, 2) \setminus [-1, 1]$.

Proposition 9. Let $\mathbb{A} = (A_1, \ldots, A_n) \in \mathbb{P}^n$, a weight vector $\omega = (\omega_1, \ldots, \omega_n)$ and let $t \in (-2,2) \setminus [-1,1]$.

- (i) $P_t(\omega; \mathbb{A}) = (\sum_{i=1}^n \omega_i A_i^t)^{1/t}$ if the A_i 's commute;
- (ii) $P_t(\omega_{\sigma}; \mathbb{A}_{\sigma}) = P_t(\omega; \mathbb{A})$ for any permutation σ ;
- (iii) $P_t(\omega; M \mathbb{A} M^*) = M P_t(\omega; \mathbb{A}) M^*$ for any invertible M;
- (iv) $P_t(\omega; \mathbb{A}^{-1})^{-1} = P_{-t}(\omega; \mathbb{A});$
- (v) $\sum_{i=1}^{n} \omega_i A_i \leq P_t(\omega; \mathbb{A})$ for $t \in (1, 2)$;
- (vi) $P_t(\omega; \mathbb{A}) \leq (\sum_{i=1}^n \omega_i A_i^{-1})^{-1}$ for $t \in (-2, -1)$; (vii) If $m \leq A_i \leq M$, then $m \leq P_t(\omega; \mathbb{A}) \leq m^{1-t}M^t$ for $t \in (1, 2)$ and $m^{-t}M^{1+t} \leq M$ $P_t(\omega; \mathbb{A}) \leq M \text{ for } t \in (-2, -1);$
- (viii) For $t \in (1, 2)$, $P_t(\omega; A_1, ..., A_{n-1}, X) = X$ if and only if $X = P_t(\hat{\omega}; A_1, ..., A_{n-1})$.

Proof. Proofs from (i) to (iv) and (vii) are similar to those of [5]. (v): Put $X = P_t(\omega; \mathbb{A})$ for $t \in (1, 2)$. Since $(1 - t)A + tB \le A h B$ for 1 < t < 2, we have

$$X = \sum_{i=1}^{n} \omega_i(X \natural_t A_i) \ge \sum_{i=1}^{n} \omega_i((1-t)X + tA_i)$$
$$= (1-t)X + t\sum_{i=1}^{n} \omega_i A_i$$

and hence $X \geq \sum_{i=1}^{n} \omega_i A_i$.

(vi): Put $X = P_t(\omega; \mathbb{A})$ for $t \in (-2, -1)$. Since $X = \left(\sum_{i=1}^n \omega_i (X^{-1} \natural_{-t} A_i^{-1})\right)^{-1}$, it follows that

$$X^{-1} = \sum_{i=1}^{n} \omega_i (X^{-1} \natural_{-t} A_i^{-1}) \ge \sum_{i=1}^{n} \omega_i ((1+t)X^{-1} + (-t)A_i^{-1})$$
$$= (1+t)X^{-1} - t \sum_{i=1}^{n} \omega_i A_i^{-1}$$

and hence $X \leq (\sum_{i=1}^{n} \omega_i A_i^{-1})^{-1}$ for $t \in (-2, -1)$.

Theorem 10. Let $\mathbb{A} = (A_1, \ldots, A_n) \in \mathbb{P}^n$ such that $0 < m \le A_i \le M$ for some scalars $0 < m \le M$ and a weight vector $\omega = (\omega_1, \ldots, \omega_n)$. Let $1 < t \le s < 2$. Then

$$d(P_t(\omega; \mathbb{A}), P_s(\omega; \mathbb{A})) \le \frac{s - t}{(2 - s)(2 - t)} \left[t\Delta(\mathbb{A}) + \log K \left(m/M, (M/m)^t, t \right) \right],$$

where the generalized Kantorovich constant K(m, M, t) is defined by (1) and $\Delta(\mathbb{A}) = \max_{1 \leq i,j \leq n} \{d(A_i, A_j)\}$ denotes the d-diameter of $\mathbb{A} = (A_1, \ldots, A_n)$.

Proof. Put $X = P_t(\omega; \mathbb{A})$ and $Y = P_s(\omega; \mathbb{A})$, then by definition it follows that $X = \sum_{i=1}^n \omega_i(X \natural_t A_i)$ and $Y = \sum_{i=1}^n \omega_i(Y \natural_s A_i)$. Therefore

$$\begin{split} d(X,Y) &= d(Y,X) = d(\sum_{i=1}^n \omega_i(Y\natural_s A_i), \sum_{i=1}^n \omega_i(X\natural_t A_i)) \\ &\leq \max_{1 \leq i \leq n} \{d(Y\natural_s A_i, X\natural_t A_i)\} \\ &\leq \max_{1 \leq i \leq n} \{d(Y\natural_s A_i, X\natural_s A_i) + d(X\natural_s A_i, X\natural_t A_i)\} \\ &\leq \max_{1 \leq i \leq n} \{(s-1)d(Y,X) + (s-t)d(X,A_i)\} \\ &\leq (s-1)d(X,Y) + (s-t) \left[\frac{t}{2-t}\Delta(\mathbb{A}) + \frac{1}{2-t}\log K\left(m/M, (M/m)^t, t\right)\right] \end{split}$$

and hence we have

$$d(X,Y) \le \frac{s-t}{2-s} \left[\frac{t}{2-t} \Delta(\mathbb{A}) + \frac{1}{2-t} \log K \left(m/M, (M/m)^t, t \right) \right].$$

Theorem 11. Let $\mathbb{A} = (A_1, \ldots, A_n)$ and $\mathbb{B} = (B_1, \ldots, B_n)$ such that $0 < m_1 \le A_i \le M_1$ and $0 < m_2 \le B_i \le M_2$ for $i = 1, \ldots, n$ for some scalars $0 < m_1 \le M_1$ and $0 < m_2 \le M_2$. Then for each 1 < t < 2

$$d(P_t(\omega; \mathbb{A}), P_t(\omega; \mathbb{B})) \leq \frac{t}{2-t} \max_{1 \leq i \leq n} \{d(A_i, B_i)\} + \frac{1}{2-t} \log K_1(t),$$

where

$$K_1(t) = \max\{K(m_2/m_1^{1-t}M_1^t, m_2^{1-t}M_2^t/m_1, t), K(m_2/M_1, M_2/m_1, t)\}.$$

Proof. Put $X = P_t(\omega; \mathbb{A})$ and $Y = P_t(\omega; \mathbb{B})$. Then it follows that

$$\begin{split} d(X,Y) &= d(\sum_{i=1}^n \omega_i(X \natural_t A_i), \sum_{i=1}^n \omega_i(Y \natural_t B_i)) \\ &\leq \max_{1 \leq i \leq n} \{d(X \natural_t A_i, Y \natural_t B_i)\} \\ &\leq \max_{1 \leq i \leq n} \{(t-1)d(X,Y) + td(A_i, B_i) + \log K_1(t)\} \\ &= (t-1)d(X,Y) + t\max_{1 \leq i \leq n} \{d(A_i, B_i)\} + \log K_1(t) \end{split}$$

and hence we have

$$d(X,Y) \le \frac{t}{2-t} \max_{1 \le i \le n} \{d(A_i, B_i)\} + \frac{1}{2-t} \log K_1(t).$$

Conclusion and problems: We were able to extend the range of the power means $P_t(\omega; \mathbb{A})$ to the 1 < |t| < 2. Unfortunately, we do not know whether the power means are defined for $t \geq 2$ or not. For example, we put t = 2 and $\mathbb{A} = (A, B, C)$. Then the power mean $P_2(\omega; \mathbb{A})$ is the unique positive invertible solution of

$$X = \omega_1 A X^{-1} A + \omega_2 B X^{-1} B + \omega_3 C X^{-1} C.$$

What is X?

Moreover, we do not know whether the power means are monotone increasing or not for 1 < t < 2:

$$P_t(\omega; \mathbb{A}) < P_s(\omega; \mathbb{A})$$
 for $1 < t < s < 2$

holds or not.

REFERENCES

- [1] R. Bhatia, On the exponential metric increasing property, Linear Algebra Appl., 375 (2003), 211-220.
- [2] G. Corach, H. Porta and L. Recht, Convexity of the geodesic distance on spaces of positive operators, Illinois J. Math. 38(1994), 87-94.
- [3] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- [4] J. Lawson and Y. Lim, Karcher means and Karcher equations of positive definite operators, Trans. Amer. Math. Soc., Series B, 1 (2014), 1-22.
- [5] Y. Lim and M. Pálfia, Matrix power means and the Karcher mean, J. Funct. Anal., 262 (2012), 1498-1514.
- Y. Seo, Operator power means due to Lawson-Lim-Pálfia for 1 < t < 2, Linear Algebra Appl., 459 (2014), 342–356.
- [7] A. C. Thompson, On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math. Soc., 14(1963), 438-443.

DEPARTMENT OF MATHEMATICS EDUCATION, OSAKA KYOIKU UNIVERSITY, 4-698-1 ASAHIGAOKA, KASHIWARA, OSAKA 582-8582 JAPAN. E-mail address: yukis@cc.osaka-kyoiku.ac.jp

大阪教育大学‧数学教育講座 瀬尾 祐貴