Title: Structural Change Detection by Sparse Density Ratio Estimation (New Advances in Statistical Inference and Its Related Topics)

Author(s): 杉山 將

Citation: 数理解析研究所講究録 (2015), 1954: 15-22

Issue Date: 2015-06

URL: http://hdl.handle.net/2433/224025

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Structural Change Detection by Sparse Density Ratio Estimation

Masashi Sugiyama

Graduate School of Frontier Sciences,
The University of Tokyo
sugi@cs.titech.ac.jp
http://www.ms.k.u-tokyo.ac.jp

Abstract

The objective of change detection is to investigate whether change exists between two data sets \(\{x_i\}_{i=1}^n \) and \(\{x_i'\}_{i=1}^{n'} \). In this paper, we explore methods of structural change detection, which are aimed at analyzing change in the dependency structure between elements of \(d \)-dimensional variable \(x=(x^{(1)}, \ldots, x^{(d)})^\top \).

1 Sparse Maximum Likelihood Estimation

Let us consider a Gaussian Markov network, which is a \(d \)-dimensional Gaussian model with expectation zero:

\[
q(x; \Theta) = \frac{\det(\Theta)^{1/2}}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}x^\top \Theta x\right),
\]

where not the variance-covariance matrix, but its inverse called the precision matrix is parameterized by \(\Theta \). If \(\Theta \) is regarded as an adjacency matrix, the Gaussian Markov network can be visualized as a graph (see Figure 1). An advantage of this precision-based parameterization is that the connectivity governs conditional independence. For example, in the
Gaussian Markov network illustrated in the left-hand side of Figure 1, $x^{(1)}$ and $x^{(2)}$ are connected via $x^{(3)}$. This means that $x^{(1)}$ and $x^{(2)}$ are conditionally independent given $x^{(3)}$.

Suppose that $\{x_i\}_{i=1}^{n}$ and $\{x'_i\}_{i=1}^{n'}$ are drawn independently from the Gaussian Markov networks with precision matrices Θ and Θ', respectively. Then analyzing $\Theta - \Theta'$ allows us to identify change in Markov network structure (see Figure 1 again).

A sparse estimate of Θ may be obtained by maximum likelihood estimation with the ℓ_{1}-constraint:

$$\max_{\Theta} \sum_{i=1}^{n} \log q(x_i; \Theta) \text{ subject to } \|\Theta\|_{1} \leq R^2,$$

where $R \geq 0$ is the radius of the ℓ_{1}-ball. This method is also referred to as the graphical lasso [2].

The derivative of $\log q(x; \Theta)$ with respect to Θ is given by

$$\frac{\partial \log q(x; \Theta)}{\partial \Theta} = \frac{1}{2} \Theta^{-1} - \frac{1}{2} xx^T,$$

where the following formulas are used for its derivation:

$$\frac{\partial \log \det(\Theta)}{\partial \Theta} = \Theta^{-1} \quad \text{and} \quad \frac{\partial x^T \Theta x}{\partial \Theta} = xx^T.$$

A MATLAB code of a gradient-projection algorithm of ℓ_{1}-constraint maximum likelihood estimation for Gaussian Markov networks is given in Figure 2, where projection onto the ℓ_{1}-ball is computed by the method developed in [1].

For the true precision matrices

$$\Theta = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} \quad \text{and} \quad \Theta' = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

sparse maximum likelihood estimation gives

$$\hat{\Theta} = \begin{pmatrix} 1.382 & 0 & 0.201 \\ 0 & 1.788 & 0 \\ 0.201 & 0 & 1.428 \end{pmatrix} \quad \text{and} \quad \hat{\Theta}' = \begin{pmatrix} 1.617 & 0 & 0 \\ 0 & 1.711 & 0 \\ 0 & 0 & 1.672 \end{pmatrix}.$$
Thus, the true sparsity patterns of Θ and Θ' (in off-diagonal elements) can be successfully recovered. Since

$$\Theta - \Theta' = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

and

$$\hat{\Theta} - \hat{\Theta}' = \begin{pmatrix} -0.235 & 0 & 0.201 \\ 0 & 0.077 & 0 \\ 0.201 & 0 & -0.244 \end{pmatrix},$$

change in sparsity patterns (in off-diagonal elements) can be correctly identified.

On the other hand, when the true precision matrices are

$$\Theta = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$

and

$$\Theta' = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix},$$

sparse maximum likelihood estimation gives

$$\hat{\Theta} = \begin{pmatrix} 1.303 & 0.348 & 0 \\ 0.348 & 1.157 & 0.240 \\ 0 & 0.240 & 1.365 \end{pmatrix}$$

and

$$\hat{\Theta}' = \begin{pmatrix} 1.343 & 0 & 0.297 \\ 0 & 1.435 & 0.236 \\ 0.297 & 0.236 & 1.156 \end{pmatrix}.$$
$TT=[201;020;102];$
$\%TT=[200;020;002];$
$\%TT=[210;121;012];$
$\%TT=[201;021;112];$
d=3; n=50; x=TT^(-1/2)*randn(d,n); S=x*x'/n;
T0=eye(d); C=5; e=0.1;
for o=1:100000
 T=T0+e*(inv(T0)-S);
 T(:)=L1BallProjection(T(:),C);
 if norm(T-T0)<0.00000001, break, end
 T0=T;
end
T, TT

function w=L1BallProjection(x,C)
 u=sort(abs(x),'descend'); s=cumsum(u);
 r=find(u>(s-C)./(1:length(u))',1,'last');
 w=sign(x).*max(0,abs(x)-max(0,(s(r)-C)/r));

Figure 2: MATLAB code of a gradient-projection algorithm of ℓ_1-constraint maximum likelihood estimation for Gaussian Markov networks. The bottom function should be saved as “L1BallProjection.m”.

k and k', it is difficult to identify this unchanged edge because $\hat{\Theta}_{k,k'} \approx \hat{\Theta}_{k,k}'$ does not necessarily hold by separate sparse maximum likelihood estimation from $\{x_i\}_{i=1}^n$ and $\{x_i'\}_{i'=1}^{n'}$.

2 Sparse Density Ratio Estimation

As illustrated above, sparse maximum likelihood estimation can perform poorly in structural change detection. Another limitation of sparse maximum likelihood estimation is the Gaussian assumption. A Gaussian Markov network can be extended to a non-Gaussian model as

$$q(x; \theta) = \frac{\overline{q}(x; \theta)}{\int \overline{q}(x; \theta)dx},$$
where, for a feature vector $\mathbf{f}(x, x')$,
\[
\overline{q}(x; \theta) = \exp \left(\sum_{k \geq k'} \theta_{k,k'}^T \mathbf{f}(x^{(k)}, x^{(k')}) \right).
\]
This model is reduced to the Gaussian Markov network if
\[
\mathbf{f}(x, x') = -\frac{1}{2} xx',
\]
while higher-order correlations can be captured by considering higher-order terms in the feature vector. However, applying sparse maximum likelihood estimation to non-Gaussian Markov networks is not straightforward in practice because the normalization term $\int \overline{q}(x; \theta) dx$ is often computationally intractable.

To cope with these limitations, let us handle the change in parameters, $\theta_{k,k'} - \theta'_{k,k'}$, directly via the following density ratio function:
\[
\frac{q(x; \theta)}{q(x; \theta')} \propto \exp \left(\sum_{k \geq k'} (\theta_{k,k'} - \theta'_{k,k'})^T \mathbf{f}(x^{(k)}, x^{(k')}) \right).
\]
Based on this expression, let us consider the following density ratio model:
\[
\frac{\exp \left(\sum_{k \geq k'} \alpha_{k,k'}^T \mathbf{f}(x^{(k)}, x^{(k')}) \right)}{\int p'(x) \exp \left(\sum_{k \geq k'} \alpha_{k,k'}^T \mathbf{f}(x^{(k)}, x^{(k')}) \right) dx},
\]
where $\alpha_{k,k'}$ is the difference of parameters:
\[
\alpha_{k,k'} = \theta_{k,k'} - \theta'_{k,k'}.
\]
Then let us learn the parameters $\{\alpha_{k,k'}\}_{k \geq k'}$ by group-sparse maximum
\[
T_p = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix};
T_q = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix};
\]
\[
T_p = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix};
T_q = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix};
\]
\[d = 3;\ n = 50;\ xp = Tp^{-(-1/2)} \ast \text{randn}(d, n);\ Sp = xp \ast xp' / n;\]
\[xq = Tq^{-(-1/2)} \ast \text{randn}(d, n);\ A0 = \text{eye}(d);\ C = 1;\ e = 0.1;\]
for \(o = 1:1000000\)
\[
U = \exp(\text{sum}((A0 \ast xq) \ast xq));
A = A0 - e * ((\text{repmat}(U, [d, 1]) \ast xq) \ast xq' / \text{sum}(U) - Sp);
A(:, :) = \text{L1BallProjection}(A(:, :), C);
\]
if norm(A - A0) < 0.00000001, break, end
A0 = A;
end
\[-2 \ast A,\ Tp - Tq\]

Figure 3: MATLAB code of a gradient-projection algorithm of \(\ell_1\)-constraint Kullback-Leibler density ratio estimation for Gaussian Markov networks. "L1BallProjection.m" is given in Figure 2.

likelihood estimation [6, 5, 3]:

\[
\min_{\{\alpha_{k,k'}\}_{k \geq k'}} \log \frac{1}{n'} \sum_{i'=1}^{n'} \exp \left(\sum_{k \geq k'} \alpha_{k,k'}^\top f(x_i^{(k')}, x_i^{(k')}) \right)
- \frac{1}{n} \sum_{i=1}^{n} \sum_{k \geq k'} \alpha_{k,k'}^\top f(x_i^{(k)}, x_i^{(k')})
\]
subject to \(\sum_{k \geq k'} \|\alpha_{k,k'}\| \leq R^2\),

where \(R \geq 0\) controls the sparseness of the solution. Support consistency of this sparse density ratio estimator has been theoretically investigated in [4].

A MATLAB code of a gradient-projection algorithm of sparse Kullback-Leibler density ratio estimation for Gaussian Markov networks is given in Figure 3. For the true precision matrices

\[
\Theta - \Theta' = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},
\]
sparse Kullback-Leibler density ratio estimation gives

\[
\begin{pmatrix}
0 & 0 & 1.000 \\
0 & 0 & 0 \\
1.000 & 0 & 0
\end{pmatrix}.
\]

This implies that change in sparsity patterns can be correctly identified. Even when non-zero unchanged edges exist as

\[
\Theta - \Theta' = \begin{pmatrix}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{pmatrix} - \begin{pmatrix}2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2\end{pmatrix} = \begin{pmatrix}0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0\end{pmatrix},
\]

sparse Kullback-Leibler density ratio estimation gives

\[
\begin{pmatrix}0 & 0.707 & -0.293 \\ 0.707 & 0 & 0 \\ -0.293 & 0 & 0\end{pmatrix}.
\]

Thus, change in Markov network structure can still be correctly identified.

References

Graduate School of Frontier Sciences, The University of Tokyo
Tokyo 113-0033
JAPAN
E-mail address: sugi@k.u-tokyo.ac.jp

東京大学・大学院新領域創成科学研究科 杉山 将