<table>
<thead>
<tr>
<th>Title</th>
<th>Many point reflections at infinity of a time changed reflecting diffusion (Symposium on Probability Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>福島 正俊</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2015, 1952: 92-99</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/223986</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Many point reflections at infinity of a time changed reflecting diffusion

Masatoshi Fukushima
Osaka University

1 Introduction

The boundary problem of a Markov process X concerns all possible Markovian prolongations of X beyond its life time ζ whenever ζ is finite. Let $Z = (Z_t, Q_z)$ be a conservative right process on a locally compact separable metric space E and Δ be the point at infinity of E. Suppose Z is transient relative to an excessive measure m: for the 0-order resolvent R of Z, $Rf(z) < \infty$, m-a.e. for some strictly positive function (or equivalently, for any non-negative function) $f \in L^1(E;m)$. Then

$$Q_z(\lim_{t\to\infty} Z_t = \Delta) = 1 \quad \text{for q.e. } x \in E,$$

if Rf is lower semicontinuous for any non-negative Borel function f ([FTa]). The last condition is not needed when X is m-symmetric ([CF2]).

Take any strictly positive bounded function $f \in L^1(E;m)$. Then $A_t = \int_0^t f(Z_s)ds, \ t \geq 0$ is a strictly increasing PCAF of Z with $E_z[A_x] = Rf(x) < \infty$ for q.e. $x \in E$. The time changed process $X = (X_t, \zeta, P_x)$ of Z by means of A is defined by

$$X_t = Z_{\tau t}, \ t \geq 0, \ \tau = A^{-1}, \ \zeta = A_{\infty}, \ P_x = Q_z, \ x \in E. \quad (1.1)$$

Since $P_z(\zeta < \infty, \lim_{t\to\infty} X_t = \Delta) = P_z(\zeta < \infty) = 1$, the boundary problem for X at Δ makes perfect sense. For different choices of f, the corresponding processes X have the same geometric shapes related each other only by time changes. Thus a study of the boundary problem for X is a good way to make a close look at a geometric picture of a conservative transient process Z around Δ.

When a right process Z is m-symmetric, we can work with the associated Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(E;m)$. Let \mathcal{F} and \mathcal{F}^{ref} be its extended Dirichlet space and its reflected Dirichlet space ([CF2]). Then $\mathcal{F} \subset \mathcal{F}_c \subset \mathcal{F}^{ref}$ and the inner product \mathcal{E} is extended from \mathcal{F} to both spaces. Define the subspace \mathcal{H}^* of \mathcal{F}^{ref} by

$$\mathcal{H}^* = \{u \in \mathcal{F}^{ref} : \mathcal{E}(u, v) = 0 \ \text{for any} \ v \in \mathcal{F}_c\}. \quad (1.2)$$

The stated boundary problem for Z is closely related to dim(\mathcal{H}^*). The process Z or the associated Dirichlet form $(\mathcal{E}, \mathcal{F})$ is said to satisfy a Liouville property if dim(\mathcal{H}^*) = 1. We will be concerned with the cases where Z are the reflecting Brownian motion on an unbounded domain of \mathbb{R}^n and the distorted Brownian motion on the whole space \mathbb{R}^n.

We first consider the reflecting Brownian motion (RBM) Z on the closure \overline{D} of a Lipschitz domain $D \subset \mathbb{R}^n$ that is a special case of the reflecting diffusion process constructed in [FTo]. Z is always conservative. Z is symmetric with respect to the Lebesgue measure on D and the Dirichlet form \mathcal{E} of Z on $L^2(D)$ is given by

$$\mathcal{E} = \frac{1}{2} D, \quad D(\mathcal{E}) = H^1(D) = BL(D) \cap L^2(D),$$
where
\[D(u, v) = \int_D \nabla u(x) \cdot \nabla v(x) dx, \quad \text{BL}(D) = \{ u \in L^2_{\text{loc}}(D) : |\nabla u| \in L^2(D) \}. \]

BL(D) is the reflected Dirichlet space of Z.

We requires that
(A.1) Z is transient,
and accordingly it must be that \(n \geq 3 \) and \(D \) is unbounded. When \(d \geq 3 \), an infinite cone \(D \) satisfies (A.1) but an infinite cylinder does not. Under (A.1), the extended Sobolev space \(H^1_e(D) \) is a Hilbert space with inner product \(\frac{1}{2} D(u, v) \) so that it does not contain any non-zero constant, while \(\text{BL}(D) \) does. Hence \(H^1_e(D) \) is a proper subspace of \(\text{BL}(D) \) and the space \(\mathcal{H}^*(D) \) defined by
\[
\mathcal{H}^*(D) = \{ u \in \text{BL}(D) : D(u, v) = 0 \text{ for every } v \in H^1_e(D) \},
\]
is a non-trivial family of harmonic functions on \(D \).

In what follows, we assume that \(n \geq 3 \). A domain \(D \subset \mathbb{R}^d \) is called a uniform domain if there exists \(C > 0 \) such that, for every \(x, y \in D \), there is a rectifiable curve \(\gamma \) in \(D \) connecting \(x \) and \(y \) with length(\(\gamma \)) \(\leq C|x - y| \), and moreover
\[
\min \{|x - z|, |z - y|\} \leq C \text{dist}(z, D^c) \quad \text{for every } z \in \gamma.
\]

A typical example of a unbounded uniform domain is an infinite cone.

According to [CF1],
- a domain \(D \) containing a unbounded uniform domain satisfies (A.1).
- \(Z \) satisfies the Liouville property \(\dim(\mathcal{H}^*(D)) = 1 \) whenever \(D \setminus \overline{B_r(0)} \) is a unbounded uniform domain, for some \(r > 0 \).

The proof used the two facts that
- for an unbounded uniform domain \(D \), any \(u \in \text{BL}(D) \) admits a bounded linear extension to \(\text{BL}(\mathbb{R}^d) \) ([HK]).
- any harmonic function on \(\mathbb{R}^d \) with finite Dirichlet integral is constant, namely, the RBM on \(\mathbb{R}^n \) satisfies the Liouville property \(\dim(\mathcal{H}^*(\mathbb{R}^n)) = 1 \) ([B]).

On the other hand, \(\dim(\mathcal{H}^*(D)) = 2 \) for a domain with two symmetric cone branches ([CF2]):
\[
D = B_1(0) \cup \left\{ x \in \mathbb{R}^n : x_n^2 > \left(\sum_{k=1}^{n-1} x_k^2 \right)^{1/2} \right\}, \quad n \geq 3.
\]

This domain is not uniform because of the presence of a bottleneck.

2 RBM on a domain with \(N \) unbounded uniform branches

In this section, we consider a Lipschitz domain \(D \) of \(\mathbb{R}^n \), \(n \geq 3 \), such that
(A.2) \(D \setminus \overline{B_r(0)} = \bigcup_{j=1}^N C_j \)
for some \(r > 0 \) and an integer \(N \), where \(C_1, \ldots, C_N \) are unbounded uniform domains whose closures are mutually disjoint.

Obviously \(D \) has the property (A.1).

Let \(\partial_j \) be the point at infinity of the unbounded closed set \(\overline{C}_j \) for each \(1 \leq j \leq N \). Denote the \(N \)-points set \(\{\partial_1, \ldots, \partial_N\} \) by \(F \) and put \(\overline{D}^* = \overline{D} \cup F \). \(\overline{D}^* \) can be made to be a compact Hausdorff space if we employ as a local base of neighborhoods of each point \(\partial_j \in F \) the neighborhoods of \(\partial_j \in \overline{C}_j \cup \{\partial_j\} \). \(\overline{D}^* \) may be called the \(N \)-points compactification of \(\overline{D} \).

For the RBM \(Z = (Z_t, Q_x) \) on \(\overline{D} \), define the approaching probabilities \(\varphi_j(x) \) by

\[
\varphi_j(x) = Q_x \left(\lim_{t \to \infty} Z_t = \partial_j \right), \quad x \in \overline{D}, \quad 1 \leq j \leq N.
\]

Theorem 2.1. It holds that

\[
\begin{cases}
\sum_{j=1}^{N} \varphi_j(x) = 1, & \varphi_j(x) > 0, \quad 1 \leq j \leq N, \quad \text{for every } x \in \overline{D}, \\
\dim(H^*(D)) = N, & H^*(D) = \{\sum_{j=1}^{N} c_j \varphi_j : c_j \in \mathbb{R}\}.
\end{cases}
\]

We fix a strictly positive \(f \in L^1(D) \) and let \(X = (X_t, \zeta, P_x) \) be the time changed process of \(Z \) by the PCAF \(A_t = \int_0^t f(Z_s)ds \). \(X \) is then symmetric with respect to \(m(dx) = f(x)dx \) and its Dirichlet form \((\mathcal{E}^X, \mathcal{F}^X) \) on \(L^2(D; m) \) is given by \(\mathcal{E}^X = \frac{1}{2}D, \quad \mathcal{F}^X = H^2_0(D) \cap L^2(D; m) \).

The reflected Dirichlet space of \(X \) is still BL(D). \(\varphi_j(x) \) can be rewritten as

\[
\varphi_j(x) = P_x(\zeta < \infty, X_{\zeta-} = \partial_j), \quad x \in \overline{D}, \quad 1 \leq j \leq N.
\]

A map \(\Pi \) from the boundary set \(F = \{\partial_1, \ldots, \partial_N\} \) onto a finite set \(\hat{F} = \{\hat{\partial}_1, \ldots, \hat{\partial}_\ell\} \) with \(\ell \leq N \) is called a partition of \(F \). We let \(\overline{D}^{\Pi,*} = \overline{D} \cup \hat{F} \). We extend the map \(\Pi \) from \(F \) to \(\overline{D}^* \) by setting \(\Pi x = \hat{\partial}_i, \quad x \in \overline{D} \), and introduce the quotient topology on \(\overline{D}^{\Pi,*} \) by \(\Pi \), in other words,

\[
U_{\Pi} = \{U \subset \overline{D}^{\Pi,*} : \Pi^{-1}(U) \text{ is an open subset of } \overline{D}^* \}
\]

is taken to be the family of open subsets of \(\overline{D}^{\Pi,*} \).

\(\overline{D}^{\Pi,*} \) is a compact Hausdorff space and may be called an \(\ell \)-points compactification of \(\overline{D} \) obtained from \(\overline{D}^* \) by identifying the points in the set \(\Pi^{-1}\hat{\partial}_i \subset F \) as a single point \(\hat{\partial}_i \) for each \(1 \leq i \leq \ell \).

Given a partition \(\Pi \) of \(F \), the approaching probabilities \(\hat{\varphi}_i \) of the time changed RBM \(X = (X_t, \zeta, P_x) \) to \(\hat{\partial}_i \in \hat{F} \) are defined by

\[
\hat{\varphi}_i(x) = \sum_{j \in \Pi^{-1}\hat{\partial}_i} \varphi_j(x), \quad x \in \overline{D}, \quad 1 \leq i \leq \ell.
\]

The measure \(m(dx) = f(x)dx \) is extended from \(\overline{D} \) to \(\overline{D}^{\Pi,*} \) by setting \(m(\hat{F}) = 0 \).

- \(\hat{\varphi}_i \) is strictly positive on \(\overline{D} \) for every \(1 \leq i \leq N \),
- \(m \) is a finite measure on \(\overline{D} \),
- \(G^X g = G^Z(fg) \) is lower semicontinuous for the \(0 \)-order resolvent \(G^X \) (resp. \(G^Z \)) of \(X \) (resp. \(Z \)) and any non-negative Borel function \(g \) on \(\overline{D} \).

Thus all requirements for the unique existence of \(\ell \)-point extension of \(X \) from \(\overline{D} \) to \(\overline{D}^{\Pi,*} \) in Section 7.7 of [CF2] are fulfilled.
Theorem 2.2. There exists a unique m-symmetric recurrent diffusion extension $X^{\Pi,*}$ of X from \overline{D} to $\overline{D}^{\Pi,*}$. The Dirichlet form $(\mathcal{E}^{\Pi,*}, \mathcal{F}^{\Pi,*})$ of $X^{\Pi,*}$ on $L^2(\overline{D}^{\Pi,*};m)$ ($= L^2(D;m)$) admits the extended Dirichlet space expressed as
\[
\begin{aligned}
&\mathcal{F}^{\Pi,*} = H_e^1(D) \oplus \{ \sum_{i=1}^{\ell} c_i \varphi_i : c_i \in \mathbb{R} \} \subset \text{BL}(D), \\
&\mathcal{E}^{\Pi,*}(u,v) = \frac{1}{2} D(u,v), \quad u,v \in \mathcal{F}^{\Pi,*}.
\end{aligned}
\]

Actually the family $\{X^{\Pi,*} : \Pi \text{ is a partition of } F\}$ exhausts all possible m-symmetric conservative diffusion extensions of the time changed RBM X on \overline{D} as will be formulated below. Let E be a Lusin space into which \overline{D} is homeomorphically embedded as an open subset. The measure $m(dx) = f(x)dx$ on \overline{D} is extended to E by setting $m(E \setminus \overline{D}) = 0$. Let $Y = (Y_t, \mathcal{F}_t^Y)$ be an m-symmetric conservative diffusion process on E whose state process on \overline{D} is identical in law with X. The following theorem extends Theorem 3.4 in [CF1] (the case that $N = 1$).

Theorem 2.3. There exists a partition Π of F such that E is quasi-homeomorphic with $\overline{D}^{\Pi,*}$ and Y is a quasi-homeomorphic image of $X^{\Pi,*}$.

Outline of a proof of Theorem 2.3

Let \mathcal{E}^Y be the Dirichlet form of Y on $L^2(E;m)$. Since \mathcal{E}^Y is quasi-regular, we can use a quasi homeomorphism to assume

- E is a locally compact separable metric space,
- \mathcal{E}^Y is a regular Dirichlet form on $L^2(E;m),$
- Y is an associated Hunt process on E,
- $\tilde{F} := E \setminus \overline{D}$ is quasi-closed.

As Y is a conservative extension of the non-conservative process X, \tilde{F} is not \mathcal{E}^Y-polar. Every function in \mathcal{F}^Y_e will be taken to be \mathcal{E}^Y-quasi continuous. By Theorem 7.1.6 of [CF2], one can conclude that
\[
\begin{aligned}
&\mathcal{F}^Y_e \subset \text{BL}(D), \quad \mathcal{H}^Y := \{ Hu : u \in \mathcal{F}^Y_e \} \subset \mathcal{H}^*, \\
&\mathcal{E}^Y(u,v) = \frac{1}{2} D(u,u) + \frac{1}{2} \mu^c_{\langle Hu \rangle}((\tilde{F})) , \quad u,v \in \mathcal{F}^Y_e,
\end{aligned}
\]
where $Hu(x) = E^Y_x[u(Y_{\tau_{\tilde{F}}})], \quad x \in E$. We show that
\[
\mu^c_{\langle u \rangle}(\tilde{F}) = 0 \quad u \in \mathcal{H}^Y .
\]

Take any $u \in \mathcal{H}^Y$. Theorem 2.1 and the above inclusion imply that $u = \sum_{j=1}^{N} c_j \varphi_j$ for some constants c_j. As u is continuous along the sample path of Y, u takes only the values $\{c_1, \cdots, c_N\}$ on the boundary \tilde{F} ν-almost everywhere where
\[
\nu(B) = \int_{B} \mathcal{P}^Y_x (Y_{\sigma_{\tilde{F}}} \in B, \sigma_{\tilde{F}} < \infty) m(dx), \quad B \in \mathcal{B}(E).
\]

Since \tilde{F} is a quasi-support of ν, u takes only the values $\{c_1, \cdots, c_N\}$ quasi-everywhere on \tilde{F}. (2.1) then follows from the image measure density property of $\mu^c_{\langle u \rangle}$ due to Bouleau-Hirsch.

Define a partition Π of F by means of the values taken by functions in \mathcal{H}^Y along the path of X to obtain
\[
(\mathcal{F}^Y_e, \mathcal{E}^Y) = (\mathcal{F}^{\Pi,*}_e, \mathcal{E}^{\Pi,*}).
\]

Both being quasi-regular, they are related by a quasi-homeomorphism of their underlying spaces.
Remark 2.4. Given measurable functions $a_{ij}(x)$, $1 \leq i, j \leq n$, on D such that
\[a_{ij}(x) = a_{ji}(x), \quad A^{-1} |\xi|^2 \leq \sum_{1 \leq i,j \leq n} a_{ij}(x) \xi_i \xi_j \leq A |\xi|^2, \quad x \in D, \xi \in \mathbb{R}^n, \]
for some constant $A \geq 1$, we define a Dirichlet form $(\mathcal{A}, H^1(D))$ on $L^2(D)$ by
\[\mathcal{A}(u, v) = \int_D \sum_{i,j=1}^n a_{ij}(x) \frac{\partial u}{\partial x_i}(x) \frac{\partial v}{\partial x_j}(x) dx, \quad u, v \in H^1(D). \]
If we replace the Dirichlet form $(\frac{1}{2}D, H^1(D))$ on $L^2(D)$ and the associated RBM Z on \overline{D}, respectively, by $(\mathcal{A}, H^1(D))$ and the associated reflecting diffusion process on \overline{D} constructed in [FTo], all assertions stated above remain valid with no essential change.

By this replacement, the extended Dirichlet space and the reflected Dirichlet space are still $H^1_0(D)$ and $\text{BL}(D)$, respectively, although the inner product $\frac{1}{2}D$ is replaced by \mathcal{A}. It suffices to notice that any function in $\text{BL}(\mathbb{R}^n)$ is a sum of a function in $H^1_0(\mathbb{R}^n)$ and a constant c and $\mathcal{A}(c, c) = 0$.

3 Liouville property of energy forms on \mathbb{R}^n

In this section, we consider a positive Borel function ρ on \mathbb{R}^n that is locally bounded above and locally uniformly bounded away from 0, and an associated form
\[\mathcal{E}^\rho(u, v) = \int_{\mathbb{R}^n} \nabla u(x) \cdot \nabla v(x) \rho(x) dx. \quad (3.1) \]
$(\mathcal{E}^\rho, C^1_b(\mathbb{R}^n))$ is closable on $L^2(\mathbb{R}^n) = L^2(\mathbb{R}^n, dx)$ and the closure $(\mathcal{E}^\rho, \mathcal{F}^\rho)$ (called an energy form) is a strongly local regular Dirichlet form on $L^2(\mathbb{R}^n)$. It is irreducible ([FOT, Theorem 4.6.4]). In general, an irreducible recurrent Dirichlet form enjoys the Liouville property in view of [CF2, Lemma 6.7.3]. It therefore suffices to consider only the transient case in order to study the Liouville property of \mathcal{E}^ρ. We shall examine this property when $\rho(x)$ is a positive smooth function depending only on the radial part of the variable $x \in \mathbb{R}^n$.

Theorem 3.1. For any positive smooth function η on $[0, \infty)$, let $\rho(x) = \eta(|x|)$, $x \in \mathbb{R}^n$. Then \mathcal{E}^ρ satisfies the Liouville property when $n \geq 2$.
When $n = 1$, \mathcal{E}^ρ satisfies the Liouville property in recurrent case but $\text{dim}(\mathcal{H}^*) = 2$ in transient case.

Proof. According to Theorem 1.6.7 in the first edition of [FOT], \mathcal{E}^ρ is transient if and only if
\[(T) \quad \int_1^\infty \frac{1}{\eta(r)r^{n-1}} dr < \infty. \]
In what follows, we assume that η satisfies condition (T).

It then follows from $1/r = (r^{n-3} \eta(r))^{1/2}(\eta(r)r^{n-1})^{-1/2}$ and the Schwarz inequality that
\[\int_1^\infty r^{n-3} \eta(r) dr = \infty. \quad (3.2) \]
We use the polar coordinate

\[
\begin{align*}
x_1 &= r \cos \theta_1 \\
x_2 &= r \sin \theta_1 \cos \theta_2 \\
x_3 &= r \sin \theta_1 \sin \theta_2 \cos \theta_3 \\
&\quad \quad \quad \quad \quad \vdots \\
x_{n-1} &= r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2} \cos \theta_{n-1} \\
x_n &= r \sin \theta_1 \sin \theta_2 \cdots \sin \theta_{n-2} \sin \theta_{n-1}.
\end{align*}
\]

Then, for \(u, v \in C_0^1(\mathbb{R}^n)\),

\[
\mathcal{E}^\rho(u, v) = \int_{[0, \infty) \times [0, \pi]^{n-2} \times [0, 2\pi]} \left[u_r v_r + \frac{u_{\theta_1} v_{\theta_1}}{r^2} + \frac{u_{\theta_2} v_{\theta_2}}{r^2 \sin^2 \theta_1} + \cdots + \frac{u_{\theta_{n-1}} v_{\theta_{n-1}}}{r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{n-2}} \right] \times \eta(r) r^{n-1} \sin^{n-2} \theta_1 \cdots \sin \theta_{n-2} dr d\theta_1 \cdots d\theta_{n-1}.
\]

For a smooth function \(u\) on \(\mathbb{R}^n\), we denote by \(\mathcal{E}^\eta(u, u)\) the value of the integral of the right hand side of (3.3) for \(v = u\).

As in the case that \(\rho = 1\), the reflected Dirichlet space of \(\mathcal{E}^\rho\) is given by

\[
\mathcal{F}^{\rho, \text{ref}} = \{u \in L^2_{\text{loc}}(\mathbb{R}^n) : \int_{\mathbb{R}^n} |\nabla u(x)|^2 \eta(|x|) dx < \infty\}.
\]

Since \(\mathcal{H}^* = \{u \in \mathcal{F}^{\rho, \text{ref}} : \mathcal{E}^\rho(u, v) = 0 \text{ for every } v \in C_0^\infty(\mathbb{R}^n)\}\), it follows from (3.3) that \(u \in \mathcal{H}^*\) if and only if

\[
\begin{align*}
u \text{ is smooth, } & \mathcal{E}^\eta(u, u) < \infty \quad \text{and} \quad Lu(x) = 0, \ x \in \mathbb{R}^n, \quad (3.4)
\end{align*}
\]

where

\[
Lu(r, \theta_1, \cdots, \theta_{n-1}) = \frac{1}{r^{n-1}} (u_r \cdot \eta(r) r^{n-1})_r + \frac{\eta(r)}{r^2 \sin^{n-2} \theta_1} (u_{\theta_1} \sin^{n-2} \theta_2)_{\theta_1} + \frac{\eta(r)}{r^2 \sin^2 \theta_1 \sin^{n-3} \theta_2} (u_{\theta_2} \sin^{n-3} \theta_2)_{\theta_2} + \cdots + \frac{\eta(r)}{r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{n-3} \sin \theta_{n-2}} (u_{\theta_{n-2}} \sin \theta_{n-2})_{\theta_{n-2}} + \frac{\eta(r)}{r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{n-2}} (u_{\theta_{n-1}})_{\theta_{n-1}} \quad (3.5)
\]

Now take any function \(u \in \mathcal{H}^*\). We claim that

\[
u_{\theta_{n-1}} = 0. \quad (3.6)
\]

Put \(w = u_{\theta_{n-1}}\). Due to the expression (3.5) of \(L\), \(Lw = (Lu)_{\theta_{n-1}} = 0\), namely, \(w\) is \(L\)-harmonic. For \(B_r = \{x \in \mathbb{R}^n ; |x| < r\}\) and the uniform probability measure \(\Pi(d\xi)\) on \(\partial B_1\), \(w\) therefore admits the Poisson integral formula

\[
w(x) = \int_{\partial B_1} K_r(x, r\xi) w(r\xi) \Pi(d\xi). \quad x \in B_r, \quad (3.7)
\]

where \(K_r(x, r\xi)\) is the Poisson kernel for \(B_r\) with respect to \(L\), which is known to be continuous in \((x, \xi) \in B_r \times \partial B_1\). We also note that \(K_r(0, r\xi) = 1\) for any \(\xi \in \partial B_1\) by the rotation invariance of \(L\) around the origin 0.
Fix $a > 0$. It then holds for any $r > a$ that

$$K_r(x, r\xi_2) = \int_{\partial B_a} K_a(x, a\xi_1)K_r(a\xi_1, r\xi_2)\Pi(d\xi_1), \quad x \in B_a, \; \xi_2 \in \partial B_1.$$

Hence, if we let $\sup_{x \in B_{a/2}, \xi_1 \in \partial B_1} K_a(x, a\xi_1) = C_a < \infty$, then, for $x \in B_{a/2}, \; \xi_2 \in \partial B_1$,

$$K_r(x, r\xi_2) \leq C_a \int_{\partial B_1} K_r(a\xi_1, r\xi_2)\Pi(d\xi_1) = C_aK_r(0, r\xi_2) = C_a,$$

and it follows from (3.7) that

$$|w(x)| \leq C_a \int_{\partial B_1} |w(r\xi)|\Pi(d\xi), \quad x \in B_{a/2}, \; r > a.$$

Recall that $w = u_{\theta_{n-1}}$. We multiply the both hand side of the above inequality by $r^{n-3}\eta(r)$, integrate in r from a to R, apply the Schwarz inequality and finally use the expression (3.3) to get

$$|u_{\theta_{n-1}}(x)| \leq \frac{C_a}{\sqrt{\sigma_n}} \left[\int_a^R r^{n-3}\eta(r)dr \right]^{-1/2} \cdot \sqrt{\mathcal{E}^\eta(u, u)}, \quad x \in B_{a/2},$$

which tends to 0 as $R \to \infty$ by (3.2). Since $a > 0$ is arbitrary, we arrive at (3.6).

It also holds that

$$u_{\theta_k} = 0 \quad \text{for any} \quad 1 \leq k \leq n - 1. \quad (3.8)$$

In fact, if we let $\xi_i = \frac{\xi_i}{r}, \; 1 \leq i \leq n, \; \xi = (\xi_1, \cdots, \xi_n) \in \partial B_1$, then $\theta_k, \; 1 \leq k \leq n - 1$, is an angle of two n-vectors $\xi^{(k)} = (0, \cdots 0, \xi_k, \cdots, \xi_n), \; \xi^0 = (0, \cdots 0, 1, 0, \cdots, 0)$. Consider the subspace V of \mathbb{R}^n spanned by ξ^k and e_k and take a unit vector \hat{e} in V orthogonal to e_k. Let O be an orthogonal matrix whose $(n-1)$-th and n-th column vectors are e_k and \hat{e}, respectively. We make the orthogonal transformation $y = \check{O}x$. Then θ_k equals an angle of two vectors on the (y_{n-1}, y_n)-plane in the new coordinate system y and (3.6) applies.

Thus u depends only on r and, in terms of a scale function $ds(r) = \frac{dr}{\eta(r)r^{n-1}}$ on $(0, \infty)$, (3.3) and (3.6) are reduced, respectively, to

$$\mathcal{E}^\eta(u, u) = \sigma_n \int_0^\infty \left(\frac{du(r)}{ds(r)} \right)^2 ds(r), \quad Lu(r) = \frac{1}{r^{n-1}} \frac{d}{dr} \cdot \frac{du(r)}{ds(r)}.$$

By (3.4), $Lu = 0$ so that $u(r) = C_1 + C_2 s(r), \; r > 0$, for some constant $C_1, \; C_2$. Since $\mathcal{E}^\eta(s, s) = \sigma_n \cdot s(0, \infty)$ is finite if and only if $n = 1$, we get the desired expressions from (3.4). \square

It is conjectured that the energy form \mathcal{E}^ρ satisfies the Liouville property for any ρ prescribed in the above of (3.1) when $n \geq 2$.

The diffusion process Z on \mathbb{R}^n associated with \mathcal{E}^ρ is called the distorted Brownian motion. Let X be its time changed process defined as (1.1) by means of $m(dx) = f(x)dx$ for a strictly positive bounded function $f \in L^1(\mathbb{R}^n)$. Let $\mathbb{R}^n \cup \{\Delta\}$ be the one point compactification of \mathbb{R}^n. If \mathcal{E}^ρ satisfies the Liouville property, then it can be shown as [CF1, Theorem 3.4] that any m-symmetric proper diffusion extension of X shares the same finite dimensional distribution with the one-point reflection of X at Δ. See [F2] for more details on these points.
References

Osaka University
E-mail address: fuku2@mx5.canvas.ne.jp

大阪大学 福島 正俊