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Abstract

The objective of change detection is to investigate whether change exists between
two data sets {x;}; and {x}, ;‘,':1 In this paper, we explore methods of structural
change detection, which are aimed at analyzing change in the dependency structure
between elements of d-dimensional variable & = (z(,...,z(®)T,

1 Sparse Maximum Likelihood Estimation

Let us consider a Gaussian Markov network, which is a d-dimensional Gaus-
sian model with expectation zero:

oy det(('-))l/2 1 +
q(w,@)—Wexp —-512 @:D y

where not the variance-covariance matrix, but its inverse called the pre-
cision matriz is parameterized by ©. If © is regarded as an adjacency
matriz, the Gaussian Markov network can be visualized as a graph (see
Figure 1). An advantage of this precision-based parameterization is that
the connectivity governs conditional independence. For example, in the
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Gaussian Markov network illustrated in the left-hand side of Figure 1, z(!
and z® are connected via (®. This means that z® and z(? are condi-
tionally independent given z®).

Suppose that {z;}?, and {x/}}_, are drawn independently from the
Gaussian Markov networks with precision matrices © and @', respectively.
Then analyzing © — ©’ allows us to identify change in Markov network
structure (see Figure 1 again).

A sparse estimate of ® may be obtained by maximum likelihood esti-
mation with the ¢;-constraint:

Lo 3 < 2
mgxiz_;log q(z;; ©) subject to ||©]; < R?,
where R > 0 is the radius of the ¢;-ball. This method is also referred to as
the graphical lasso [2].
The derivative of log ¢(x; ®) with respect to © is given by

Ologq(w;©) 1, 1 &
o 20 3%
where the following formulas are used for its derivation:
dlogdet(®) ox'Ox
— e C) and 50 - TxT .

A MATLAB code of a gradient-projection algorithm of ¢;-constraint max-
imum likelihood estimation for Gaussian Markov networks is given in Fig-
ure 2, where projection onto the ¢;-ball is computed by the method devel-
oped in [1].

For the true precision matrices

2 01 200
©=|020 and =020},
10 2 0 0 2
sparse maximum likelihood estimation gives
R 1.382 0 0.201 R 1.617 O 0
e = 0 178 0 and @ = 0 1711 O

0201 0 1.428 0 0 1.672
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Figure 1: Structural change in Gaussian Markov networks.

Thus, the true sparsity patterns of © and ©’ (in off-diagonal elements) can

be successfully recovered. Since
—-0.235 0 0.201

001 L
-0 =000 and © — 0@ = 0 0.077 0 ,
100 0200 0 —0.244

change in sparsity patterns (in off-diagonal elements) can be correctly iden-

tified.
On the other hand, when the true precision matrices are

210
=11 21 and O =

012

N

0
2
1

= O N

sparse maximum likelihood estimation gives
1.343 0 0.297

(1303 0348 0 R
® = | 0.348 1.157 0.240 and O = 0 1.435 0.236
0 0.240 1.365 0.297 0.236 1.156

Thus, the true sparsity patterns of ® and ©’ can still be successfully

recovered. However, since

0 1 -1 A —0.040 0.348 —0.297
0-0=|1 0 0 and © — @' = 0.348 —0.278 0.004 |,
-10 O —-0.297 0.004 0.209

change in sparsity patterns was not correctly identified. This shows that,
when a non-zero unchanged edge exists, say O x = O}, > 0 for some



18

s )
TT=[2 01; 02 0; 10 2];
%TT=[2 0 0; 02 0; 0 0 2];
%TT=[2 1 0; 1 21; 01 2];
%TT=[2 01; 02 1; 11 2];
d=3; n=50; x=TT"(-1/2)*randn(d,n); S=x*x’/n;
TO=eye(d); C=5; e=0.1;

for 0=1:100000
T=TO+e* (inv(T0)-8);
T(:)=L1BallProjection(T(:),C);
if norm(T-T0)<0.00000001, break, end

TO=T;

end

T, TT
- J
4 )

function w=LiBallProjection(x,C)

u=sort (abs(x),’descend’); s=cumsum(u);

r=find (u>(s-C)./(1:1length(u))’,1,’last’);

w=sign(x) .*max(0,abs(x)-max(0, (s(r)-C)/r)); )
N

Figure 2: MATLAB code of a gradient-projection algorithm of ¢;-constraint maximum
likelihood estimation for Gaussian Markov networks. The bottom function should be
saved as “L1BallProjection.m”.

k and K, it is difficult to identify this unchanged edge because @k,k, R
% % does not necessarily hold by separate sparse maximum likelihood
estimation from {;}?, and {z}7_,.

2 Sparse Density Ratio Estimation

As illustrated above, sparse maximum likelihood estimation can perform
poorly in structural change detection. Another limitation of sparse maxi-
mum likelihood estimation is the Gaussian assumption. A Gaussian Markov
network can be extended to a non-Gaussian model as

g(x; 0)

q(x; 0) = T3(2:0)dz
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where, for a feature vector f(z,z’),

3(x;0) = exp (Z %f(x““),x““’))) -

k>FK

This model is reduced to the Gaussian Markov network if

flz,2') = ——%a:x',
while higher-order correlations can be captured by considering higher-order
terms in the feature vector. However, applying sparse maximum likeli-
hood estimation to non-Gaussian Markov networks is not straightforward
in practice because the normalization term [ g(x; @)dx is often computa-
tionally intractable.
To cope with these limitations, let us handle the change in parameters,

O — 9;%,, directly via the following density ratio function:

42:0)  exp (Z(Bk,k' ~0,p) " F (e, rc(’“'))) :

q(x; 6) =
Based on this expression, let us consider the following density ratio model:

exp (Z o Fz®, ﬂ?(kl)))

k>K'

/ P'(z) exp <Z alkff(w(’“),w(’“'))) dx

k>K

r(x; o) =

where o v is the difference of parameters:
/
Ok = Ok — O 1,

Then let us learn the parameters {a w }r>i by group-sparse maximum
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/’Tp=[2 01; 020; 102]; Tg=[200; 02 0; 00 2]; h
Tp=[210; 121;012]; Tg=[201; 021; 11 2];
d=3; n=50; xp=Tp~(-1/2)*randn(d,n); Sp=xp*xp’/n;
xq=Tq"(-1/2)*randn(d,n) ; AO=eye(d); C=1; e=0.1;
for 0=1:1000000
U=exp (sum( (A0*xq) . *xq) ) ;
A=AO-ex((repmat (U, [d 1]).*xq)*xq’/sum(U)-Sp);
A(:)=L1BallProjection(A(:),C);
if norm(A-A0)<0.00000001, break, end
AO=A;
end
-2xA, Tp-T
e TP J

Figure 3: MATLAB code of a gradient-projection algorithm of ¢;-constraint Kullback-
Leibler density ratio estimation for Gaussian Markov networks. “L1BallProjection.m”
is given in Figure 2.

likelihood estimation [6, 5, 3]:

. 1 T (k) 1K)
min logﬁZexp (Zak,k,f(xi, Ty )

{ak o besr =1 k>k'
1 k) (k)
T /
-~ D opf@’ )
i=1 k>k'
subject to Z lokw || < R?,
E>k!

where R > 0 controls the sparseness of the solution. Support consistency
of this sparse density ratio estimator has been theoretically investigated in
[4].

A MATLAB code of a gradient-projection algorithm of sparse Kullback-
Leibler density ratio estimation for Gaussian Markov networks is given in
Figure 3. For the true precision matrices

201 200 001
@-0=[(020]-(020)=[000],
10 2 00 2 100



sparse Kullback-Leibler density ratio estimation gives

0 0 1.000
0O 0 O
1.000 0 O

This implies that change in sparsity patterns can be correctly identified.
Even when non-zero unchanged edges exist as

210 201 0 1 -1
e-0=(121]-(021})=(1 0 0],
012 112 -1 0 0

sparse Kullback-Leibler density ratio estimation gives

0 0.707 —0.293
0.707 0 0
—0.293 0 0

Thus, change in Markov network structure can still be correctly identified.
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