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Geometry of timelike Bertrand curves in Anti
de Sitter 3-Space
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Abstract

We investigate the properties of the timelike Bertrand curves in Anti de Sitter 3-space
and give a sufficient and necessary condition for a timelike curve is a Bertrand curve, i.e.,
a timelike curve o in Anti de Sitter 3-space is a Bertrand curve if and only if either (1)
torsion 7 = 0, curvature k # — cotha,a € R or (2)there exist two constants A # 0 and u
such that p7 — Akg = 1. Moreover, we also characterize the relationship between timelike
Bertrand curves in Anti de Sitter 3-space and spacelike Bertrand curves in semi-Euclidean
4-space with index two.
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1 Introduction

It is well known that there are two kinds of space form with constant sectional curvature which
are Riemannian space from and Lorentizian space from. The Lorentzian space form with the
negative constant curvature is called Anti de Sitter space which is one of the vacuum solutions
of the Einstein equation in the theory of relativity. The third author and his collaborators had
investigated the surfaces in Anti de Sitter 3-space from the viewpoint of singularity theory(1, 2].
As results, they studied the contact of surfaces with some models (invariant under the action
of a suitable transformation group).

In this paper we consider the geometric properties of a special classes of curves in Anti
de Sitter 3-space, so called timelike Bertrand curves. Since the Bertrand curves have many
applications in nature science, such as in CAGD (computer-aided geometric design, see (3, 4]),
the notion of Bertrand curves play important roles in the classical differential geometry for
curves in Euclidean space. The history of the study of Bertrand curves is from the beginning of
the study of helix. B. de Saint-Venant proved in 1845 that a curve is a general helix if and only
if the ratio of its curvature & to its torsion 7 is a constant, i.e., 7/ = ¢ for c is a constant in [5].
In 1850, J. Bertrand investigated another geometric property of helices. If a curve satisfies this
property it is called Bertrand curve named after his study in [6]. As we know, a curve in R3
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with the curvature x and the torsion 7 is a Bertrand curve if and only if it is a plane curve or it
satisfies kK +a7 = b for constant @ and b # 0. Moreover, there are several articles concerning the
Bertrand curves immersed in different ambient space [7, 8, 9, 10, 11, 12, 13]. Especially, Y.H.
Kim and P.Lucas had studied the Bertrand curves in three dimensional sphere respectively in
(14, 15]. Motivated by their studies, we define the timelike Bertrand curves in Anti de Sitter
3-space and investigate their properties. As results, we prove that a timelike curve o in Anti de
Sitter 3-space is a Bertrand curve if and only if either (1) 7 = 0,k # —cotha, a € R or (2)there
exist two constants A 3% 0 and p such that ur — Ak = 1. Moreover, we also characterize the
relationship between timelike Bertrand curves in Anti de Sitter 3-space and spacelike Bertrand
curves in semi-Euclidean 4-space with index two.

We shall assume throughout the whole paper that all the maps are C*° and all the curves
immersed in Anti de Sitter 3-space are timelike curves unless the contrary is explicitly stated.

2 The local differential geometry of timelike curves in
Anti de Sitter 3-space

In this section we prepare some basic notions on semi-Euclidean 4-space with index 2 and
introduce the local differential geometry of timelike curves in Anti de Sitter 3-space.

Let R* = {(z1, - ,z4)|z; € R (i = 1,--- ,4) } be a 4-dimensional vector space. For any
vectors © = (1, -+ ,24) and y = (y1, -+ ,¥s) in R%, the pseudo scalar product of x and y is
defined to be (&, y) = —z1y1 — Tays + T3ys + Tays. We call (R4, (,)) a smei-Euclidean 4-space
with index 2 and write R instead of (R%, (,)).

We say that a non-zero vector  in R} is spacelike, null or timelike if (x,z) > 0, (x,x) =0
or (x,x) < 0 respectively. The norm of the vector « € R} is defined by ||| = /[{z, z)]|.

For any &, zs, 3 € R5. We define a vector &; A 3 A 3 by

—€; —€3 €3 €4
1 1 1 1
xq T Ty T
L1 ANToNT3 = 9 % % % y
Iy Iy T3 Iy
oi 23 a2} ad

where {e1, €3, €3, €4} is the canonical basis of R} and @; = (z}, z}, 7§, z;). We can easily check
that
(@, @1 A To A T3) = det(x, 1, T2, T3),

so that &; A T3 A @3 is pseudo-orthogonal to any z; (for ¢ = 1,2, 3).
We now define Anti de Sitter 3-space (briefly, AdS 3-space) by
H} ={z eR; | (z,z) = -1},
a unit pseudo 3-sphere with index 2 by
S3={x R} | (z,x) =1}

We now introduce the local differential geometry of timelike curves in H3. Let v : I — H}
be a regular curve (i.e., an embedding). The regular curve « is said to be timelike if 4 is a
timelike vector at any ¢ € I, where 4 = d-/dt. Since < is a timelike regular curve, it may
admit an arc length parametrization s = s(t). Therefore, we can assume that ~(s) is a unit
speed curve. Now we have the unit tangent vector £(s) = 4/(s). Since {(¥(s),~(s)) = —1, we
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,t(s)) = 0. From a direct calculation we have (v(s),t'(s)) = 1. In the case when
) # —1, we can define a unit spacelike vector n(s) by

#(s)+s)
() = TEe 7@

and call it principle normal vector of 4. We denote ||t'(s) +~(s)|| by k(s). Moreover, we define
a vector e(s) = v(s) At(s) An(s) and call it binormal vector of v, then we have a pseudo
orthonormal frame {v(s),t(s),n(s),e(s)} of R} along ~. By the standard arguments, under
the assumption that (#(s),#(s)) # —1, we can give the following Frenet-Serret type formula:

¥'(s) = t(s)

t'(s) = —v(s) + k(s)n(s)
n'(s) = k(s)t(s) + 7(s)e(s)
€'(s) = —7(s)n(s)

k2( det( (8),7'(8),7"(s), 7" (s))-

Since ((s) + v(s),t'(s) + ~(s)) = (t'(s),t'(s)) + 1, the condition (t'(s),t'(s)) # —1 is
equivalent to the condition k(s) # 0. We can show that timelike curve « is a geodesic in Hj 3 if

k(s) =0 and t'(s) +v(s) = 0.

have (~(s)
(t'(s),t'(s)

where 7(s) =

3 Bertrand curves in Anti de Sitter 3-space

In this section, we will introduce the notion of timelike Bertrand curves in H} and study their
properties.
Definition 3.1 A timelike curve v in H3} with non-zero curvature is said to be a timelike
Bertrand curve if there exists another immersed timelike curve 4 in H? and one-to-one corre-
spondence ¢ : I —» J, s+ ¢(s) between v and 4 such that both curves have common principal
normal geodesics at corresponding point. The curves 4 and 4 are called a pair of timelike
Bertrand curves.

Let v and 4 be a pair of timelike Bertrand curves then there exists a differentiable function
a(s) such that

5(6(s)) = cosha(s)(s) + sinh a(s)n, (s),

where {v(s),t,(s),n(s), e,(s)} is the Frenet frame along v and ¥(#(s)) is the corresponding
point to v(s). For any point v(sy) on -, we define the geodesics from ~(so) by

then we have the following proposition.
Proposition 3.2 Let v and 5 be a pair of timelike Bertrand curves in H}, we have the
following:

(1) The differentiable function a(s) is constant;

(2) The angle between the tangent vectors at corresponding points is constant ;

(3) The angle between the binormal vectors at corresponding points (considered as vectors
in R3) is constant.

Proof. (1) Since 4 and 4 have common principal normal geodesics at corresponding points,
we have p

d
E“ |u =0 P’Y(SO) = n'y(s)v |u—a (3) F’Y(SO) = Ny ( (3))7



so that
n5(4(s)) = sinh a(s)~(s) + cosh a(s)n,(s),

where {7(s),t5(s), n5(s), e5(s)} denotes the Frenet frame along 4.
On the other hand,

Ed;ﬁ'(qﬁ(s)) = d/(s)sinh a(s)v(s) + [cosha(s) + k(s)sinh a(s)]t,(s)
+d/(s) cosha(s)n,(s) + 7,(s) sinh a(s)e,(s).
Moreover, £5(¢(s)) = ¢ (s)t5(¢), so that

9 5(6),n5(6)) = d(5).

0=<a;’7

This means that a(s) = Constant.
(2) Since (¢(s)) = cosh apy(s) + sinh agn.(s), we have

ti(¢) = g%sj(COSh cosh ag + k(s) sinh ap)t,(s) + 74(s) sinh age,(s).
Therefore,

d

25 (8(8),85(9)) = (=(s) + K(s)n4(s), £5(9)) + ¢ () (5 (s), —7(8) + R(d)n5(¢)) = O.

(3) Let 6y denote the constant angle between t.,(s) and t5(¢(s)), then we can get
tz(¢) = cosh 0t,(s) + sinh fe,(s).

By using the wedge product, we can compute the binormal vector e5 = 4 X 5 X n;. Then we
have e;(s)(o) = sinh 8¢, (s)a + cosh fe,(s)a. Thus

d -

75 (€q(5),63(9)) = (=7(s)n,(s), €5(9)) + ¢'(s) (e (5), ~7(#)m5(¢)) = 0.

This completes the proof. O
Theorem 3.3 Let v(s) and 4 be a pair of timelike Bertrand curves in H?. Then there exist
two constants a and 6 such that the following relations hold

(1) (cosha + sinh ax(s)) sinh § = sinh a cosh 87(s),

(2) (cosha — sinh ak(¢)) sinh § = sinh a cosh §7(¢);

(3) (cosha + sinh ak(s))(cosh a — sinh a&k(¢)) = cosh? §;

(4) sinh? a7 (s)7(¢) = sinh?6;

where k(8), k(¢), 7(s) and 7(¢) denote the curvature and torsion of v and 7, respectively.
Proof. (1) Since t;(¢) = cosh 6t,(s) + sinh fe,(s), we have

Z_Z =t5(¢)¢'(s) = ¢'(s) cosh bt.,(s) + ¢(s) sinh fe, (s).

Moreover, ¥(¢(s)) = cosh ay(s) + sinh an,(s), then

% = (cosha + (s) sinh a)t,(s) + 7(s) sinh ae,(s).
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Therefore, we get

#'(s) cosh 8 = cosha + k(s)sinha
¢'(s)sinh 8 = 7(s) sinha.
So that the first assertion holds.
(2) Since

{ A(¢(s)) = cosh av(s) + sinh an,(s)
n;(4(s)) = sinh avy(s) + cosh an,(s),

we have
~(s) = cosha¥(¢) — sinh ans(¢)
n.,(¢) = —sinh a¥(¢) + cosh any(¢).
On the other hand,
t5(¢) = cosh 0t,(s) + sinh fe,(s)
e5(¢) = sinh 8t (s) + cosh fe,(s),
we have
t,(s) = cosh 6t;(¢) — sinh fe5(¢)
e,(s) = —sinh 6t5(¢) + cosh fe; ().

Then we can get
{ §'(¢) cosh = cosha — K(¢)sinha

—5'(¢)sinh @ = —7(¢) sinha.

Therefore we complete the proof of (2).
(3)By using
@'(s) cosh = cosha + k(s)sinha
§'(¢) cosh = cosha — &(¢)sinha,

we have cosh? § = (cosh a + &(s) sinh a)(cosh @ — %(¢) sinh a).
(4) By using
¢'(s)sinh 6 = 7(s)sinha
{ ~5'(¢)sinh @ = —7(¢)sinha,

we have sinh? 8 = sinh?® a7 (s)7(¢). a

We remark that this theorem is similar to the theorems given by H. F. Lai [16} and P. Lucas
et al [14] for Bertrand curves in Euclidean space and in three-dimensional sphere, respectively.
Moreover, if 4 and 4 are timelike Bertrand curves in H3, part (4) of the above theorem implies
that the product of their torsions at corresponding points is constant and non-negative. This
is often known as Schell’s theorem.

A timelike curve v in H} is said to be a timelike plane curve if its torsion is zero at all
points.

Proposition 3.4 (1) Every timelike plane curve in H? with k(s) # —cotha, Va € R, is a
Bertrand curve and it has infinite timelike Bertrand conjugate plane curve.

(2) If a timelike Bertrand curve v has a timelike Bertrand conjugate plane curve, then ~
is a timelike plane curve located on the same totally geodesic two-dimensional Anti de Sitter
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space.

Proof. (1) Let ~ be a timelike plane curve in H. For any a € R, suppose 4.(s) be a timelike
curve in H; defined by
4,(s) = cosh ay(s) + sinh an.,(s).

Then we obtain 7“( 2 = (cosh a + sinh ax(s))t,(s).
We assume that ¢ is the arc-length parameter, then ¢'(s) =|| 'ﬂ;s—(fl ||= cosh a + sinh ax(s).
By using —= ’Y LB = 1., ()¢ = ¢'t,(s), so we have t5,(¢) = t,(s). This means that
[~Fa(8) + &(S)13, (9)]9/(5) = —7(5) + K()114(5)-
Therefore, we can deduce
#(¢)ns, (6)¢'(s) = [sinha + cosh ax(s)][sinh ay(s) + cosh an,(s)],
then

sinh a + cosh ax(s)
cosh a + sinh ax(s)’

ns,(¢) = sinh avy(s) + coshan,(s), &(¢) =
So that the principal normal geodesic starting at a point 4,(¢o), $o = #(s0), is given by
T'(u) = cosh(u + a)y(so) + sinh(u + a)n,(so)-

This means that ¥,(s) is the Bertrand conjugate of «(s).
Furthermore, since ns,(¢) = sinh avy(s) + cosh an. (s), by using Frenet equation, we can get

dns, (4)
d¢

For the reason of 7(s) = 0, we have
¢'(5)(R(¢)ts,(9) + 7(¢)es,(¢)) = (sinha + coshak(s))t,(s).

From above we have 7(¢) = 0. So the timelike curve 9, is a timelike plane curve in H?.

(2) Since 7(¢) = 0, by Theorem 3.3(4), we have sinh# = 0, so cosh# = 1. Moreover, by
Theorem 3.3(1), we get sinh ar(s) = 0. Either sinha = 0, then 4,(s) = ¥(s), or 7(s) = 0, we
can obtain the same result. ]

= (sinh a + cosh ak(s))t,(s) + coshar(s)e,(s).

¢'(s)

Theorem 3.5 A timelike curve v in H? is a Bertrand curve if and only if either (1) 7(s) =
0, k(s) # — cotha, Va € R or (2) there ezist two constants X # 0 and p such that pt(s)—Ax(s) =
1.

Proof. Let v be a timelike Bertrand curve. If 4 is not a plane curve, then from Theo-
rem 3.3(1) we have that sinha cosh 67(s) — sinhasinhfk(s) = coshasinh@. We can deduce
tanh a coth @7 (s) — tanh ax(s) = 1. Let tanha = ), tanhacoth 8 = u, we have u7(s) — Ak(s) =
1.

On the other hand, we assume that u7(s) — Ak(s) = 1, where A = tanha # 0. Let
4 = cosha(s) + sinh an,(s), then by using the Frenet equations we obtain

%;Z (cosh a + sinh ak(s))t,(s) + sinh at(s)e,(s).
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Let ¢ be the arc-length parameter of 4. We deduce

¢'(s) —H H- /| —(cosha + sinh ax(s))2 + (sinh a7 (s))? .

Since u7(s) — Ak(s) = 1, tanha = A, we have pcosh a7(s) — sinh ak(s) = cosha. Therefore, we
get

#'(s) = /| —(ucoshar(s))? + (sinhar(s))? | = T(S)\/&LCOSh a)? — sinh® a.

So that
t:(¢)¢'(s) = pcoshar(s)t,(s) + sinhar(s)e,(s).

Taking the derivative in above we have

(=7 + R@Ins(6)9/(5) = (T8} (=(s) + r{s)ri(5)
(e ) (—7(s)m, (5)).

(ucosha)?—sinh?a

So
cosh a(u cosh ak(s) + usinha — 7(s) sinh a)

\/ - )(sinh a5(s) + cosh an.,(s)).
(ncosha)? —sinh“a

R(¢)ns(d)d'(s) = (

This means that
cosh a(u cosh ak(s) + psinha — 7(s)sinha)

\/(u cosha)? — sinh?a

Then the principal normal geodesic starting at a point (), ¢o = &(so), is given by

n5(¢) = sinhavy(s) + coshan,(s), k(¢)¢'(s) =

v(u) = cosh(u + a)y(so) + sinh(u + a)n,(so).
This complete the proof. O

A curve v in H? is called a heliz if 7(s), x(s) are both non-zero constant. For details of
helix immersed in Anti de Sitter 3-space, please see [17]
Theorem 3.6 Let v be a timelike curve in Hy. The following conditions are equivalent:

(1) v is a heliz.

(2) v has infinite number Bertrand conjugate curves.

(3) v has at least two Bertrand conjugate curves.
Proof. (1)==(2) we assume that k(s) and 7(s) are non-zero constants. Since there are infinite
number of u and X such that ur(s) — Ak(s) = 1, we can construct infinite number different
Bertrand conjugate curves.

(2)=(3) It is obviously.

(3)==(1) If y has two Bertrand conjugate curves 4, and 4,, then we can find four constants
a; # 0,a, # 0,0; and 6, such that

tanh a; coth #;7(s) — tanha;k(s) =1
tanh ay coth 657(s) — tanh ask(s) = 1,

where a; # ag, 60, # 0. Since 4, and 4, are two different Bertrand conjugate curves. By taking
the derivative in these equations we obtain

tanh ay coth 6;7'(s) — tanh a,£'(s) =0
tanh a, coth 627'(s) — tanh az'(s) = 0.



Therefore £/(s) = 7/(s) = 0, this means that «(s) and 7 are both constant. That concludes the
proof. O

Example 3.7 We define v : I — H? by

1 17 17
~v(s) = (2 cosh 2s, V2 cosh 1/ gs + v/5sinh \/ gs, 2sinh 2s, V2 sinh 4 / 38 + \/gcosh\/ ?8)

By straightforward calculation, we get

1
t(s) = (4sinh 2s, \/Z / Esinh 7/ Hs + \/5\ / 17 cosh 4 / —73,
3 3 3 3
17 17 17 1
4cosh23,\/§\/§cosh1/§s+ \/gwgsinhqlgs)7

and (t(s),t(s)) = —1. Therefore, ~ is timelike curve in H} and s is the arc-length parameter
of . Furthermore, by calculations we can obtain that

K)—E T‘—ZUH
V3’ 3

So that, 4 is a helix in H. By Theorem 3.6, it has infinite number Bertrand conjugate curves
in H3.

4 The relationship between timelike Bertrand curves in
H? and spacelike Bertrand curves in R}

In this section, we will investigate the relationship between timelike Bertrand curves in H?
and spacelike Bertrand curves in Rj. Firstly, we will review the basic definitions and notations
about spacelike Bertrand curves in Rj.
We first introduce the local differential geometry of spacelike curves in Rj. Let o : L — R}
be a regular curve (i.e., an embedding). The regular curve o is said to be spacelike if & is a
spacelike vector at any t € L, where & = da/dt. Since « is a spacelike regular curve, it may
~admit an arc length parametrization s = s(t). Therefore, we can assume that a(s) is a unit
speed curve. Now we have the unit tangent vector t*(s) = o/(s). We can also choose the unit
normal vectors n§, ng,ng, where (n¥, ng) =1, (n¥,n¢) = —1, i = 2,3. Then we have the
Frenet frame {t* n% ng,ng} and the following Frenet-Serret formula:

)
(s) = —ku(s)t%(s) + ka(s)m5(5)
"%'ES) = kz(S)n‘f(Sg + k3(s)n3(s)

Let a : L — R3,s — a(s) be a Frenet curve in R} with Frenet frame {t* n$, n3,ng} and
curvatures K1, Kq, K3, where s is the arc-length parameter. We call a a special Frenet curve, if
curvatures x; > 0, ¢ = 1,2 and x3 # 0 for any point p = «a(s). Moreover, a plane generated by
normal vectors 1;(s) and n(s) is called Frenet (j, k)—normal plane of curve at the point p.

Definition 4.1 A special Frenet spacelike curve a in Rj is said to be a spacelike Frenet
(1,3)—Bertrand curve if there exists another immersion speical Frenet spacelike curve o in R}
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such that both curves have common Frenet (1,3)—normal plane at corresponding point. The
curves a and & are called a pair of spacelike (1,3)— Bertrand curves.

We have the following characterisation about the spacelike (1, 3)—Bertrand curves.

Theorem 4.2 A spacelike curve o in R with arc-length parameter s is a spacelike (1, 3)— Bertrand
curve if and only if there exist four constants a, b, ¢, d such that the following conditions are
held.

(1) akz(s) — brs(s) # 0,

(22) c(akz(s) — bra(s)) + aki(s) =1,

(122) drs(s) = ck1(8) + ka(s),

(1) (2 + 1)k1(s)ka(s) + c(x2(s) + K3(s) — K3(s)) # 0.
Since the proof is analogue to the proof of Theorem 4.1 in [12], so we omit it.

We now use spacelike (1,3)—Bertrand curves in R} to construct timelike Bertrand curves in

H3 as follows. We assume that v(s) = ng(s) and o is the arc-length parameter of 4. By taking
derivative on both sides of the above equation we get t,(0)o'(s) = —k3(s)ng(s). Therefore

d'(s) = e3r3(s), ty(0) = —ezng, where e3 = £1.
This means that (t,,t,) = —1. According to the similar calculation we get
o'(8)k(0) = e2k2(8), My(0) = —€263n¢, where g5 = %1,
d'(s)7(0) = e1k1(8), e4(0) = €1€2e3t*(s), where €1 = £1.

So that we first construct the timelike curve v in H; by using spacelike curve o in R}. Fur-
thermore, we can prove the following theorem.

Theorem 4.3 Let a be a spacelike (1, 3)— Bertrand curves in R} with Frenet frame {t*,n%,ng,
n$}. Then every timelike curve in H3 defined by v(s) = n§(s) is a timelike Bertrand curve,
where s is the arc-length parameter of the curve a.
Proof. Since « is a spacelike (1,3)—Bertrand curves in RS, by Theorem 4.2, there exist four
constants a, b, ¢, d which satify the conditions (¢), (iz), (43¢), (iv) of Theorem 4.2. According
to condition (#4i), we have d # 0.

Let v(s) = ng(s). Since ck1(s) + ka(s) = dks(s), we have

Z8)7l0) | F)Re(0) _ o(s)

€1 ) €3
Therefore,
(ceaes)Ty(0) + Er63ky(0) = deses, Tg(a)f—;l- - ﬁg(a);ng =1
We assume that A = — ;; = %, then we have
utg(o) — Akg(o) = 1.
This finished the proof. O

On the other hand, we can also use timelike curves in H to construct spacelike (1, 3)—Bertrand
curves in RY. Let v = ~(t) be a timelike curve in H? with Frenet frame {~,t,,n,,e,}.
Suppose a(t) = fti e,(s(u))du, where s = s(t) is the arc-length parameter of the curve «.



Without loss of generality, we assume that s’ > 0. Then we have o/(t)-= e,(s(t)). Since
| o/(¢) |=|l e,(s(t)) |= 1, t is the arc-length parameter of the curve a and « is the spacelike
curve in R. By using the Frenet-Serret type formulas of v and o we get
ki(t) = s'(t)7(s) > 0, n§(t) = —en,(s), where € = &1
Ko(t) = &' (t)k(s) > 0, ng(t) = —et,(s)
ka(t) = —es'(t) # 0, n§(t) = —v(s).

Therefore, we had used the timelike curve v in H? to construct the spacelike curve a in R3.
Moreover, we have the following result.

Theorem 4.4 Let v be a non-planar timelike Bertrand curves in HY with non-constant cur-
vature Then there exists a reqular differential mapping s = s(t), such that the curve defined by
ft e,(s(u))du is a spacelike (1,3)—Bertrand curves in R} with arc-length parameter s.

Proof. Smce ~ is a non-planar timelike Bertrand curves in H} with non-constant curvature,
according to Theorem 3.5, there exist two constants A # 0 and y such that p7(s) — Ms(s) = 1.
Taking two constants a and b, such that

Mea(Aty(8) — pkg(s)) — bu] > 0,

A
s(t) = ,8'(t) > 0.
O = o = e ="
We can also take another two constants ¢ = —%* and d = £, then we have the following.
1) ars — brs = Aak(s) + be) 40

ga(Ar(s) — pk(s)) — by
1) aky — c(akg — brs) =1,

Kg — ATy + A
i0) (& + )ram + o+ n3 — o) = (o200 0T 2,

Therefore, by Theorem 4.2, we complete the proof. a

(
(
(442) cr1 + Ko = dKs,
(¢
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