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Abstract
It is so famous that power mean is interpolational mean which inter-
polates arithmetic, geometric, and harmonic means. Power difference
mean and stolarsky mean are known as the interpolational means too.
Moreover, these all means are operator means.

In this report, we introduce a new way to get a family of operator
means and obtain a new type of interpolational mean Fj, 4(¢). This in-
terpolational mean F}, 4(¢) interpolates power mean, power difference
mean, and a part of stolarsky mean.

1 Introduction

In this report, we study operator mean and operator monotone function.
First of all, we introduce some symbols and definitions used in this paper.

Let H be a complex Hilbert space with an inner product (-, -), and B(H)
be a set of all bouded linear operators on H. An operator A € B(H) is said
to be positive if and only if (Az,z) > 0 for all z € H. We denote a positive
operator A by A > 0. Let B(#)+ be a set of all positive operators in B(H).
For self-adjoint operators A, B € B(#), A < B means B — A is positive.

A function f(t) defined on an interval I in R is called an operator monotone
function, provided A < B implies f(A) < f(B) for every pair A and B whose
spectra o(A) and o(B) lie in I. The function f(t) =t* (0 < a <1)isa
well-known operator monotone function. By this fact, we get
A*—-1 B*-1

< .

o a

0<A<B=

So we can find f(t) = logt is an operator monotone function by taking limit
al 0.
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The map o : B(H)2 — B(H)+ is called an operator mean|6) if the operator
Ao B satisfies the following four conditions for A, B € B(H)+;

(1) A< C and B < D implies AcB < CoD,

(2) C(AoB)C < (CAC)o(CBC) for all self-adjoint C € B(H),
(3) A, \y A and B, \, B imply A,0B, \, AcB,

(4) IeI =1.

Next theorem is so important to study operator means;

Theorem 1 (Kubo-Ando[6]). For any operator mean o, there uniquely ez-
ists an operator monotone function f > 0 on [0,00) with f(1) = 1 such that

f@)I =1Io(tI), t>0.

Then the following hold:

(1) The map o — f is a one-to-one onto affine mapping from a set of all
operator means to a set of all non-negative operator monotone functions on
[0,00) with f(1) = 1. Moreover, o + f preserves the order. Therefore,
when o; — fi(i =1,2),

Ac1B < AoyB (A,B € B(H)+) <= fi1(t) < f2(t) (t > 0).
(2) When A>0, AoB=Aif(A% BA%)A3.

By previous theorem, it is enough to think about operator monotone
function when we think about operator means. So we will only think about
" positive” operator monotone functions on [0, co) in the following.

Next we introduce some types of operator means;

Definition 1. Let o be an operator mean and f(t) be a corresponding
function of o.

(1) The operator mean characterized by ﬁ% is called dual of o,

(2) The operator mean characterized by f(t~1)~! is called adjoint of o,

(3) The operator mean characterized by tf(t~1) is called orthogonal of o,
(4) If f(t) satisfies f(t) = tf(t™!), then o is called a symmetric operator

mean.

If o is symmetric, then Ao B = Bo A. Lastly, we introduce some exam-
ples of operator means;
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Example 1. Arithmetic Mean: f(t) = l—g—t

1 (1 =1 =1 1 A+B
AvB:Az(E(IJrAzBAz))Az_ .
Logarithmic Mean:
1 =1 =1\ ,1 _t—1
AAB=A2f(A2BA2>A2, HORE ovs

=

Geometric Mean: f(t) =1t
1
AfB = A3 (A%BA:%)’ A%
Harmonic Mean: f(t) = £#5 =2 (1+ =)~

1\ -1
AIB = A3 {2 (I+ (A%BA%I) 1) }A% —2(a +B7Y) 7.

2 Examples of Interpolational Means

Throughout this paper, if an operator mean interpolates some operator
means, then we call it ”interpolational mean”. We describe some examples
of interpolational means in the following;

Example 2 (Power mean[5]). Let —1 < s < 1. Then

Py(t) = (“;ts)%

is an operator monotone function of t > 0, and P, (t) < Ps,(t) holds for
—1 <381 <39 <1. (The case s =0 is defined as the limit.)

s =1 (Arithmetic Mean) :

s — 0 (Geometric Mean) :

Py(t) := lim Py(t) = t2.

s—0

s = —1 (Harmonic Mean) :

Py(t) = (1 +2t-1 ) -1 2t
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Example 3 (Stolarsky Mean|7]). Let —2 < s < 2. Then,

7.0 = {37y :

is an operator monotome function of t > 0. (The case s = 0,1 are defined
as the limits.)

s = 2 (Arithmetic Mean) :

1+t

s — 1 (Identric Mean) :

STi(t) := E—I)Ii STs(t) = exp { il(_)_glt - 1}.

s — 0 (Logarithmic Mean) :

_t—1
"~ logt’

STo(t) = lim ST (t)

s = —1 (Geometric Mean) :

ST_1(t) = t3.

Example 4 (Power Difference Mean[3,4,5]). Let —1 <r < 2. Then

(r—1)(t"-1)
r(tr—1 —1)

Gr (t) =

is an operator monotone function of t > 0 and gr, (t) < gr,(t) holds for
-1<rm<rp <2

Due to the following relation, we treat power difference mean as PDg(t)
in this report ;

8(t1+s _ 1)

g,r(t) _ (7‘ — 1)(tr — 1) (__1 <r< 2) = PDs(t) = (1 T S)(ts — 1)

P! — 1)

(-2<s<1)

(The case s = 0,1 are defined as the limits.)
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s =1 (Arithmetic Mean) :

s — 0 (Logarithmic Mean) :

) t—1
PDy(t) := ;1_% PD(t) = ogt”
s = 31 (Geometric Mean) :
PDi(t) = t3.
s — —1 (Adjoint of Logarithmic Mean) :
) tlogt —1v—1
PD_;(t) := lim PD,(t) = = PDp(t™")".
s——1 t—1
s = —2 (Harmonic Mean) :
2t
PD_y(t) = —— = PDy(t™})7%.
D_»(t) 147 1(t77)

Operator monotonicity of power difference mean is delivered by the fol-
1
lowing integration. Let fs(a;t) = ((1 — a) + at®)s (-1 <s<1). Then

(Fs(t) => _/01 fs(a;t)da = { 1 s (a(t* - 1) + 1)§+1 !

t*—1s+1 0

s(ttts — 1)
(1+4s)(t* —1)

is an operator monotone function of ¢ > 0 and Fj, (t) < Fs,(t) holds for
-1<s5 <s3 <1

This derivation is so beautiful, but has one probrem. Power Difference
Mean is an operator monotone function for —2 < s < 1. However, we can
not show operator monotonicity of Fy(t) for —2 < s < —1 by using this
technique. '
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3 Main Results

In this section, we introduce a new way to get a family of operator means
and obtain a new interpolational mean by applying it.
For a natural number k, let u(t) be a positive function on [0, 00) defined
by
k
u(t) :=7'H(t+ai)”", 0<a=a1<a2<---<ap=b1<p;,0<p;,0<7).

i=1
We remark that M.Uchiyama[9] has shown u~!(t) is an operator monotone
function.

Theorem 2. Let y be a probability measure on (0, 1] and {f(a;t)|a € [0,1]}
be a family of positive valued operater monotone functions of t > 0. Assume
for each t > 0, the map a — f(a;t) is continuous. Then

P =u ([ v (lest) dute) +6-a)

is an operator monotone function.

Proof of Theorem 2. As every operator monotone function f > 0 on [0, 00)
is a Pick function, it is enough to show that u (ZJ Biu~(f(ay;t)) + b — a)
is a Pick function for any positive numbers 3y, ..., B, which satisfy ) j Bj =
1. From the assumption, u~! (f(a;t)) is an operator monotone function by

the above attention.
For a complex number z which is in the upper half complex plane,

0 <arg || T flasia) +0 -
_szarg Z’BJ a], )+b—a+a,
< Spane | o7 ez +

"—szarg 218_1 f(aJ’z))“'b)
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< Zpi arg (u™' (f(cjo; 2)) +b)
< Zm arg (w1 (f(0yo; 2)) + as)
= arg(u(u " (f(ap; 2)))

= arg f(agp;2) <.
O

Corollary 1. Let {f(a;t)|a € [0,1]} be a family of positive valued operator
monotone functions of t> 0. Assume for each t > 0, the map o — f(a;t)
is continuous. Then for each p € [-1,1]\ {0},

Fy(t) = ( / 1f(a;t)”da)%

1s an operator monotone function of t > 0. Moreover, for each fized t > 0,
Fp, (t) < Fp,(t) holds for p1,p2 € [-1,1]\ {0}, p1 < pa.

Corollary 1 is a special case of Theorem 1 by taking u(t) = t7. It is also
obtained by using Thompson metric and Banach fixed point theorem. We
now give another proof of Collorary 1. Firstly, we prepare the definition and
properties of Thompson metric to prove Corollary 1. In what follows, let P
be a cone of strictry positive operators.

Definition 2. For A,B € P, let
M(B/A) = inf{a > 0; B < aA}.
Then the Thompson metric is defined by
dw(A, B) = max{log M(B/A),log M(A/B)}.

Thompson metric is a complete metric on P. (Thompson 1963(8])
Thompson metric have nice two properties|1][2];

(1) Let A, B € P and dwo(A4, B) = logm. Then,
m~ 1B < A< mB.
Conversely, if m satisfies m 1B < A < mB, then do,(4, B) < logm.

(2) Let A,B,C,D € P. Then, for any « € [0, 1],
doo(Alla B, ClaD) < (1 — a)deo(A, C) + adeo(B, D)
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where A, B = A% (A‘TIBA%—‘)Q ts
Lemma 1. Let dy, be a Thompson metric of P. Then, for X,Y, A > 0 and
s € (0,1],
1 1
doo [ (Xtaftas ), [ (V2S5 4))de)

< sup doo(Xtsf (5 4), YHuf (a5 4))-
a€(0,1]

Proof of Lemma 1. Let

sup deo (Xﬁsf(a; A),Yisf(a; A)) = log m.
a€l0,1]

From property (1),
m™~! (Yﬁsf(a; A)) < X#sf(o; A4) < m(Yﬂsf(a; A))
holds for any « € [0,1]. Therefore,

1 1 1
m~! (Yisf(a; A))da S/ (Xtsf(c; A))da < m/ (YHsf(a; A))do,
0 0

0
namely,

doo (/Ol (Xt f(oy A))da,/ol(Yﬂsf(a; A))da)

<logm = sup doo(Xlisf(a;A),Yﬁsf(a;A))~
a€(0,1)

a

Lemma 2. The map F : P — P defined by

1
F(X) =/0 (Xtsf(a; A))de (s € (0,1])

s a contractive map. Moreover, the following equation

1
X = / (Xt (a5 A))dax (s € (0,1])
0

has the unique positive solution on P and its solution coincides with

( /0 e A)sda)% |



Proof of Lemma 2. Let X,Y € P. Then,

1 1
ool PO, () = o ([ (XS (e ), [ (¥ (o5 4))de
< sup doo(Xtof (a5 4), Yo (e 4))
a€l0,1]

< 21[101)1]{(1 ~ 8)doo(X,Y) + sdoo (f(e; A), f(c; A))}

= (1-15)dso(X,Y),

where the first inequality holds from Lemma 1 and the second one holds from
property (2). Since 1 — s € [0,1), F is a contractive map. From Banach
fixed point theorem, F' has the unique fixed point, namely,

1
X = F(X) = /0 (Xt f(a; A))da

has the unique positive solution on P. Next, we show its sulution coincides

with .
1 s
Xo := (/0 f(a;A)sda>

by substitution. Since Xofsf(c; A) = X5 °f(a; A)® and
1 3 1
Xo = (/ f(a;A)sda) = X =/ f(a; A)’da,
0 0

1 1 1
/ (Xoﬁsf(a; A))da = / X&_Sf(a; A)’da = Xé_s/ fla; A)’da
0 0 0
= X(}“ng = Xp.
a

Proof of Collorary 1. Firstly, we prove operator monotonicity about the case
p € (0,1]. For 0 < A < B, let define the maps F,G as

1

1
F) = [ (Kbl A)da, 600 = [ (Xtpf (e B)da

Then from Lemma 2, F(X) = X and G(X) = X have the following unique
sulutions in PP respectively:

Xp = ( /0 o A)”da) % X, = ( /O o B)”da)l% .

53
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Moreover, F*(X) < G*¥(X) holds for all k¥ € N, where F* is the k-times
composite of F. For any X > 0, there exist lim_, o, FF(X), limg_y00 G*(X)
and

(/1 f(a;A)pda)E =Xo= klim FR(X),
0 —00

(/1 f(a; B)”da)s =X; = klim G*(X)
0 —00

by Banach fixed point theorem. Therefore, we have

1 = 1 =
( /0 f(a;A)”da) = lim F¥(X) < lim G¥(X) = ( /0 f(a;B)”da)

The case p € [—1,0) is also obtained by replacing p into —p and X = X 1.
Next we show the monotonicity of p € [-1,1]\ {0}. For 0 <p; <p2 <1,

EL | . . .
tP2 is a concave function. By Jensen’s inequality, we have

/; (f(a;t)”"’)% do < (/Olf(a;t)mda)%

and find Fp, (t) < Fp,(t) (¢t >0, 0<p; < p2 <1). Likewise, we can get
Fp(t) < Fpp(t) (t>0, -1 < q; < g2 <0). Moreover, we can find F_,(t) <
E,(t) (t > 0, p € (0,1]) from convexity of ™! and Jensen’s inequality. From
the above,

Fp(t) S Fy(t) (¢>0, p,ge[-1,1]\ {0}, p<q).
a
In Corollary 1, we don’t think about the case p = 0. The case p =0

is defined as the limit if it exists. And then, we have the following equation
by I’Hopital’s rule;

1
Fy(t) := zl,i_l_’)r(l) Fo(t) =exp (/0 log f(a; t)da) .

4 Applications

In Section 3, we have had a new way to get a family of operator means. By
applying it, we obtain a new family of operator means at the next theorem.
After that, we show that it is an interpolational mean which interpolates
power mean, power difference mean, and a part of stolarsky mean.
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Theorem 3. For s € [-1,1]\ {0} and r € [-1, 1]\ {0},

1

1 s
Forlt) = ([ (last)'aa)
s an operator monotone function of t > 0 and
For(t) < Fopr(t),  Fopri(8) < Fyra(2)
hold for 51,83 € [-1,1]\ {0}, 81 < s2,71,72[~1,1] \ {0},71 < 7o.

Theorem 3 is obtained by putting fr(a;t) = [(1 — a) + at’”]% and p=s
in Corollary 1. In Theorem 2, the case s,r = 0 can be considered as the
limits of s, — 0, respectively.

By simple computation, we get

0 ()

We call F; ,.(t) "extension of power difference mean”.

Proposition 1. Extension of power difference mean F,(t) is an interpo-
lational mean which interpolates power mean, power difference mean, and a
part of stolarsky mean.

Proof of Proposition 1. By taking s = r, we get power mean

1
1+t5\s
Fs,s(t)= ( 9 )

Thus F,,(t) interpolates power mean and the means which power mean
interpolates.

Next, we show Fj,(t) interpolates power difference mean. By taking
s =1, we get

=P,(t) (-1<s<1).

r(tt —1)
Fy,.(t) = —-1<r<1).
1,""() (’I‘+1)(tr——1) ( =T )
By taking s = —1 and thinking parameter range, we get
(r—1{E"-1) p(t'*P — 1)
F_1.(t) = -1<r<l) <= -2<p<0
Connecting both parameter range, we have power difference mean
1+s _
PDt) =2 =D acsc

(14 s)(t*—1)
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Lastly, we think about the case s = p — 1 and r = 1. Simple substitution

derives )

Foa®={ =55} =550 0<p<2),

p(t—1)
It follows from Theorem 3 that the above is an operator monotone function
of t > 0 and ST, (t) < ST}, (t) holds for 0 < p; < pp < 2. O
Remark 1.

st = {5} (2<p<2).

Stolarsky mean is an operator monotone function for —2 < p < 2.
However, we can not show operator monotonicity for —2 < p < 0 by using
operator monotonicity of F, ,(t), directly.

At the end of the paper, we introduce a property of Fj ().
Proposition 2. Let

o QJS:EJ—I)H)%

and o,, be an operator mean which is characterized by Fy.(t), i.e., for
A, B >0,

Ac,.B = A3F,, (A‘T‘ BA:%) 't
Then o5, is symmetric operator mean, and both of the dual and the adjoint
of o5y coincide with o_g .

Proof of Proposition 2.

tF (t7Y) =t (/01 {1-a)+ at"'}fda)%

= (/01 t*'{(1-a)+ at_r}%da)%

— (/01 {1-a)t" +a}%da) T = Fir(t).

Hence, F ,(t) is symmetric.
Similarly,

Fs,:(t) =t (/01 {(1-a)+ at’}%da) o



=1
S

t“s{(l —a)+at"}r da>

(f
(/ {(1- )t +a}= rda)%s — Fly . (t),
= ([
-

I

-1

s

{(1-a)+at™}r da)

1

/ ((1-a)+at™"} rda) —Fy ().
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