<table>
<thead>
<tr>
<th>Title</th>
<th>THE EXISTENCE OF A NON SPECIAL ARONSZAJN TREE AND TODORCEVIC ORDERINGS (Infinitary combinatorics in set theory and its applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>依岡 輝幸</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2015, 1949: 89-98</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/223920</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
THE EXISTENCE OF A NON SPECIAL ARONSZAJN TREE AND TODORČEVIĆ ORDERINGS

TERUYUKI YORIOKA (依岡 Yöio, 靜岡大學)

ABSTRACT. It is proved that it is consistent that every forcing notions with $R_{1,\aleph_{1}}$ has precaliber \aleph_{1}, every Todorcevic ordering for any second countable Hausdorff space also has precaliber \aleph_{1}, and there exists a non-special Aronszajn tree. This slightly extends the previous work [16, 18].

1. INTRODUCTION

Martin’s Axiom was introduced by Martin and Solovay to solve Suslin’s problem in [5]. In 1980’s, Todorcevic investigated Martin’s Axiom from the view point of Ramsey theory, and introduced the countable chain condition for partitions on the set $[\omega_{1}]^{<\aleph_{0}}$. In [13], Todorcevic and Veličković proved that $MA_{\aleph_{1}}$, which is Martin’s Axiom for \aleph_{1} many dense sets, is equivalent to the statement $\mathcal{K}_{<\omega}$ that every ccc partition $K_{0}\cup K_{1}$ on $[\omega_{1}]^{<\aleph_{0}}$ has an uncountable K_{0}-homogeneous set. Todorcevic also introduced many fragments of $MA_{\aleph_{1}}$ in his many papers e.g. [9, 13]. Some of them are as follows(1): $\mathcal{K}_{<\omega}$ is the statement that every ccc forcing notion has precaliber \aleph_{1}. For each $n \in \omega$, \mathcal{K}_{n} is the statement that every uncountable subset of a ccc forcing notion has an uncountable n-linked subset, and \mathcal{K}_{n}' is the statement that every ccc partition $K_{0}\cup K_{1} = [\omega_{1}]^{n}$ has an uncountable K_{0}-homogeneous set. C^{2} is the statement that every product of ccc forcing notions has the countable chain condition. We note that they have many applications. For example, C^{2} implies Suslin’s Hypothesis, every (ω_{1},ω_{1})-gap is indestructible, and the bounding number b is greater than \aleph_{1}, and \mathcal{K}_{n}' implies that every Aronszajn tree is special. (For other applications, see e.g. [3].) We also note the following diagram of implications

2010 Mathematics Subject Classification. 03E35, 03E17.

Key words and phrases. Non special Aronszajn tree, $R_{1,\aleph_{1}}$, Todorcevic orderings.

Supported by Grant-in-Aid for Young Scientists (B) 25800089, Japan Society for the Promotion of Science.

(1) They are defined by Todorcevic in several papers. In [3, Definition 4.9] and [13, §2], \mathcal{K}_{n}’s are defined as statements for ccc forcing notions, however in [4, §4] and [9, §7], \mathcal{K}_{n}’s are defined as statements for ccc partitions. To separate them, we use notation as above. In [13], $\mathcal{K}_{<\omega}$ above is denoted by \mathcal{H}.

A forcing notion P has precaliber \aleph_{1} if every uncountable subset I of P has an uncountable subset I' of I such that every finite subset of I' has a common extension in P. A subset I of a forcing notion P is called n-linked if every member of the set $[I]^{n}$ has a common extension in P. A forcing notion P has property K if every uncountable subset of P has an uncountable 2-linked subset.
between them:

\[
\begin{array}{ccccccc}
\mathcal{K}_{<\omega} & \rightarrow & \cdots & \rightarrow & \mathcal{K}_{n+1} & \rightarrow & \mathcal{K}_n & \rightarrow & \cdots & \rightarrow & \mathcal{K}_2 & \rightarrow & C^2 \\
\text{MA}_{R_1} & \rightarrow & \mathcal{K}'_{<\omega} & \rightarrow & \cdots & \rightarrow & \mathcal{K}'_{n+1} & \rightarrow & \mathcal{K}'_n & \rightarrow & \cdots & \rightarrow & \mathcal{K}'_2 \\
\end{array}
\]

The equivalence of MA$_{R_1}$, $\mathcal{K}_{<\omega}$ and $\mathcal{K}'_{<\omega}$ are the theorem due to Todor\'evi\'c and Veli\'cki\'c [13]. Other implications follows from definitions or trivial arguments. It is unknown whether any other implications hold in ZFC.

The author studied about this problem in [14, 15, 16, 17, 18]. In [16, 18], The author introduced the following property on chain conditions [16, 18, Definition 2.6]: A forcing notion \mathbb{P} has the property R_{1,N_1} if conditions of \mathbb{P} are finite sets of countable ordinals, the order $\leq_\mathbb{P}$ is equal to the superset relation \supseteq, and for any large enough regular cardinal θ, any countable elementary submodel N of $H(\theta)$, any uncountable subset I of \mathbb{P} which forms a Δ-system with root ν and any $\sigma \in \mathbb{P}$ with $\sigma \cap N = \nu$, there exists an uncountable subset I' of I such that every condition in I' is compatible with σ in \mathbb{P}. It is proved that $\mathcal{K}_2(R_{1,N_1})^{(2)}$ also implies that Suslin's Hypothesis holds, every (ω_1, ω_1)-gap is indestructible and $b > \aleph_1$. It is also proved that it is consistent that every forcing notion with the property R_{1,N_1} has precaliber \aleph_1 and there exists a non-special Aronszajn tree. This says that $\mathcal{K}_{<\omega}(R_{1,N_1})$ doesn't imply MA$_{R_1}(R_{1,N_1})$.

In this paper, we slightly develop this result by dealing with not only forcing notions with R_{1,N_1} but also forcing notions defined due to Todor\'evi\'c and Balcar-Paz\'ak-Th\"ummel [10, 1], so called Todor\'evi\'c orderings. Namely, it is shown that it is consistent that every forcing notion with the property R_{1,N_1} has precaliber \aleph_1, Todor\'evi\'c orderings for second countable Hausdorff spaces also have precaliber \aleph_1, and there exists a non-special Aronszajn tree.

2. Preliminaries

2.1. Todor\'evi\'c orderings. As said in [1], when a topological space is applied to Todor\'evi\'c ordering, it is natural to require it to be sequential and have the unique limit property. A topological space X is called sequential if for any $Z \subseteq X$, Z is closed in X iff for any $A \subseteq Z$ and $x \in X$ to which A converges, x belongs to Z. A topological space X has the unique limit property if any converging subset of X converges to the unique point. For example, Hausdorff spaces have the unique limit property. For a subset F of a topological space, let F^d denote the first Cantor-Bendixson derivative of F, that is, the set of all accumulation points of F.

Definition 2.1 (Todor\'evi\'c [10], see also [1, 8]). For a topological space X, $T(X)$ is the set of all subsets of X which are unions of finitely many converging sequences.

\(_{(2)}\) $\mathcal{K}_2(R_{1,N_1})$ is the statement that every forcing notion with the property R_{1,N_1} has property K.
including their limit points, and for each \(p \) and \(q \) in \(T(X) \), \(q \leq_{T(X)} p \) iff \(q \supseteq p \) and \(q^d \cap p = p^d \).\(^{(3)}\)

For \(p, q \in T(X) \), the statement \(q \leq_{T(X)} p \) means that \(q \) is an extension of \(p \) (as the subset relation) and the isolated points in \(p \) are still isolated in \(q \). \(T(X) \) is called Todorčević ordering for the space \(X \) in [1, 8] (and [19]).

Todorčević orderings were firstly introduced by Todorčević in [10]. The motivation is to demonstrate a Borel definable ccc forcing which consistently does not have property K. He defined it on a separable metric space. By generalizing it and applying it to other topological spaces, Thümmel discovered a forcing notion which has the \(\sigma \)-finite chain condition but does not have the \(\sigma \)-bounded chain condition, and so he solved the problem of Horn and Tarski [8]. (For Horn-Tarski’s problem, see [2, 11].) Right after Thümmel’s result, Todorčević introduced a Borel definable solution of the problem of Horn and Tarski [12].

In [12], Todorčević introduced the Borel definable version of Todorčević orderings, which consists of all countable compact subsets whose first Cantor-Bendixson derivative is finite. In [1], Balcar-Pazák-Thümmel introduced a separative version of Todorčević orderings, which consists of all functions \(f \) from members \(p \) of \(T(X) \) into \(\{0, 1\} \) such that \(f^{-1}(1) \) is a finite set including \(p^d \) as a subset, ordered by the function-extension. In this paper, as in [19], we adopt the definition of Todorčević orderings in Definition 2.1.

Some of Todorčević orderings may not be ccc [1, Theorem 2.3], but many of them are ccc. From the proof of [10], we note that for a space \(X \), if each of finite powers of \(X \) is hereditarily separable, then Todorčević ordering for \(X \) has the ccc. In [1, Definition 2.1], Balcar-Pazák-Thümmel introduced the property of topological spaces which is a sufficient condition to introduce Todorčević orderings to have the ccc (see also [19]). In this paper, we use the following property of Todorčević orderings.

Lemma 2.2. For a second countable Hausdorff space \(X \), \(T(X) \) is powerfully ccc, that is, a finite support product of any number of copies of \(T(X) \) has the countable chain condition.

Proof. It suffices to show that for any \(n \in \omega \), the finite support product \(nT(X) \) is ccc. Let \(I \) be an uncountable subset of \(nT(X) \). By shrinking \(I \) if necessary, we may assume that for each \(i < n \), the set \(\{p^d_i; \langle p_j; j < n \rangle \in I \} \) forms a \(\Delta \)-system with root \(d_i \). Take a countable elementary submodel \(N \) of \(H(\theta) \) (for some large enough regular cardinal \(\theta \)) such that \(\{X, I\} \in N \).

Take \(\langle p_i; i < n \rangle \) and \(\langle q_i; i < n \rangle \) in \(I^{(4)} \) such that for each \(i < n \),

\[
\bullet (p^d_i \setminus d_i) \cap N = \emptyset, \text{ and}
\]

\((3)\)This definition is slightly different from the original one, in [10], which consists of all finite sets \(\sigma \) of convergent sequences in \(X \) including their limit points such that for any \(A, B \in \sigma \),

\[\lim(A) \notin (B \setminus \lim(B)),\]

ordered by the reverse inclusion. But essentially, both are same. In fact, both are forcing-equivalent.

\((4)\)Since the set \(\{p^d_i; \langle p_j; j < n \rangle \in I \} \) forms an uncountable \(\Delta \)-system for each \(i < n \) and \(N \) is countable, we can find such a \(\langle p_i; i < n \rangle \in I \). Similarly, since the set \(N \cup \bigcup_{i<n} p_i \) is countable, we can find such a \(\langle q_i; i < n \rangle \in I \).
\begin{itemize}
 \item \((q_i^d \setminus d_i) \cap (N \cup p_i) = \emptyset\).
\end{itemize}

Since \(X\) is second countable Hausdorff and \(N\) is an elementary submodel, there exists a sequence \(\langle U_i, V_i; i < n \rangle \in N\) of open subsets of \(X\) such that for each \(i < n\),

\begin{itemize}
 \item \(U_i \cap V_i = \emptyset\),
 \item \(p_i^d \setminus d_i \subseteq U_i\),
 \item \(q_i^d \setminus d_i \subseteq V_i\), and
 \item \(V_i \cap (p_i \setminus U_i) = \emptyset\).
\end{itemize}

This can be done because the sets \(p_i^d \setminus d_i\), \(q_i^d \setminus d_i\) and \(p_i \setminus U_i\) are finite and \((q_i^d \setminus d_i) \cap p_i = \emptyset\). By the elementarity of \(N\), there exists \(\langle q_i^i; i < n \rangle \in I \cap N\) such that for each \(i < n\), \((q_i^i)^d \setminus d_i \subseteq V_i\). Then for each \(i < n\),

\[
q_i^i \cup p_i \leq_{T(X)} p_i.
\]

Since \(q_i^i \subseteq N^{(5)}\) and \((p_i^d \setminus d_i) \cap N = \emptyset\) for each \(i < n\), we notice that

\[
q_i^i \cup p_i \leq_{T(X)} q_i^i.
\]

Thus the condition \(\langle q_i^i \cup p_i; i < n \rangle\) is a common extension of conditions \(\langle p_i; i < n \rangle\) and \(\langle q_i^i; i < n \rangle\) in \(n^T(X)\). \(\Box\)

2.2. The chapter IX of [6]: Souslin Hypothesis Does Not Imply “Every Aronszajn Tree Is Special.”

In this section, we summarize Shelah’s approach to show the consistency that Suslin’s Hypothesis holds and there exists a non-special Aronszajn tree. All of definitions and proofs in this section are in [6, IX. Souslin Hypothesis Does Not Imply “Every Aronszajn Tree Is Special”].

Definition 2.3 (Shelah, [6, IX 3.3 Definition]). *For an Aronszajn tree \(T\) and a subset \(S\) of \(\omega_1\), \(T\) is called \(S\)-st-special if there exists a function \(f\) from the set \(\{t \in T; rk_T(t) \in S\}\) into \(\omega\) such that for each \(n \in \omega\), the set \(f^{-1}\{\{n\}\}\) forms an antichain in \(T\).*

We note that if \(S\) is uncountable and an Aronszajn tree \(T\) is \(S\)-st-special, then \(T\) is still Aronszajn in the forcing extension where \(S\) is still uncountable. And then \(T\) has an uncountable antichain, hence then \(T\) is not a Suslin tree. For a costationary subset \(S\) of \(\omega_1\), if \(T\) is a special Aronszajn tree, then there exists an antichain \(A\) through \(T\) such that the set \(rk_T[A] \setminus S^{(6)}\) is stationary. Therefore if \(S\) is an uncountable costationary subset of \(\omega_1\) and \(T^*\) satisfies the property

\[
(\ast) \text{ for every antichain } A \text{ through } T^*, \text{ the set } rk_{T^*}[A] \setminus S \text{ is nonstationary,}
\]

then \(T^*\) is a non-special Aronszajn tree.

In [6, IX 4.8 Conclusion], Shelah introduced the iterated proper forcing which forces that Suslin’s Hypothesis holds and there are a stationary and costationary subset \(S\) of \(\omega_1\) and an \(S\)-st-special Aronszajn tree \(T^*\) which satisfies the property \((\ast)\). The \(S\)-st-speciality of \(T^*\) guarantees that \(T^*\) is still Aronszajn in any proper forcing extension. To guarantee the property \((\ast)\) of \(T^*\), we shoot a club on \(\omega_1\) for the complement of \(rk_{T^*}[A]\) which is disjoint from \(S\) in some intermediate stage of the iteration [6, IX 4.7, 4.8]. However, the iteration is required to be a proper forcing. To do this, Shelah introduced the following preservation property.

\((5)\) \(q_i^i\) is a countable subset of \(X\).

\((6)\) \(rk_T[A] := \{rk_T(t); t \in A\}\).
Definition 2.4 (Shelah [6, IX 4.5 Definition]). Let T be an Aronszajn tree and S a subset of ω_1.

A forcing notion \mathbb{P} is (T, S)-preserving if for a large enough regular cardinal θ, a countable elementary submodel N of $H(\theta)$ which has the set $\{\mathbb{P}, T, S\}$ and $p \in \mathbb{P} \cap N$, there exists $q \leq p$ p which is (\mathbb{N}, \mathbb{P})-generic such that if $\omega_1 \cap N \notin S$, then

for any $x \in T$ of height $\omega_1 \cap N$,
if $\forall A \in \mathbb{P}(T) \cap N (x \in A \rightarrow \exists y \in A (y <_T x))$,
then for every \mathbb{P}-name \dot{A}, which is in N, for a subset of T,
\[q \Vdash \text{"} x \in \dot{A} \rightarrow \exists y \in \dot{A} (y <_T x) \text{"}. \]

If T^* is a Suslin tree, then for every countable elementary submodel N of $H(\theta)$ (for some large enough regular cardinal θ) and $x \in T^*$ of height $\omega_1 \cap N$ and $A \in \mathbb{P}(T^*) \cap N$, if $x \in A$, then there exists $y \in A$ such that $y <_{T^*} x$.(7) It follows that T^* satisfies (\ast). So we start from a Suslin tree T^* and a stationary and costationary subset S of ω_1 and make each Aronszajn tree to be S-st-special and T^* to be S-st-special which satisfies the property (\ast) by the iterated proper forcing extension such that each iteration is (T^*, S)-preserving and the whole iteration is also (T^*, S)-preserving. For Aronszajn trees T and T^* and a stationary subset S of ω_1, Shelah introduced the forcing notion $Q(T, S)$ which forces T to be S-st-special and is (T^*, S)-preserving [6, IX 4.2, 4.3, 4.6]. Moreover, Shelah introduced the new forcing iteration, so called a free limit iteration, which preserves the (T^*, S)-preserving property [6, IX §1, §2 and 4.7].

The following is Shelah's iterated forcing in [6, Chapter IX, 4.8 Conclusion] (8). We start in the ground model where $2^{\aleph_0} = \mathfrak{N}_1$, $2^{\aleph_1} = \mathfrak{N}_2$, and there exists a Suslin tree T^*. Let S be a stationary and costationary subset of the set ω_1. We define an \aleph_1-free iteration $(P_\xi, Q_\eta; \xi \leq \omega_2 \& \eta < \omega_2)$ such that

- $Q_0 = Q(T^*, S),
- each$ Q_η satisfies one of the following:
 1. Q_η is proper and (T^*, S)-preserving of size \aleph_1,
 2. for some \mathcal{P}_ξ-name of an antichain \dot{A} of T^*, $\mathcal{P}_{\eta}
 [\dot{A}] \cap S = \emptyset$ and $Q_\eta = Q_{\text{club}}(\omega_1 \setminus \mathcal{P}_{\eta}[\dot{A}])$, which shoots a club through the set $\omega_1 \setminus \mathcal{P}_{\eta}[\dot{A}]$ by countable approximations.

In this extension (with some bookkeeping argument), S is still stationary and costationary, every Aronszajn tree is S-st-special (hence not Suslin), and T^* is an S-st-special Aronszajn tree which satisfies (\ast).

Combining Shelah's iteration above, some bookkeeping device, theorems in [16, 18] and the next section, we can conclude the following.

Theorem 2.5. It is consistent that every forcing notions with R_{1, \aleph_1} has precaliber \aleph_1, every Todorcević ordering for any second countable Hausdorff space also has precaliber \aleph_1 and there exists a non-special Aronszajn tree.

(7) Let $D := \{ t \in T^*; t \in A \text{ or for every } s \in T^* \text{ with } t <_{T^*} s, s \notin A \}$. Since D is a dense subset of T^* and T^* is Suslin, there exists $y \in D \cap N$ which is compatible with x in T^*. Then it have to be true that $y <_{T^*} x$. Since $x \in A$, it have to be true that $y \in A$.

This statement is equivalent that there are no uncountable antichain through T^*.

(8) Shelah's proof uses an \aleph_1-free iteration. This is different from a countable support iteration. But Schindlein proved in [7] that the same proof works for a countable support iterations. So our theorem can be shown by a countable support iteration.
3. PROOF

Suppose that S is a stationary subset of ω_1, X is a second countable Hausdorff space and I is an uncountable subset of $T(X)$. By shrinking I if necessary, we may assume that

- the size of I is \aleph_1,
- the set $\{p^d; p \in I\}$ forms a Δ-system with root d,
- for some $q \in \mathcal{T}(X)$,

$$ q \models_{\mathcal{T}(X)} "I \cap \tilde{G} \text{ is uncountable}". $$

Let $\tilde{M} = \langle M_\alpha; \alpha \in \omega_1 \rangle$ be a sequence of countable elementary submodels of $H(\aleph_2)$ such that $\{S, X, I\} \in M_0$, and for every $\alpha \in \omega_1$, $\langle M_\beta; \beta \in \alpha \rangle \in M_\alpha$. By shrinking I if necessary again, we may assume that

- for each $p \in I$ and $\alpha \in \omega_1$, if $p^d \cap (M_{\alpha+1} \setminus M_\alpha) \neq \emptyset$, then $p^d \subseteq M_{\alpha+1} \setminus M_\alpha$.

We have to notice then that it may happen that I does not belong to M_0. From now on, we do not assume that $I \in M_\alpha$ for any $\alpha \in \omega_1$.

We define the forcing notion $\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)$ which consists of pairs $\langle h, f \rangle$ such that

- h is a finite partial function from ω_1 into ω_1,
- for any $\alpha, \beta \in \text{dom}(h)$, $\alpha \leq h(\alpha)$, and if $\alpha < \beta$, then $h(\alpha) < \beta$,
- for any $\alpha \in \text{dom}(h) \cap S$, $h(\alpha) = \alpha$,
- f is a finite partial function from I into ω,
- for any $\alpha \in \text{dom}(h)$ and $p \in \text{dom}(f)$,

$$ p^d \cap (M_{h(\alpha)} \setminus M_\alpha) = \emptyset, $$

- for any $p \in \text{dom}(f)$, the set $\bigcup f^{-1}\{\{f(p)\}\}$ is a common extension of members of the set $f^{-1}\{\{f(p)\}\}$ in $\mathcal{T}(X)$, ordered by extension, that is, for any $\langle h, f \rangle$ and $\langle h', f' \rangle$ in $\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)$,

$$ \langle h, f \rangle \leq_{\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)} \langle h', f' \rangle : \iff h \supseteq h' \text{ and } f \supseteq f'. $$

By a density argument, if $\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)$ is proper, then $\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)$ adds an uncountable subset of I which satisfies the finite compatibility property. Therefore, under the approach due to Shelah in §2, it suffices to show that $\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)$ is proper and (T^*, S)-preserving.

Lemma 3.1. $\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)$ is proper.

Proof. Let θ be a large enough regular cardinal, a countable elementary submodel N of $H(\theta)$ which has the set $\{X, I, \tilde{M}, S\}$, $\langle h, f \rangle \in \mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)$, and δ a countable ordinal not smaller than the ordinal $\omega_1 \cap N$ (if $\omega_1 \cap N \in S$, then we define $\delta := \omega_1 \cap N$). We show that $\langle h \cup \{\langle \omega_1 \cap N, \delta \rangle, f \rangle \rangle (N, \mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S))$-generic.

Let $\langle h', f' \rangle \leq_{\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)} \langle h \cup \{\langle \omega_1 \cap N, \delta \rangle, f \rangle \rangle$ and D a dense open subset of $\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)$. We will find a condition in $D \cap N$ which is compatible with $\langle h', f' \rangle$ in $\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S)$.

By extending the condition $\langle h', f' \rangle$ if necessary, we may assume that $\langle h', f' \rangle \in D$. We note that $\langle h' \upharpoonright N, f' \upharpoonright N \rangle$ is in $\mathcal{Q}(\mathcal{T}(X), I, \tilde{M}, S) \cap N$ because $\omega_1 \cap N \in \text{dom}(h')$.

Let
\[D' := \{ (k, g) \in D; \langle k, g \rangle \leq_{Q(T(X), I, \vec{M}, S)} \langle h'|N, f'|N \rangle \& \text{ran}(g) = \text{ran}(f') \}. \]

We note that D' is in $N^{(9)}$, $\langle h', f' \rangle \in D'$ and D' is dense in $Q(Q, I, \vec{M})$ below $\langle h'|N, f'|N \rangle$. Since the product forcing $\text{ran}(f')\mathbb{T}(X)$ of $\mathbb{T}(X)$ is ccc in the model N, by the elementarity of N, there exists a countable subset J of $\text{ran}(f')\mathbb{T}(X)$ in N such that

- J is a subset of the set
 \[\left\{ \left(\bigcup g^{-1}\{n\}; n \in \text{ran}(f') \right); (k, g) \in D' \right\}, \]

- for every $(k, g) \in D'$, there exists $\langle \mu_n; n \in \text{ran}(f') \rangle \in J$ such that for each $n \in \text{ran}(f')$, μ_n and $\bigcup g^{-1}\{n\}$ are compatible in $\mathbb{T}(X)$.

Since $\langle h', f' \rangle \in D'$, there exists $\langle \mu_n; n \in \text{ran}(f') \rangle \in J$ such that for each $n \in \text{ran}(f')$, μ_n and $\bigcup (f')^{-1}\{n\}$ are compatible in $\mathbb{T}(X)$. Since $\langle \mu_n; n \in \text{ran}(f') \rangle \in J$ holds in N, there exists $(k, g) \in D' \cap N$ such that

\[\left(\bigcup g^{-1}\{n\}; n \in \text{ran}(f') \right) = \langle \mu_n; n \in \text{ran}(f') \rangle. \]

Then $\langle h' \cup k, f' \cup g \rangle$ is a common extension of $\langle h', f' \rangle$ and (k, g) in $Q(T(X), I, \vec{M}, S)$.

\[\square \]

Lemma 3.2. For any Aronszajn tree T, $Q(T(X), I, \vec{M}, S)$ is (T, S)-preserving.

Proof. Let T, θ, N be as in the statement of the definition of the (T, S)-preservation, (moreover we suppose $\vec{M} \in N$) and $\langle h, f \rangle \in Q(T(X), I, \vec{M}, S) \cap N$. Suppose that $\omega_1 \cap N \notin S$, because if $\omega_1 \cap N \in S$, then the condition $\langle h \cup \{\omega_1 \cap N, \delta\}, f \rangle$ is as desired.

Let
\[\delta := \sup \{ F(\omega_1 \cap N) + 1; F \in (\omega_1) \cap N \}. \]

Since N is countable, δ is a countable ordinal. We will show that the condition $\langle h \cup \{\omega_1 \cap N, \delta\}, f \rangle$ of $Q(Q, I, \vec{M}, S)$ is our desired one.

As seen in the proof of the previous lemma, the condition $\langle h \cup \{\omega_1 \cap N, \delta\}, f \rangle$ is $(N, Q(T(X), I, \vec{M}, S))$-generic. Suppose that $x \in T$ of height $\omega_1 \cap N$ such that for any subset $A \in N$ of T, if $x \in A$, then there is $y \in A$ such that $y \prec_T x$. Let $\dot{A} \in N$ be a $Q(T(X), I, \vec{M}, S)$-name for a subset of T. We will show that
\[\langle h \cup \{\omega_1 \cap N, \delta\}, f \rangle \models_{Q(T(X), I, \vec{M}, S)} "x \notin \dot{A}\text{ or } \exists y \in \dot{A}(y \prec_T x)". \]

Let $\langle h', f' \rangle \leq_{Q(Q, I, \vec{M}, S)} \langle h \cup \{\omega_1 \cap N, \delta\}, f \rangle$, and assume that
\[\langle h', f' \rangle \not\models_{Q(T(X), I, \vec{M}, S)} "x \notin \dot{A}". \]

By strengthening $\langle h', f' \rangle$ if necessary, we may assume that
\[\langle h', f' \rangle \models_{Q(T(X), I, \vec{M}, S)} "x \in \dot{A}". \]

\[(9)\text{ran}(f') \text{ is a finite subset of } \omega. \]
We note that $\langle h'|N, f'|N \rangle$ is in N (because $\omega_1 \cap N \in \text{dom}(h')$), and by the definition of $Q(T(X), I, \vec{M}, S)$, for every $p \in \text{dom}(f')$, if $\text{ran}(p) \not\subseteq N$, then

$$(p^d \setminus d) \cap M_\delta = \emptyset.$$

Let $\gamma \in \omega_1 \cap N$ be such that for every $p \in \text{dom}(f')$, if the set $p^d \setminus d$ intersects N, then $p^d \subseteq M_\gamma$\(^{(10)}\). Since X is second countable Hausdorff and N is an elementary submodel, there exists a finite set \mathcal{U} of pairwise disjoint open subsets of X in N such that for each $n \in \text{ran}(f')$, the finite set $(\bigcup f'^{-1}(\{n\}))^d$ is separated by \mathcal{U}. We define a function F with the domain

$$\{ t \in T; \text{ht}_T(t) > \max(\text{dom}(h'|N)) \}$$

such that for each $t \in T$ of height larger than $\max(\text{dom}(h'|N))$,

$$F(t) := \sup \left\{ \beta \in \omega_1; \text{there exists } \langle k, g \rangle \in Q(T(X), I, \vec{M}, S) \text{ such that} \right\}$$

- $\min(\text{dom}(k)) = \text{rk}_T(t),$
- $k(\text{rk}_T(t)) = \beta,$
- $\langle (h'|N) \cup k, (f'|N) \cup g \rangle$ is a condition of $Q(T(X), I, \vec{M}, S),$
- for each $p \in \text{dom}(g)$, $(p^d \setminus d) \cap M_\gamma = \emptyset,$
- $\text{ran}(g) = \text{ran}(f' \setminus N),$
- for each $n \in \text{ran}(f' \setminus N)$, the set $(\bigcup g^{-1}(\{n\}))^d \setminus d$ is separated by \mathcal{U}, and
- $\langle (h'|N) \cup k, (f'|N) \cup g \rangle \models_{Q(T(X), I, \vec{M}, S)} \{ t \in \dot{A} \}$.

Then F belongs to N. Let

$$B := \{ t \in T; \text{rk}_T(t) > \max(\text{dom}(h'|N)) \land F(t) = \omega_1 \},$$

which is also in N. We define a function F' with the domain

$$\{ \max(\text{dom}(h'|N)) + 1, \omega_1 \}$$

such that for a countable ordinal β larger than $\max(\text{dom}(h'|N))$,

$$F'(\beta) := \sup \left\{ F(t) + 1; t \in T \setminus B \land \text{rk}_T(t) \in \{ \max(\text{dom}(h'|N)), \beta \} \right\}.$$

This F' is a function from ω_1 into ω_1 and also in N. Hence $F'(\omega_1 \cap N) < \delta$ by the definition of δ. Since $\langle h', f' \rangle \models_{Q(T(X), I, \vec{M}, S)} \{ x \in \dot{A} \}$ and $h'(\text{rk}_T(x)) = h'(\omega_1 \cap N) = \delta$, $F(x) \geq \delta$ holds. Therefore x have to belong to B. Thus by our assumption, there exists $y \in B$ such that $y <_T x$.

Take $\varepsilon \in \omega_1$ such that $f' \subseteq M_\varepsilon$. Let

$$E := \left\{ \langle k, g \rangle \in Q(Q, I, \vec{M}, S); \right\}$$

- $\min(\text{dom}(k)) = \text{rk}_T(y),$
- $\langle (h'|N) \cup k, (f'|N) \cup g \rangle$ is a condition of $Q(T(X), I, \vec{M}, S),$
- for each $p \in \text{dom}(g)$, $(p^d \setminus d) \cap M_\gamma = \emptyset,$
- $\text{ran}(g) = \text{ran}(f'),$
- for each $n \in \text{ran}(f')$, the set $(\bigcup g^{-1}(\{n\}))^d \setminus d$ is separated by \mathcal{U}, and
- $\langle (h'|N) \cup k, (f'|N) \cup g \rangle \models_{Q(T(X), I, \vec{M}, S)} \{ y \in \dot{A} \}.$

\(^{(10)}\) Then for every $p \in \text{dom}(f')$, $(p^d \setminus d) \cap M_\gamma = \emptyset$ if $(p^d \setminus d) \cap M_\delta = \emptyset.$
We note that E is in N, and the set
$$\{k(rk_T(y)); \langle k, g \rangle \in E\}$$
is uncountable because $F(y) = \omega_1$. So there exists $\langle k, g \rangle \in E$ such that for each $p \in \text{dom}(g)$, $(p^d \setminus d) \cap M_d = \emptyset$. Then for each $n \in \text{ran}(f' \setminus N)$,
$$\left(\left(\bigcup g^{-1}[[n]]\right)^d \setminus d\right) \cap \left(\bigcup (f' \setminus N)^{-1}[[n]]\right) = \emptyset.$$Since X is second countable Hausdorff and N is an elementary submodel, there exists disjoint open subsets U and V of X in $N^{(11)}$ such that for each $n \in \text{ran}(f' \setminus N)$,
$$\left(\left(\bigcup (f' \setminus N)^{-1}[[n]]\right)^d \setminus d\right) \subseteq U,$$$$
\left(\left(\bigcup g^{-1}[[n]]\right)^d \setminus d\right) \subseteq V$$and
$$V \cap \left(\left(\bigcup (f' \setminus N)^{-1}[[n]]\right) \setminus U\right) = \emptyset.$$By the elementarity of N, we can find $\langle k', g' \rangle \in E$ such that
$$\left(\bigcup (g')^{-1}[[n]]\right)^d \setminus d \subseteq V.$$Then for each $n \in \text{ran}(f' \setminus N)$, the set
$$\bigcup (f')^{-1}[[n]] \cup \bigcup (g')^{-1}[[n]] \leq_{T(X)} \bigcup (f')^{-1}[[n]].$$Since $g' \subseteq N$ and $(\bigcup (f' \setminus N)^{-1}[[n]])^d \cap N = \emptyset$, we note that for each $n \in \text{ran}(f' \setminus N)$, the set
$$\bigcup (f')^{-1}[[n]] \cup \bigcup (g')^{-1}[[n]] \leq_{T(X)} \bigcup (g')^{-1}[[n]].$$Therefore $\langle k' \cup h', g' \cup f' \rangle$ is an extension of $\langle h', f' \rangle$ in $Q(T(X), I, \vec{M}, S)$ and $\langle k' \cup h', g' \cup f' \rangle \models_{Q(T(X), I, \vec{M}, S)} "y \in \dot{A}".$

\[\square\]

REFERENCES

(11) This can be done because the set $(\bigcup (f' \setminus N)^{-1}[[n]]) \setminus U$ is finite if U satisfies that $(\bigcup (f' \setminus N)^{-1}[[n]])^d \setminus d \subseteq U.$

[15] T. Yorioka. The inequality \(b > \aleph_1 \) can be considered as an analogue of Suslin’s Hypothesis. Axiomatic Set Theory and Set-theoretic Topology (Kyoto 2007), Sūrikaisekikenkyūsho Kökyūroku No. 1595 (2008), 84–88.

DEPARTMENT OF MATHEMATICS, SHIZUOKA UNIVERSITY, OHYA 836, SHIZUOKA, 422-8529, JAPAN.
E-mail address: styorio@ipc.shizuoka.ac.jp