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Large time behavior of solutions toward a multiwave
pattern for the Cauchy problem of the scalar
conservation law with degenerate flux and viscosity

Natsumi Yoshida (Ritsumeikan University/Osaka City University)

1 Introduction and main theorem

We consider the asymptotic behavior in time of solutions to Cauchy problem for scalar
viscous conservation law with nonlinearly degenerate viscosity

Byu + 0, (f (1)) = p 8, (|azu|f"1azu) (t >0,z €R),
u(0,z) = up(z) (z € R), (1.1)
xli)rjrzloou(t,m) = uy (t > 0)

for p > 1. Here u = u(t,z) is the unknown function of t > 0 and z € R, so-called the
conserved quantity, f = f(u) is the flux function depending only on u, p is the viscosity
coefficient, ug is the given initial data, and ux+ € R are the prescribed far field states. We
assume the flux f = f(u) is a given C-function satisfying f(0) = f'(0) = 0, u is a positive
constant and far field states u4 satisfy u_ < u; without loss of generality.

We are interested in the asymptotic behavior of solutions to the problem (1.1). It is known
that the large time behavior is closely related to the weak solution (“Riemann solution”) of
the corresponding Riemann problem (cf. [13], [27]) for the non-viscous hyperbolic part of

(1.1):

{ Owu + 0, (f(u)) =0 (t >0,z € R), 12
u(0,2) = uf(z) (z € R),
where uf is the Riemann data defined by
B(z) = (@ uuy) = { Z; Ez j g)’
In fact, for the usual linear viscosity (p = 1) case
Owu + 05 (f(u)) = pdiu (t >0,z € R),
u(0,2) = uo(z) (z €R), (1.3)
Il'}rjrzloou(t, T) = us (t>0),

when the smooth flux function f is genuinely nonlinear on the whole space R, i.e., f"(u) #
0 (u € R), Iin-Oleinik [9] showed the following: if f”(u) > 0 (v € R), that is, the Riemann
solution consists of a single rarefaction wave solution, the global solution in time of the
Cauchy problem (1.3) tends toward the rarefaction wave; if f”(u) < 0 (u € R), that is, the
Riemann solution consists of a single shock wave solution, the global solution of the Cauchy
problem (1.3) does the corresponding smooth traveling wave solution ( “viscous shock wave” )
of (1.3) with a spacial shift (cf. [8]). More generally, in the case of the flux functions which
are not uniformly genuinely nonlinear, when the Riemann solution consists of a single shock



wave satisfying Oleinik’s shock condition, Matsumura-Nishihara [18] showed the asymptotic
stability of the corresponding viscous shock wave. However, when we consider the circum-
stances where the Riemann solution generically forms a pattern of multiple nonlinear waves
which consists of rarefaction waves, shock waves and waves of contact discontinuity (refer to
[13]), there had been no results about the asymptotics toward the multiwave pattern. Re-
cently, Matsumura-Yoshida [19] proved the asymptotics toward a multiwave pattern of the
superposition of the rarefaction waves and the wave of the contact discontinuity. Namely,
they investigated the case where the flux function f is smooth and genuinely nonlinear
(that is, f is convex function or concave function) on the whole R except a finite interval
I := (a,b) C R, and linearly degenerate on I, that is,

{ f"(w) >0 (u€ (-o00,a]U[b,+00)),
f"(w)=0 (u€(a,b)).

For the flux function satisfying (1.4), the corresponding Riemann solution does form mul-
tiwave pattern which consists of the contact discontinuity with the jump from v = a to
u = b and the rarefaction waves, depending on the choice of a, b, u_ and u,. Thanks to
that the cases in which the interval (a,b) is disjoint from the interval (u_,u ) are similar
as in the case the flux function f is genuinely nonlinear on the whole space R, and the case
u_ < a < u4 <bis the same as that for a < u_ < b < u4, we may only consider the typical
cases

(1.4)

a<u-<b<us or u-<a<b<uy. (1.5)

Under the conditions (1.4) and (1.5), they have shown the unique global solution in time
to the Cauchy problem (1.3) tends uniformly in space toward the multiwave pattern of
the combination of the viscous contact wave and the rarefaction waves as the time goes to
infinity. It should be noted that the rarefaction wave which connects the far field states u_
and uy (us € (—o00,a] or ug € [b,00)) is explicitly given by

U (z < Au-)t),
u=1u" (% ; u_,u+) =q¢ (M) (%) (,\(u_)t <z< /\(u+)t), (1.6)
Uy (z 2> Muy)t),

where A(u) := f’(u), and the viscous contact wave which connects u_ and u4 (us € [a,b])
is given by an exact solution of the linear convective heat equation

Ouu+ Adpu = pdu (:\:= M, t>0,:r€1R> (.7

which has the form

where U | 2= ; u_,uy ) is explicitly defined by
Vi

U(%;“"“*) ‘”‘*E\/;__/ e @>0ceR). (18

Yoshida [27] also obtained the precise decay properties for the asymptotics. In the proof of
them, the a priori energy estimates acquired by an L2-energy method and careful estimates
for the terms of nonlinear interactions of the viscous contact wave and the rarefaction waves.

In this article, we shall extend the results in the previous study in [19] to the case where
the viscosity is the p-Laplacian type one (the related problems are studied in [4], [20], [21]
and so on). For this case, a main difficulty arises from the fact that when uy € [a,b], the
asymptotic state is expected to be a self-similar type solution of a nonlinearly degenerate
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convective heat equation which may need the more subtle treatment than the Gaussian
kernel type one (1.8) of the equation (1.7). There is only one result for the asymptotic
behavior for the problem (1.1) in the case where the flux function is genuinely nonlinear
on the whole space R. Namely, Matsumura-Nishihara [17] proved the asymptotics which
tends toward a single rarefaction wave by using the L? and LP-energy estimates. We then
consider the case where the flux function is given as (1.4) and the far field states as (1.5).
We expect the asymptotic behavior of solutions to the Cauchy problem (1.1) to be similar
as in [19]. In more detail, under the conditions (1.4) and (1.5), if the farfield states us
satisfy ut € (—o00,a] or ux € [b,00), the asymptotic state of the solutions to the Cauchy
problem (1.1) should be the rarefaction wave (1.6) which connects u— and u, and if the
far field states ugt satisfy u+ € [a,b], the one should be the “contact wave for p-Laplacian
type viscosity” which connects u_ and u4, which is given by an exact solution

z=At

U(E-l—j‘t;u_,u+)=u_+/E((A—B§2)VO)5%{d§ (1.9)
t5eT -
(A,B>0; /oo ((A—Bg2)vg)p—11 dE=uy —u_, A:i= f(b):i”(a)>

of the following p-Laplacian evolution equation

atu+3\amu=yaz(|azu\"'1azu) (X::fﬁz—*—f@,wo,weu{). (1.10)

Here, the viscous contact wave U is constructed by the Barenblatt-Kompanceec-Zel'dovic
solution ([1], [28], [24])

1

9 -1
ot z) = ——— | [a-B[—2—+) | voO (1.11)
(1 +t)sHT (L+¢)7H
of the following Cauchy problem of the porous medium equation (cf. [2], [7], [10])
3tv=u8§(|v|p_1v> (t>-1,z€eR),
v(-1,z) = (u4 —u-)d0(x) (z € R; u_ <uq), (1.12)
Jlim v(t,z) =0 (t>-1)

where §(z) is the Dirac d-distribution.

Theorem 1.1.  Let the fluz function f satisfy (1.4) and the far field states uy (1.5).
Assume that the initial data satisfies ug — ul € L? and dyug € LP*'. Then the Cauchy
problem (1.1) with p > 1 has a unique global solution in time u = u(t,z) satisfying

u—ul € 0°([0,00); L2) N L= (RT; L?),
dpu € L®(Rt; LPHY),
Byu € Lo (RT; LPH1),
s (I@wu P axu) e L*(Rf x Ry),
and the asymptotic behavior

lim sup|u(t, ) — Unuwti(t,z; u_,uy)| =0,
t—o00 z€eR

where Upmuti(t, ) = Umaiti(t, T; u—, uy) is defined as follows: in the case a < u_ < b < uy,

-t
Umulti(tsz) =U (x 1A ) u—vb) +,u7‘ (EE ; ba ’U+) -b
trH1 t
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and, in the case u- < a <b<uy,

-t
Umulti(tva") =u" (E ) u_,a) —a+U ':ET jab) +u” (E ) b,U+) -b.
t {7 T t
The proof is given by a technical energy methods and the careful estimates for the interac-

tions between the nonlinear waves. Important are the a prior: uniform estimates (cf. [17],
[19], 27)).

2 Preliminaries

In this section, we shall arrange the several lemmas concerning with the basic properties
of the rarefaction wave and the viscous contact wave for accomplishing the proof of the
main theorem. Since the rarefaction wave 4" is not smooth enough, we need some smooth
approximated one U (cf. [5], [15], [16], [19]). In fact, we have the following results on UT.

Lemma 2.1.  Assume that the far field states satisfy u_ < uy, and the fluz fanction
feC3¥R), f"(u) >0 (u € [u_,us]). Then we have the following properties:
(1) UT(t,x) is the unique C?-global solution in space-time of the Cauchy problem

U™ + 8. (f(UT)) =0 (t >0,z €R),
UT(0,z) = (\)7! (A‘ ;”‘* + A ;A‘ tanha:) (z € R),
acli’rilooU"(:‘,,:z:) =ug (t >0).

(2) u- <U(t,z) <uy4 and 8,U"(t,z) >0 (¢t>0,z €R).
(3) For any 1 < g < 00, there ezists a positive constant Cy such that

1 82U7 () lLa< Co(1 +8) 745 (2 0),
| B2UT(t) llza< Co(1 +8)™1 (¢ 20).

gl ()|
(4) tl_lgloilelg U(t,z) —u (t =0.
(5) For any € € (0,1), there exists a positive constant C, such that

|UT(t,2) —uy | < Ce(1+t)" M eemcl==2tl (¢ > 0,2 > A, t).
(6) For any € € (0,1), there exists a positive constant C, such that

|[UT(t,x) —u_ | < Ce(1 +t)~1Heeclz=2-tl (¢ > 0,2 < A_t).

(7) For any e € (0,1), there exists a positive constant Ce such that

'UT(t, z) —u" (%) ‘ <CA+8)™  (E>LAt<z < A).
(8) For any (e,q) € (0,1) x [1,00], there exists a positive constant Ceq such that

“ UT(t,-) —u (Z) “Lq <Cog1+)71Hite  (£>0).

We also prepare the next lemma for the properties of the contact wave for p-Laplacian type
viscosity U ( —_"’E ;U—, u+) defined by (1.11) (in the following, we abbreviate “contact wave
tr

for p-Laplacian type viscosity” to “viscous contact wave”).
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Lemma 2.2. For anyp > 1 and ux € R, we have the following:

(i) U defined by (1.11) satisfies
r= :I:\/%tﬁ‘f }) ,

and is a self-similar type strong solution of the Cauchy problem

U e #'((0,00) XR)\02 ({(t,m) eRt xR

( 8tU—u81(]8IU|p_18IU) =0 (t>0,z €R),
U_ z < 0),
\ U0,z) = uB(z; u_,uy) = ( )
U+ ($>0)a
{ zlifile(t7m)=ui (t>0).

(if) Fort >0 and z € R,
Ut,z) = u_, (m<—-
u- < U(t,z) < uy, 0,U(t,z) >0 (
Ut,z) = ug, (mz\/%tﬁ’f).
(iii) It holds that for any 1 < ¢ < oo,
10U(1) e = C1(A, B p,g)t &5 (¢>0)

where .

Ci(A,B;pq):= <2A%B‘% /2 (S'mg)z?i‘f d9)
0

If ¢ = o0, we have
1 1
10U (t) | = (24)7=T t7F1 (¢ >0).

(iv) Itholdsthatforany1$q<;% withp>2, oranyl <g< oo withl <p<2,

182U (t) 1o = Ca( A, B p,q)t"B¥ (¢ >0)
where
C2(AvB ) p,Q)

“E e -4 3 2(p—2)q
( (AE0) (27 [ anoy 5 H(cose)qde)

If1 <p <2, for g = 00, we have

2 —
| 620 (t) o= = :

le=2 -3
2477 B IB(B> tTFT (¢>0).

(v) It holds that
(100 a) 0] ~ouamieES 0

C3(A,B;p) = (2 ( 2B7 )2 @)—% /Og(sine)%g(cosﬁ)zdﬂ)

where

1
2

p—1

(vi) lim sup |U(1 +t,z) - U(t,z)| = 0.
t—»00 z€R
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3 Reformulation of the problem

In this section, we reduce our Cauchy problem (1.1) to a simpler case and reformulate the
problem in terms of the deviation from the asymptotic state (the same as in [19], [27]). At
first, without loss of generality, we shall consider the case where ¢ < 0, b = 0 and the flux
function f(u) satisfies

{ f"(u) >0 (u€ (—o00,a]U |0, +00)), (31)

flw)=0  (u€(a,0),

under changing the variables and constant as £ — At~ z, w — b — u, f(u+ b) — f'(b)u —
f(a) » f(u) and @ — b — a in this order. For the far field states ux € R, we only
deal with the typical case a < u- < 0 < u4 for simplicity, since the case u_- < a <
0 < uy can be treated technically in the same way of the proof as ¢ < u_ < 0 < uy.
Indeed, in the case u_- < a < 0 < wuy, as we shall see in Section 4 and Section 5, there
appears the extra nonlinear interaction terms between two rarefaction waves u"( % ; u—,a)
and u"( £ ; 0,uy) with A(a) = A(0) = 0 in the remainder term of the viscous conservation
law for the asymptotics Upyqut; (see the right-hand side of (3.5)). These terms can be handled
in much easier way by Lemma 2.1 than that for other essential nonlinear interaction terms
between the rarefaction and the viscous contact waves. Furthermore, we should point out
that the problem under the assumptions for the flux function (3.1) and the far field states
a < u~ <0 < uy is essentially the same as that for a = —oo, because obtaining the a priori
and the uniform energy estimates for the former one can be given in almost the same way
as the latter one. Therefore, it is quite natural for us to treat only a simple case

{ f'(w)>0 (ue€[0,00)),

(3.2)
f(w)=0 (ué€(~00,0)),

and assume u_ < 0 < uy.
We first should note by Lemma 2.1 and Lemma 2.2, the asymptotic state Up,,1; can be
replaced by a following approximated one

U(t,z) :=UQ +t,z)+U"(t,z) (3.3)
where
U(1+t,I)=U -—_m_l;u—ao ) Ur(t,x)=Ur(t,a;;0,u+).
(14¢)7+1

This is because, from Lemma 2.1 and Lemma 2.2,

sup | U(t,2) = Upaies(t,) | < sup |U(1 +¢,2) = U(t,) |
TER z€R

tsup |UT(t,z) —u” (f) 1 50 (t— o)
z€R t

In the following, we write U(1 + ¢, z) again U(t,z) for simplicity. Then it is noted that U
approximately satisfies the equation of (1.1) as

8T + 8- (f(0)) — pd, ( | 8,0 |”“amﬁ) = —F,(U,U"), (3.4)
where the remainder term F,(U,U") is explicitly given by
Fp(U,U") :=F,(U,U")
+ 18, (|8.U +0,U7 7 (8,U +8,U7) = |0,U P~ 8,V )
=—(f'U+U") - f'U))8U" - f(U+U")8,U
+ 10, (|8:U +0.U" [T (U +0,U") = |8U P 8,V )

(3.5)
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which consists of the interaction terms of the viscous contact wave U and the approximation
of the rarefaction wave U", and the approximation error of U™ as solution to the conserva-
tion law for the p-Laplacian type viscosity. Here we should note that U is monotonically
nondecreasing and U” is monotonically increasing, that is, U (t,z) >0 (t >0,z € R)
which is frequently used hereinafter. Now putting

u(t,z) =U(t,z) + ot ) (3.6)

and using (3.5), we can reformulate the problem (1.1) in terms of the deviation ¢ from U as

dup+0. (£(T +4) - 1))

10, (100 +0,8|" (8,0 + 0,0) - | 8.0 " 0.0 ) (3.7)
= F,(U,U") (t >0,z € R),
(0, ) = ¢o(z) := uo(2) - U(0, z) (z € R).

Then we look for the unique global solution in time ¢ which has the asymptotic behavior

sup | ¢(t, ) | — 0
z€R —roo

Here we note the fact ¢g € L? and 0,¢9 € LP*! by the assumptions on ug and the fact
8;U(0,-) = 8,U(0,-) 4+ 8,U(0,-) € LF*.

In the following, we always assume that the flux function f € C}(R) N C3([0,00)) satisfies
(3.2), and the far field states satisfy u_ < 0 < ui. Then the corresponding our main
theorem for ¢ we should prove is as follows.

Theorem 3.1. Suppose ¢o € L? and 8,9 € LPL. Then there exists the unigque global
solution in time ¢ = ¢(t,x) of the Cauchy problem (3.7) satisfying
(¢ € C°([0,00); L?) N L®°(RY; L?),
8,9 € L®(RY; LPH1) N LPHI(RS x R,),
! 8, (U +¢)eLe(RT;LPH) N LP+2 (RS x {z € R|u > 0}),
8 (U + ¢) € L®(R*; LPH1),
8 (10.(0+0) 0.0 +9) ) € *(Ry xRy),

\
and the asymptotic behavior
Jim sup |#(t,z)| = 0.

In order to show the desired asymptotics, we show the following a priori estimates which
are independent of T in the next sections.

Proposition 3.1 (uniform estimates I). For any initial data ¢o € L? and 0,09 € LPFY,
there exists a positive constant

Cp(d0) = C(liollz2 )

such that
Zf 22 ’ G 1
H (t) Ill, ‘/O (7 ) 7

Y e 2 . ) . (3.8)
+_/0 f_m(am) (|6x¢\1’— + 0, UP™ +|0:UT 7™ ) dzdr < Cp(o, 8x¢0)
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212

fort >0, where

6= ([ #0:005) 0 ([ 5 (O oVe00) 0
T (-/l‘7+¢<0,020(0 * ¢l)2610'dx) (t).

Furthermore, we have the LP™!-energy estimate for d,u as follows.

Proposition 3.2 (uniform estimates II). For any initial data ¢9 € L? and 0,¢9 € LP*!,
there exists a positive constant

Cp(do,0zu0) = C(lldollL2, [18zuollLe+1)

such that for t > 0,
o0+ [ [ o7 (02u)" dar

(3.9)
/ “ 3 u ”LP+2({z€lk|u>0}) dr S Cp(¢0y6a:uo)-

4 Uniform estimates I

In this section, we show the basic uniform energy estimates with p > 1 which is not depending
on T, that is, Proposition 3.1. Now let us rewrite the basic L?-energy inequality, that is
Proposition 3.1 (uniform estimates I):

16(6) 122 + / G(r)dr

t [eo] 9 -1 o1 p—1 (41)
+/O/_w(az¢) (]ax¢| +|8:U[P™ + |8,U7] )dwdTSCp(qSo)

for t > 0, where G(¢) is defined as in Proposition 3.1. The proof of (4.1) is given by the
following two lemmas.

Lemma 4.1. It holds that for t > 0,

16(t) 122 + / G(r)dr

t oo
+ / / (:6)” ([020"™" +18:U" ™ +18,U7P) dadr

spti
P

dz (r)dr

<Gyloll+ 6 [ (160) i+ 1)| [ |Fwon

+c,,/
0

Lemma 4.2. It holds that

r

(r)dr.

/ (8.U +8,U7 )"~ (8,U")? da

3 1
P
(t)dt < oo,

/_: | Bw,u)| do




(t)dt < oo.

/ ‘/ (8:U +8,U )P~ (8,U")? da
0 —o00

Once Lemma 4.1 and Lemma 4.2 are proved, by Gronwall’s inequality, we have the

uniform boundedness
3p+1
%p
dt} < oo

le®) 2 <Cp(ll dollZ= +1)
x exp{ ' / U UT)

Proof of Lemma 4.1. For p > 1, multiplying the equation in (3.7) by ¢ and integrating

it with respect to = and t, we have

which easily implies (4.2), that is, Proposition 3.1.

3190 “L”// 1@ +¢) - £(T) - £'(0)¢) 8.0 dudr
. U e
+u/0 /_w(8x¢)(|6xU+az¢|P (8.U +8,0) — | 8,U | axU) dzdr  (4.2)

1 t [e5)
=3l [ [~ 6 Bw.Unasar

To estimate the second term in the left-hand side of (4.2), noting the shape of the flux
function f, we divide the integral domain of z depending on the signs of U+ o, U and ¢ as

| (10 +8)-50) - 7(0)9) 0.0 0z

-—00

= [ [ (@ +n)-2@) an) (8.0 ) ae (43

—00

-, g/ * Jrvesonco™ Jorecat
U+¢>0,02>0,6>0 JU+4>0,02>0,6<0 JUT+¢20,0<0 JT+¢<0,0>0

where we used the fact that the integral is clearly zero on the domain U+ ¢ <0and U<o.
By Lagrange’s mean-value theorem, we easily get as

(/:</0¢ (,\(ff—f—n) - A(U')) dn) (aw[j)dw) (t) ~ G(t) (4.4)

where G = G(t) is defined in Proposition 3.1 (cf. [19], [27]). Next, we also estimate the
third term in the left-hand side of (4.2) as

[ (0:0) (100 + 0.8 (0,0 + 1) - | 00 0.0 ) 4o

) (4.5)
> ,/1,-1/m(av,c¢s)2 (;az¢|””1 +]aUP T+ |asz]”“) dz
for some constant v, > 0 which is depend only on p. Furthermore, we should note
o0 o0
’/ 8 Fp(U, U™ da| < / 16| ’E(U,U’) dz
— oo (4.6)

+u/_°°|ax¢\ ((8:U +0,UT )" — (8,U)P) da.
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Substituting (4.4), (4.5) and (4.6) into (4.2), we get the energy inequality
1 _ t
316015+ ;" [ Gnar
t poo
M,—l/ / (0:0)° (120"~ + [T + (0,077 dadr

<3leolts+ [ [ 161|Fwon
u/O/_m]am}((amU+azUr)”—(azU)”)dzdr.

(4.7
dzxdr

We estimate the second term in the right-hand side of (4.7) as follows:

[ 161| B

2 +1 o __
<lslE o1 [ |Fwu
\ o0 | __ gt (4.8)
< ottt +alolh ([ |Fwom)as)
P

00

ag1
>

)

< lo.p1zk + o613 +1) 1/ WU

=10,

where we used Young’s inequality and the following Sobolev inequality (cf. [27]):

ol < (B7 11) o 1E 015 (49)

By the Cauchy-Schwarz inequality and Young’s inequality, we also estimate the third term
in the right-hand side of (4.7) as follows:

u/-w[@x(bl((6ZU+8$UT)p—(8zU)p)dz

_ﬂp/ |8:6| ((0.U +60.U" P "'0,U™ ) da
(36 =6(t,z) € (0,1)) (4.10)
< L/w (8:6)*(8aU + 8,U" )P da

T4y

+Cp

o0
/ (8.U7)2(8:U +8,U7 )"V dz |

Thus, substituting (4.8) and (4.10) into (4.7), we complete the proof of Lemma 4.1.

Proof of Lemma 4.2. Firstly, we have

l/ (8:U7)?(8:U +8,U" )P de

. 4.11

< Coll 3,0 (t) 5241 U (2) [l o (4.11)
< Cp(1+1) 7,

that is,

] (8:U7)?(8:U + 8;U™ )"~ dz € L}(0,0) (4.12)

— 00
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where we used Lemma 2.1 and Lemma 2.2. Then, it suffices to show, by the definition of
the remainder term F,(U,U"), that

/m |ffU+U") - f(U)|0,U"dz € Lfg_l (0, 00), (4.13)
/ TIFU+UT) |80 dz € L (0, 00). (4.14)

To obtain (4.13) and (4.14), it is very natural to divide the integral region R depending on
the sign of U = U + U". So, for any ¢ > 0, we introduce

X :[0,00)2t— X(t) €R

such that
Ut, X)) =U(t, X)) +U(t, X)) =0 (t>0), (4.15)

that is,

U (X () = U (X ()

/°° 1 ( y \2 7 (4.16)
= - ((a-B ( / ) vol| dy.
x@) T et

Here we note that X (t) uniquely exists because U” is strictly monotonically increasing with

respect to = on the whole R and U is also strictly monotonically increasing on —4/ % 1+

t)z’lﬁ <z< 1/% (1 +t)ﬁ. Furthermore, note that U(¢, —00) = u_ < 0 < uy = U(t,00).
Therefore we can divide the integral region R into (—oo, X (t)) where U < 0 and (X (t), o)
where U > 0. As a basic behavior of X(t), we can show by Lemma 2.1 and Lemma 2.2 that

there exists a positive time Ty such that for some § € (0, \/ % ),

(\/g—a) (1+1)7T < X(t) < \/_%‘(1—)—1&)51_1 (t > To). (4.17)

Indeed, by an easy fact

sup
z€R

" (Tﬁ‘%) —u" G)l <Cc(+t)7Y, (4.18)

and Lemma 2.1, it follows that

UT(t,z) — u" (L) ' <C(1+8)7H (e€(0,1)), (4.19)

sap 1+1

z€R

which implies

tl_'gl&ﬁ(t,(@—é) (1+t)p—-’ﬁ)

:-/;'6((A~B{2)\/O)ﬁd§<0,

U(t,\/—(wt)#r)=Ur(t,@(1+t)#>>0 (Vt>0). (4.21)

(4.20)

and

SIS
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So we have (4.17) by (4.20) and (4.21). Then, by (4.16), (4.18) and (4.19), we have for any
€ € (0,1), there exists a positive constant C, such that

o (2) - [ ((a-peyve
(1+t)7

for t > Tp. Using (4.22), we can show more precise large time behavior of X(t) as in the
following lemma.

)”_lT d¢ | < C(1+1)71+e, (4.22)

Lemma 4.3. It holds that for each p > 1, there exists a positive constant C, such that

\/E__’_“L
B (1445

Now we complete the proof of Lemma 4.2. Using Lemmas 2.1, 2.2 and 4.3, we first prove
(4.13). Dividing the integral region as we mentioned above as

oo X(t) oo
/ | F(U+UT) - f(U)|0,U" da =/ +/ =:I1; + L1y,
—00 X(t)

—00

SC(1+8)75  (t>T).

we estimate each integral as follows:

X(2)
Lu(t) = / | £'(U +U") = F/(U) | 8:U" dz

X0
- [ a(wn)a
<o v (LX) (4.23)
X(@) e )
<C (1—+t+C€(1+t) 1+ )
SCp (147 4 C (L4029 (€ (0,1), t20),
Liap(t) = /Xz) | /(U +UT) = f/(U") | 8,U" dx
<c ([ U680 ds
X(t)
SC’(1+t)'1/ / ((4-B&)vo)™ deds
x® (1+ta)nv¥;
=ca+o [ ((A—B{z) vo)"" (5(1+t)m -X(t)) d¢
o (4.24)

< Cp(1 4177 A-BE)TT d

v
x
(1+t)£4_—”
1 xe V)
- gy P72 -l =%
=G+ S (A B((1+t)#f))

<Cp(L+t)~HFh

<G+t (1>m),
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where we used the facts || 9,U"(t) ||~ < C(1+¢)~! in Lemma 2.1 and Lemma 4.3. Hence,

3 1
choosing € suitably small in (4.23), we can easily conclude I3, 12 € Lt_lg”’L (0, 00), which
proves (4.13). Next, we similarly show (4.14). In this case, noting

o0 o)
/ F(U+UN8,Udz = f'(U+U")8,Udzx =: I,
—00 X(t)
we estimate I, by integration by parts, as follows:

Izl(t) = ) f’(U + UT) 0, U dz
t

oo
=_/ U f"(U +U)(8,U + 8,U" ) dz
X

o0 1 oo
<C ——az(Uz)derc/ |U | 8,U" dz
x@ 2 X(t)

<C U6, X®) [+ Cp(1 + 1) 15

<C(A+t) 02 L0144 B (e€(0,1), t > To).
Hence, choosing € suitably small again, we easily have I; € L%%(O, 00). Thus, the proof
of Lemma 4.2 is completed.

Thus, we do complete the proof of Proposition 3.1.

5 Uniform estimates II

In this section, In order to complete the uniform estimates for the asymptotics not depending
on T', we show Proposition 3.2. To do that, we assume that the solution to our Cauchy
problem (3.7) satisfies the same regularity as in Section 4. 'What we should prove is the
following energy inequality:

l| Opu(t) iﬁl—}—// | 0zu 2(1’—1)(6%) dzdr

(5.1)
+ /D | 2u(r) 182 o usop) &7 < Coldo,Bsua) (2 0).
In order to obtain (5.1), we multiple the equation in (1.1) by
—0, (t@wu (a1 8zu)
with ¢ > 1, integrate it with respect to x, and get
o 12 132 'HLPQ/:OO 0. P07 (2u)? da o

Now we separate the integral region to the third term in the left-hand side of (5.2) as

/ " (w) | 8zu |t Byude

i
Ozu>0 O, u<0 )

B / F(u) | 8pu|**? da ‘/ ()| Bu ™t da.
u>0 Oz u<0

zUZ
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Substituting (5.3) into (5.2), we get the following equality

l d ® -
S 10 I3 +upa [ |0 () da
. - . (5.4)
4+ F(u 6uq+2dx:———/ f(w) | 8;u | dz.
qa+1 Ja,uz0 () 16z g+1 Js,u<0 (u)]6zu]

We have the following result which plays the most important role in the proof of (5.1).

Lemma 5.1. For each q > 1, there exists a positive constant Cy such that

/8 IRACILAT R L /a g™ as (5:5)

In fact, taking care of the relation
Ot = 8,U + 020 < 0 <= 8,6 <0, 8;U < | 8:0|, (5.6)

we immediately have

/ (w) | 85|72 do
O,u<0

<ot ( s fw)) [ o
OSusa-{-l 0:¢<0,0:U<|0:¢|

Remark 5.1. Under the relation (5.6), noting

{o o) (o <)
/ / | 8.6 P! dzdt < 0o
0 —0o0

from (4.1) in Section 4 and taking ¢ = p — 1 to (5.4), we can easily show that for p > %,

(5.7)

%”azu( IZ» +Mp(p—1/ / |8, P2 (82u)? dedt

(5.8)
—/ / f"(u) | pu Pt dedt < oo,
0 Ozu>0
which namely means that for p > %,
4 d P 1
< I0:ul, € L}(0,00),
oo 3 2
) / | 8pu |73 (9%u)? dz € L} (0, 00), (5.9)
—oo
o0
/ £7(u) |0 P dz ~ / 8yu [P+ dz € L1(0, ).
\ —o00 u>0
Integrating (5.4) with respect to t and taking ¢ = p, we have the energy equality
1 i 2(p—1 2
g 10O +us® [ [ 10, (32u)” duar
p+ ] / /6 2o " (u) ] 8pu|PH? dzdr (5.10)

1
) p+1 / / " am p+2 dzdr.
= p_l | Gzuo ”Lp+1 + 1/, 6,u<0f (u) | Ozu| zdT
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The most difficult term to stimate is the second term in the right-hand side. We prepare the
following “boundary zero condition type” interpolation inequality to overcome the difficulty.

Lemma 5.2. It holds that

/ | 8pu P2 dz
Bz u<0
sz (5.11)

T
<GCp (/ | 8pu|2PY (Bgu)zdx) ’ (/ | pu [P da:> ’
8 u<0 O u<0

Proof of Lemma 5.2. Since 8,u is absolutely continuous, we first note that for any
z€{z€R|8u < 0}, there exsists z € RU{—oo} such that

dzu(zk) =0, pu(y) < 0 (y € (zx,2)).

Therefore by using the Cauchy-Schwarz inequality, it follows that for such = and z; with
g2p(>1),

T

|Opul? = (—0,u)? = q/ (—8,u)? ! (-82u) dy

Tk

< q/ (=8u)?™t (~82u) dz (5.12)
Ozu<0
3 3
<gq (/ (—9pu )2~V (—82u)2 dw) (/ (—0pu)*eP da:)
O, u<0 O u<0
Hence

| Ozu(t) || Lo ({8,u<0})

< g3 (/ |8 [2P7Y (Eﬁu)zdx)
Oz u<0

So we get

&

([ s O9
O,u<0

/ | Opu [P+ da
Oz u<0

< Nouulizqaeon [ 10" da
Ozu<
, (5.14)

L
< gt </ |8xu|2(p_1) (c')iu)'?dm) ’
Oru<0

x(/ | §pu|2@7P) dx) ! (/ | 8u |PH! dm).
d,u<0 Oz u<0

Taking q = 51’;—2 in (5.15), we have

2 3p+2
37z T
/ |6xu1p+2dm$(3p+2>p (/ |azu|1’+1dz)
8ou<0 2 8,u<0

3T
X ([ | pu |2PY) (Bgu)zdx> :
Oz u<0

mlp

(5.15)

Thus we complete the proof.

Using Young’s inequality to Lemma 5.2, (5.11), we also have
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Lemma 5.3. It follows that for any € > 0, there exists a positive constant Cy(€) such that,

/ |8,uPt? do
Bru<0
3p+2

< e/ |0pu 2P (82u)* dz + Cy(e) (/ | Opu [P dx)
8zu<0 8,u<0

Substituting (5.16) with ¢ = ﬁ,%z into (5.10), we have

p2 t o] 9
o) 7t + / / |8y 20D (824) dadr

p _+_ 1 LP+1

p+1_// ' (u |a u|P*? dzdr
Oz u>0

2
1 LA
< —— 3x1, ptl +C, / (/ Bxup ld:c> dr.
p+1 ” 0||Lp+1 4 o 3:'u.<0| |

Now recalling Lemma 5.1, we have
00 1
/ |8zu Pt de < c,,/ |8:¢|P"" da € L}(0, ).
Ozu<0 —00

We also note 3= S < 1 and focus on the fact

32_
8,u Pt dx PSC 1+ |8;u P! dz
P
O,u<0 Ou<0

(5.16)

(5.17)

(5.18)

(5.19)

for some posisive constant C,. Hence, substituting (5.18) and (5.19) into (5.17), we have

2 t oo
muam u(t) 5k + 22 / / |9yu 20D (624)? dadr

p+1// f"(u) | 8pu |PT? dzdr
8=u>0

1 +1
Sl Il 8zuo |15+ +C’,,,/0 /_m|6z¢|p dzdr

t o
+6, [ 1oz ([ lo6 ar ) ar

By using Gronwall’s inequality, we have

18zu(t) 5340 < Cp (Il 0zuo I3ss + Il do 72 +1)

X exp {Cp/ / |00 7" d:cdt} <
0 —00

Hence, substituting (5.22) into (5.21), it finally holds
S A A 2(p-1)
lou®) gt + [ [ 10 07 (02u) dandr
0 J—oo

t
#1000 122 sy 37
< C(lIdo iz, 1| Gsto lzosr)-

Thus, we do complete the proof of Proposition 3.2.

(5.20)

(5.21)

(5.22)
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