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Abstract

Why are some theorems not provable in certain theories of mathemat-
ics? Why are most theorems from existing mathematics provable in very
weak systems? The area ofConcrete Mathematical Independence seeks an-
swers for those questions. One recent tool, developed by Weiermann, for
providing more insights into independence is the phase transition. In this
note we provide an overview of some interesting results and heuristics.

1 Introduction

Godel’s incompleteness theorems tell us that, as soon as a consistent theory $T$

encompasses some basic arithmetic, there exist statements $\varphi$ in the language of
$T$ which can be neither proven nor disproven in $T$. G\"odel’s results brought great
interest in finding natural examples of such $\varphi$ in areas of mathematics other
than logic for theories $T$ of arithmetic. Since 1977, starting with results by Paris
and Harrington [10], a growing number of such $\varphi$ have been found for Peano
Arithmetic, the first order theory based on Peano’s axioms from [11]. Peano
arithmetic is of particular interest because, before G\"odels result, it was one of
the candidate theories to answer Hilbert’s second problem: to find axioms for
mathematics and, most importantly:

To prove that they are not contradictory, that is, that a finite num-
ber oflogical steps based upon them can never lead to contradictory
results.1

1English translation by M. W. Newson in [6], page 414
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During the study of natural independent statements different variants emerged
for, among others, the Paris-Harrington [10] and the Kanamori-McAloon [7] re-
sults. One can modify them, inserting functions $f:\mathbb{N}arrow \mathbb{N}$ as parameter values.
The obvious question to ask is to classify the parameter values $f$ according to

the independence of the resulting parametrised statement. Andreas Weiermann

has started a general programme examining this phenomenon for different state-
ments and theories. The answer to this question pinpoints where the strength of
independent statements is located, showing that small modifications can result
in huge differences in provability.

In this note we give some examples, with references for the interested reader,

ofWeiermann-style phase transition results and explore some heuristics for de-
termining the thresholds. This overview is based largely on lectures given by
Andreas Weiermann at Ghent University and on results in [12] and [14]. The list
of examples is not exhaustive and we have left out the sharpened results.

2 Preliminaries

$T$ is a first order theory which includes $I\Sigma_{1}$ , for our examples this is PA or a
fragment of PA. Parameter values $f$ are functions $\mathbb{N}arrow \mathbb{N}$ , statements $\varphi_{f}$ have
the form $\forall x\exists yM_{f}(x)=y$ where functions $M_{f}$ are recursive for all parameter
values $f$ under consideration.

Transition results have the following shape:

. $T\mu_{\varphi_{f_{c}}}$ for every $c$ , but

. $T\vdash\varphi_{f}.$

where the $f_{c}$

‘
$s$ approach $f$ in growth rate.

Definition 1 For $f:\mathbb{N}arrow \mathbb{N}$ the inverse is:

$f^{-1}(i)= \max\{0\}\cup\{j : f(j)\leq i\}.$

Definition 2 $2_{0}(i)=i,$ $2_{n+1}(i)=2^{2_{n}(i)},$ $\log$ is the inverse of $i\mapsto 2^{i},$ $\log^{n}$ is

the inverse of $i\mapsto 2_{n}(i)$ , $\log*$ is the inverse of $i\mapsto 2_{i}(i)$ , $\sqrt[\mathcal{C}]{\log^{n}}$ is the inverse of
$i\mapsto 2_{n}(i^{c})$ and $i \mapsto\frac{i}{c}$ is the inverse of$i\mapsto i\cdot c$, where $\frac{x}{0}=1.$
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3 Examples

In each case we introduce the parametrised version of the statements, the respec-
tive original version are obtained by using $f=id.$

3.1 Paris Harrington

This is one of the earliest statements shown to be independent from Peano Arith-
metic [10]. The transition results was first proven by Weiermann (see e.g. $:[15]$ ).

Definition 3 $[X]^{d}$ is the set of $d$-element subsets of$X,$ $[m, R]^{d}=[\{m, . . . , R\}]^{d}$

and $[R]^{d}=[0, R]^{d}.$

Definition 4 Given a colouring $C:[m, R]^{d}arrow r$ , we call a set $H$ homogeneous

for $C$ or $C$ -homogeneous if$C$ is constant on $[H]^{d}.$

Definition 5 (PH$f$ ) For every $d,$ $r,$ $m$ there exists an $R$ such thatfor every colour-
ing $C:[m, R]^{d}arrow r$ there exists a $C$ -homogeneous $H\subseteq[m, R]$ ofsize $f( \min H)$ .

Theorem 1 (Weiermann)

1. PA $\mu PH_{\log^{n}}$ for every $n$, but

2. $PA\vdash PH_{\log^{*}}.$

3.2 Kanamori-McAloon

This statement was introduced in [7] as a variant which is more easily demon-
strated to be independent ofPeano Arithmetic. The transition result by Carlucci,
Lee and Weiermann can be found in [1].

Definition 6 (KM$f$ ) For every $d,$ $m,$ $a$ there exists $R$ such thatfor every colouring
$C:[a, R]^{d}arrow \mathbb{N}$ with $C(x) \leq f(\min x)$ there exists $H\subseteq R$ of size $m$ for which
for all $x,$ $y\in[H]^{d}$ with $\min x=\min y$ we have $C(x)=C(y)$ .

Theorem 2 (Carlucci, Lee, Weiermann)

1. PA $\kappa KM_{\log^{n}}$ for every $n$, but
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2. $PA\vdash KM_{\log^{*}}.$

3.3 Adjacent Ramsey

Introduced first by Friedman in a draft on his web-page, with independence of
Peano Arithmetic fully shown in [4] The proof of the transition result can be
found in [12].

Definition 7 For $r$ -tuples $a,$
$b$ :

$a\leq b\Leftrightarrow(a)_{1}\leq(b)_{1}\wedge\cdots\wedge(a)_{r}\leq(b)_{r}$

Definition 8 A colouring $C:\{0, . . . , R\}^{d}arrow \mathbb{N}^{r}$ is $f$ -limited

$\max C(x)\leq f(\max x)$ for all $x\in\{0, \cdots, R\}^{d}$

Definition 9 $(AR_{f})$ For every $d,$ $r$ there exists $R$ such that for every $f$ -limited
colouring $C:\{0, \cdots, R\}^{d}arrow \mathbb{N}^{r}$ there exist $x_{1}<\cdots<x_{d+1}\leq R$ with

$C(x_{1}, \ldots, x_{d})\leq C(x_{2}, \ldots, x_{d+1})$ .

Theorem 3 (P.)

1. PA $\mu AR_{\log^{n}}$ for every $n$ , but

2. $PA\vdash AR_{\log^{*}}.$

3.4 Hydra Battles

Tracing back to Gentzen showing in 1936 that transfinite induction up to $\epsilon_{0}$ is not
provable in PA formulated with a free predicate variable [5], Kirby and Paris [8]

introduced a combinatorial game based on the following statement on ordinals
below $\epsilon_{0}$ :

Definition 10 A Hydra battleforf is a sequence $h_{0},$ $h_{1},$ $h_{2}$ , . . . ofordinals start-
ing with $h_{0}=\omega_{k}(l)$ such that $h_{i+1}=h_{i}[f(i)+1]$ and $h_{i+1}<h_{i}$ for all $i<R.$
Here $\alpha[x]$ denotes the $xth$ element ofthe canonical fundamental sequence $of\alpha$ as in

Definition 2 of [2] if $\alpha$ is a limit ordinal. $If\alpha=\beta+1$ then $\alpha[x]=\beta$ . Furthermore
$0[x]=0.$
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Definition 11 (EHD$f$ ) Every Hydra Battle for $f$ is finite.
Theorem 4 (Weiermann)

1. PA $\kappa EHD_{\log^{n}}$ for every $n$, but

2. $PA\vdash EHD_{\log}*.$

3.5 Dickson’s Lemma

Dickson’s lemma is one of the most rediscovered lemmas, and attributed to L.E.

Dickson [3]. Proving its independence from $I\Sigma_{1}$ is an exercise for a course in

proof theory.

Definition 12 For $d$-tuples a take:

$\deg(a)=(a)_{1}+\cdots+(a)_{d}$

Definition 13 $(MDL_{f})$ For every $d,$ $l$ there exists $D$ such that for every sequence
$m_{0}$ , . . . , $m_{D}$ of $d$ -tuples such that $\deg(m_{i})\leq l+f(i)$ there are $i<j\leq R$ with
$m_{i}\leq m_{j}.$

Theorem 5 (Weiermann)

1. $I\Sigma_{1}rMDL_{\sqrtc}$ for every $c$, but

2. $I\Sigma_{1}\vdash MDL_{\log}.$

3.6 Higman’s Lemma

Definition 14 $X^{*}$ denotes the set offinite strings ofelements from X. Given two

strings $a,$ $b\in\{0, . . . , d\}^{*}we$ define:

$a\leq b\Leftrightarrow\exists i_{1}<\cdots<i_{|a|}\leq|b|.\forall j\leq|a|.(a)_{j}=(b)_{i_{j}}.$

Definition 15 $(MHL_{f})$ For every $l,$ $d$ there exists $H$ such that for every sequence
$s_{0}$ , . . . , $s_{H}$ ofstringsfrom $\{0, . . . , d\}^{*}with|s_{i}|\leq l+f(i)$ there exist $i<j\leq H$

with $s_{i}\leq s_{j}.$

102



Theorem 6 (Weiermann)

1. $I\Sigma_{2}\mu MHL_{\sqrt[\mathcal{C}]{\log}}$ for every $c$, but

2. $I\Sigma_{2}\vdash MHL_{\log^{2}}.$

3.7 Maclagan’s theorem on monomial ideals

This theorem by Maclagan [9] is used in computational algebra. The transition

result is shown in [13].

Definition 16 A polynomial oftheform $m=X_{d}^{m_{d}}\ldots X_{1}^{m_{1}}$ is a monomial. Given

field $F$ we call an ideal in the polynomial ring $F[X_{1}, . . . X_{d}]$ a monomial ideal if it
is generated by monomials.

1. The degree of a monomial is:

$\deg(m)=m_{d}+\cdots+m_{1}.$

2. The degree of a finite set $G$ of monomials is the maximum degree of its ele-
ments:

$\deg(G)=\max\{\deg(m):m\in G\}.$

3. The degree ofa monomial ideal I is the smallest degree required to be able to

generate it:
$\deg(I)=\min\{\deg(G):I=\langle G\rangle\}.$

Definition 17 (MM$f$ ) For every $l,$ $d$ there exists $M$ such that for every sequence
$I_{0}$ , . . . , $I_{M}$ of monomial ideals in $d$ variables with $\deg(I_{i})\leq l+f(i)$ there exist
$i<j\leq M$ with $I_{i}\supseteq I_{j}.$

Theorem 7 (P.)

1. $I\Sigma_{2}\mu MM_{\sqrt[C]{\log}}$ for every $c$, but

2. $I\Sigma_{2}\vdash MM_{\log^{2}}.$

3.8 Growing trees

Introduced in [14] as a simple example 4 $of$ a phase transition for independence of
$I\Sigma_{1}.$
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Definition 18 We call sequence $T_{0}$ , $\cdots$ offinite trees an f-GT (Growing Tree)

1. $T_{0}=root$ and

2. For every $T_{i+1}$ from the sequence there exists a $leaf\sigma\in T_{i}$ such that

$T_{i+1}=T_{i}\cup\{\sigma j:j\leq f(i)\}.$

We say an f-GT has reached height $h$ if it contains a tree ofheight at least $h.$

; $f(i)+1$ new leaves ;
$arrow$

$V$
$\bullet$ ;
; ;

. .

Tree $T_{i}$ : Select a leaf Tree $T_{i+1}$ : Add new leaves

Definition 19 $(MKL_{f})$ Foreveryh there exists a $K$ such that every $f$ -GToflength
$K$ has reached height $h.$

Theorem 8 (P.)

1. $I\Sigma_{1}\kappa MKL_{\sqrtc}$ for every $c$, but

2. $I\Sigma_{1}\vdash MKL_{\log}.$

4 Heuristics

Given a parametrised statement of the form $\forall x\exists yM_{f}(x)=y$ for which $M_{id}$ is
not provably total, but $M_{i\mapsto k}$ is. The transition results have the following shape:

. $T\}\angle_{\varphi_{f_{c}}}$ for every $c$ , but

. $T\vdash\varphi_{f}.$
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To determine a transition threshold we examine the following function:

$k\mapsto M_{i\mapsto k}(x)$ .

Very roughly speaking, functions $f_{c}$ will be the inverses oflower bounds $l$ and
the function $f$ the inverse of an upper bound $u$ . For a proof of the upper bounds
lemma, a more detailed examination of the cases for Ramsey-like statements and
a method for sharpening these results we refer the reader to [12].

4.1 Provability

For the provability part ofthe phase transition results, we have the upper bounds
lemma, which states the following:

Assuming $M_{f}$ and $u:\mathbb{N}arrow \mathbb{N}$ satisfy some technical properties and ordering
functions by eventual domination, if:

$k\mapsto M_{i\mapsto k}(x)\leq u$

’for all $x$ , then:
$T\vdash\forall x\exists yM_{u^{-1}}(x)=y.$

Lemma 1 (Upper bounds) Let $I\Sigma_{1}\subseteq T$ and $M_{f}(x)$ be computable for every
computable $f$ . Suppose $M$ has the following properties:

1. $if\forall i\leq M_{g}(x)$ we have $f(i)\leq g(i)$ then $M_{f}(x)\leq M_{g}(x)$ ,

2. there exist $T$ -provably recursive, unbounded functions $u,$
$h$ such that $\forall k\geq$

$h(x)$ we have $M_{k}(x)\leq u(k)$ ,

then:
$T\vdash\forall x\exists yM_{u^{-1}}(x)=y.$

The most important technical conditions in the upper bounds lemma are that the
upper bound $u$ is provably total in $T$ and that $M_{f}$ be monotone in the parameter
value.

Note that in many cases the $u$ from the lemma can be found in the existing
mathematics literature. For example, in the case of the Paris-Harrington the-
orem, $M_{i\mapsto k}(x)$ can be computed using Ramsey numbers, which are known to
be bounded by the tower function when one fixes the dimension.
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4.2 Independence

For the unprovability parts there, unfortunately, does not exist a general method.
However, in each transition result so far the following has been observed:

Assuming $M_{f}$ and $l:\mathbb{N}arrow \mathbb{N}$ satisfy some technical properties, if there exists $x$

such that:
$l\leq k\mapsto M_{i\mapsto k}(x)$

then:
$T\}^{\angle}\forall x\exists yM_{l^{-1}}(x)=y.$

Conjecture 9 (Lower bounds) SupposeT is a theory which contains $I\Sigma_{1},$ $l$ is un-
bounded, nondecreasing and $M_{f}$ is a nondecreasing computable function for every
computable $f$ with the following properties:

1. $T\mu\forall\dot{x}\exists yM_{id}(x)=y,$

2. $f(i)\leq g(i)$ for all $i\leq M_{g}(x)$ implies $M_{f}(x)\leq M_{g}(x)$ ,

3. there exists $x$ such that $l$ is eventually strictly dominated by $k\mapsto M_{i\mapsto k}(x)$ ,

then:
$\tau r\forall x\exists yM_{l^{-1}}(x)=y.$

Note again that functions $l$ can often be found in the literature. For example, for
the Paris-Harrington theorem, $M_{i\mapsto k}(x)$ can be computed using Ramsey num-
bers, which are known to have a lower bound $2_{n}(k)$ for sufficiently high dimen-
sion.

We emphasise that this part ofthe phase transitions often requires the most work
as in each case different techmques, sometimes not involving the function $k\mapsto$

$M_{i\mapsto k}(x)$ at all, may be used to prove it. In some cases one may adapt existing
independence proofs and in others one uses combinatorics to show $\varphi_{l^{-1}}arrow\varphi_{id}.$

$\square$
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