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Abstract

After a summary of the main mathematical interpretations of Feynman’s path integrals we
shall describe another one (“Stochastic Deformation”) founded on a probabilistic interpretation
of his concept of transition amplitude. The relation between this and an old problem formulated
by E. Schr\"odinger will be described. Its solution provides, in fact, the looked for interpretation
of transition amplitude (and elements). The principal features of Feynman’s approach will be
revisited in this new probabilistic context. The Hamilton Least Action principle is reinterpreted
using tools of stochastic optimal control, in Lagrangian and Hamiltonian forms.

Various illustrations of the method of Stochastic Deformation are mentioned: the deforma-
tion of Jacobi’s integration method and the analysis of loops, in particular, as some present
research in progress. The relations with some other approaches are also described.

\S 1. Path integrals: one informal idea, many interpretations

We summarize briefly the main ways to look at Feynman’s idea, for $a$ (non relativis-

tic) Hamiltonian system of the form

$\hat{H}=-\frac{\hslash^{2}}{2}\triangle+V(q)$

acting on $L^{2}(\mathbb{R})$ , $V$ being $a$ (bounded below) scalar potential and $\hslash$ a positive constant.

The solution $\psi=\psi(q, t)$ of the associated Schr\"odinger equation is represented by

the “Path Integral”’

$\psi(q, t)=(e^{-\frac{i}{\hslash}t\hat{H}}\psi_{0})(q)=\int_{\Omega^{q,t}}\psi_{0}(\omega(0)) e^{\frac{i}{\hslash}S_{L}[\omega]} \mathcal{D}\omega$
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where $\Omega^{q,t}=\{\omega\in C([O, t], \mathbb{R}) s.t. \omega(t)=q\}$

The function $\psi$ solves

$i \hslash\frac{\partial\psi}{\partial t}=\hat{H}\psi, \psi(q, 0)=\psi_{0}(q)$

For smooth $\omega$ the Action associated with $\hat{H}$ is

$S_{L}[ \omega]=\int_{0}^{t}1(\frac{d\omega}{d\tau})^{2}d\tau-\int_{0}^{t}V(\omega(\tau))d\tau:=\int_{0}^{t}L(\frac{d\omega}{d\tau}, \omega)d\tau$

Although $\mathcal{D}\omega$ was treated by Feynman as a countably additive measure on the path

space $\Omega^{qt}$ , it was soon understood that $\mathcal{D}\omega$ does not exist as a mathematical object. Still,

a number of deep mathematical results have been obtained along the years, notably by

S. Albeverio, S. Mazzucchi (Oscillatory integrals), D. Fujiwara, N. Kumano-Go (Time

slicing approximation), for a large class of potentials $V$ . A simpler approach (from the

viewpoint of the mathematical interpretation of $\mathcal{D}\omega$ ) is to do a “Wick rotation”’ $tarrow-it$

in Feynman’s representation of $\psi(q, t)$ . This is the “voie royale” of Path integration

starting with N. Wiener, who built the appropriated countably additive measure on the

space of continuous paths $\omega$ of the Brownian motion. Then M. Kac used the same

measure to express the effect of the potential $V$ as a perturbation:

$\eta_{*}(q, t):=(e^{-\hslash^{t\hat{H}}}f)(q)=E[f(W^{t,q}(0)e^{-k\int_{0}^{t}V(W^{t,q}(\tau))d\tau}]1$

solving

$- \hslash\frac{\partial\eta_{*}}{\partial t}=\hat{H}\eta_{*}, \eta_{*}(q, 0)=f(q)$

We shall be interested here by real (and even positive) boundary condition $f$ for

the associated heat equation with potential $V$ . The above notation, $*$ , therefore, does

not refer to any complex conjugacy. It is meant simply as a suggestive analogy whose

justification will become clear later on.

Now we are dealing with a time expectation over Wiener (or Brownian) process
$W^{t,q}(\tau)$ , of variance $\hslash\tau$ , conditioned to be in $q$ at a final time $t:W^{tq}(t)=q$ . Formally,

Wiener measure is built from distributions over absolutely continuous paths $\omega$ with
$\Vert\omega\Vert^{2}=\int_{0}^{t}$ $( \frac{d\omega}{d\tau})^{2}d\tau<\infty$ and Feynman original Action functional is turned into

$\int_{0}^{t}\{\frac{1}{2}(\frac{d\omega}{d\tau})^{2}+V(\omega(\tau))\}d\tau:=-\int_{0}^{t}L_{E}(\dot{\omega}, \omega)d\tau$

where $E$ stands for
$\langle$

Euclidean” , a traditional terminology in physics, motivated by

quantum field theory.

This way to interpret Feynman’s path integral method has been considerably gen-

eralized and, in particular, to large classes of Markovian processes beyond Wiener. For
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instance, it is known that, for magnetic relativistic Hamiltonians $\hat{H}$ the path integral is

associated with some L\’evy processes (c.f. T. Ichinose).

Let us observe that this traditional Euclidean interpretation transforms quantum

models, which are time symmetric for conservative systems, into irreversible ones typical

of statistical mechanics since we are using semigroup theory.

We are going to describe a distinct “Euclidean approach called “Stochastic deforma-

tion It preserves the time-symmetry of quantum theory and holds as well for a large

class of Hamiltonians $\hat{H}$ , for instance associated with L\’evy processes (in momentum

representation).

$Rom$ now on the state (or, better, (configuration) space of the processes, denoted

by $\mathcal{M}$ , will be $\mathbb{R}^{n}$ or a $n$-dimensional Riemannian manifold. Our basic claim is that

Path integral representations of solutions of Cauchy problems are not so essential in

Feynman’s approach to quantum dynamics. His key notions are the ones of “Transition
amplitude”’ and “Transition element” on a given time interval $I=[s, u]$ , namely

$\int\int\int_{\Omega_{x,s}^{z,u}}\psi_{s}(x)e^{F^{i}}S_{L}[\omega(\cdot);u-s]\mathcal{D}\omega\overline{\varphi}_{u}(z)dxdz:=<\varphi$ , Id $\psi>s_{L}$ $\in \mathbb{C}$

for all $\psi_{s},$ $\overline{\varphi}_{u}$ “states” in $L^{2}$ and where Id denotes the identity. For $F$ “any” functional,

$\int\int\int_{\Omega_{x,s}^{z,u}}\psi_{s}(x)e^{\pi^{S_{L}[\omega(\cdot)_{i}u-s]}}F[\omega(\cdot)]\mathcal{D}\omega\overline{\varphi}_{u}(z)dxdz:=<\varphi i, F\psi>s_{L}$

The two boundary states, here $\psi_{s}$ and $\overline{\varphi}_{u}$ (where the bar denotes the complex con-

jugacy) can be interpreted respectively as initial and final boundary conditions of two

adjoint Schr\"odinger equations for a given system with Hamiltonian $\hat{H}.$

\S 2. An “unrelated” old problem of Schr\"odinger (1931)

Let us consider, with Schr\"odinger, a system of l-d (for simplicity) Brownian particles
$X_{t}=\hslash^{\frac{1}{2}}W_{t},$ $\hslash>0$ , observed during a time interval $I=[s, u]$ . For a given initial

distribution $\mu_{s}(dx)=\rho_{s}(x)dx$ , it is well known that the probability $P(X_{u}\in dz)=$

$\eta_{u}^{*}(z)dz$ , where $\eta_{t}^{*}(q)$ solves the free heat equation

$- \hslash\frac{\partial\eta^{*}}{\partial t}=\hat{H}_{0}\eta^{*},$

$t\in I,$ $\hat{H}_{0}=-\frac{\hslash^{2}}{2}\triangle,$ $\eta_{s}^{*}(x)=\rho_{s}(x)$ .

The spreading described by $\eta_{t}^{*}$ is the archetype of irreversible phenomena (heat

dissipation).

Now Schr\"odinger wondered about the qualitative effect of an additional final distri-

bution given arbitrarily and, in particular, distinct from $\eta_{u}^{*}$ :
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$\mu_{u}(dz)=\rho_{u}(z)dz$

Since we are analyzing diffusion phenomena, such a data can make perfect sense for

instance if we describe relatively rare events.

Schr\"odinger’s problem (SP):

Find the most probable evolution of the probability distribution $\rho_{t}(q)dq$ for $X_{t},$

$s\leq t\leq u$ , compatible with those data.[I]

S. Bernstein understood (SP) as an indication that a Markovian framework was not

appropriate.

Let $\mathcal{P}_{t},$ $\mathcal{F}_{t}$ be, respectively, the increasing sigma-algebra representing the past infor-

mation about a process and the decreasing one representing its future information. The

usual formulation of Markov property is the familiar one in statistical mechanics:

If $B\in \mathcal{F}_{t},$ $P(B|\mathcal{P}_{t})=P(B|\mathcal{P}_{t}\cap \mathcal{F}_{t})$ , where $\mathcal{P}_{t}\cap \mathcal{F}_{t}$ is the present $\sigma$-algebra.

For our purpose, the time symmetric version is more natural:

If, in addition, $A\in \mathcal{P}_{t},$ $P(AB|\mathcal{P}_{t}\cap \mathcal{F}_{t})=P(A|\mathcal{P}_{t}\cap \mathcal{F}_{t}).P(B|\mathcal{P}_{t}\cap \mathcal{F}_{t})$ .
Bernstein suggested, in 1932, the weaker time-symmetric version that he called “re-

ciprocal”’ :

For $A\in \mathcal{P}_{s}\cup \mathcal{F}_{t},$ $B\in\sigma_{(s,t)}$ (the sigma-algebra on this interval),

$P(A.B|X_{s}, X_{t})=P(A|X_{s}, X_{t}).P(B|X_{s}, X_{t}) , \forall s\leq t$

Of course, this property reappeared in a variety of contexts after 1932. It has been

called “Markov field” or “Local Markov”’ in the context of Quantum field theory $(\sim$

1970), or “Tw-sided”’ or “Quasi-Markov” (for instance by Hida’s school).

Let us summarize the construction of Bernstein processes. To stay close to Markovian

construction, the transition probability should become a 3 points Bernstein transition
$\mathcal{B}\ni Aarrow Q(s, x, t, A, u, z)$ , $s\leq t\leq u.$

We look for properties of $Q$ s.t. for $X_{u}=z$ fixed, $Q$ reduces to a usual forward

Markovian transition, for $X_{s}=x$ to a backward one. Clearly the data of initial Marko-

vian transition should be substituted by ajoint one $dM(x, z)$ .

Theorem 2.1 (Jamison (1974)). Given $Q,$ $M$

a) $\exists!$ Prob. measure $P_{M}s.t.$ , under $P_{M},$ $X_{t}$ is Bern,stein

b) $P_{M}(X_{s}\in A_{s}, X_{u}\in A_{u})=M(A_{s}\cross A_{u})$

c) $P_{M}(X_{8}\in A_{s}, X_{t_{1}}\in A_{1}, X_{t_{n}}\in A_{n}, X_{u}\in A_{u})=$

$\int_{A_{\epsilon}\cross A_{u}}dM(x, z)\int_{A_{1}}Q(s, x, t_{1}, dq_{1}, u, z)\int_{A_{2}}$ $\int_{A_{\mathfrak{n}}}Q(t_{n-1}, q_{n-1}, t_{n}, dq_{n}, u, z)$ ,

$s<t_{1}<t_{2}<$ $<t_{n}<u.$

84



PATH INTEGRALS AND STOCHASTIC ANALYSIS WITH BERNSTEIN PROCESSES

Let us stress that, for most joint probabilities $dM$ , the resulting process $X_{t}$ is only

Bernstein reciprocal and not Markovian. In fact, only one class of $dM$ , denoted $dM_{m},$

provides a Markovian process:

Let $\hat{H}$ be the lower bounded Hamiltonian generator of $a$ (strongly continuous, con-
traction) semigroup generalizing Schr\"odinger’s $\hat{H}_{0}$ (A Pseudo-differential $\hat{H}$ is also OK,

c.f. Privault-JCZ ([17]). $M_{m}$ takes the form

$M_{m}(A_{s} \cross A_{u})=\int_{A_{s}\cross A_{u}}\eta_{s}^{*}(x)\underline{(e^{-\hslash(u-s)\hat{H}})(x,z)}\eta_{u}(z)dxdz1$

$h(s, x, u, z)$

$\eta_{s}^{*},$ $\eta_{u}>0$ (not necessarily bounded) real valued functions.

Given $\hat{H}$ $(i.e. h)$ , a Markovian Bernstein transition is

$Q(s, x, t, dq, u, z)=h^{-1}(s, x, u, z)h(s, x, t, q)h(t, q, u, z)dq$

Substituting into c),

$\rho_{n}(dx_{1}, t_{1}, dx_{2}, t_{2}, dx_{n}, t_{n})$

$= \int_{A_{S}\cross A_{u}}\eta_{8}^{*}(x)h(s, dx, t_{1}, dx_{1})\ldots h(t_{n},dx_{n}, u, dz)\eta_{u}(z)$

NB: If $\eta_{u}^{*}$ and $\eta_{u}$ are complex elements of $L^{2}$ and $h$ becomes the integral kernel for
Schr\"odinger equation (after Wick rotation), $dM_{m}$ is turned into Feynman’s transition

amplitude. Where $n=1$ , in particular,

$P(X_{t} \in A)=\int_{A}\eta_{t}^{*}\eta_{t}(q)dq, \eta_{t}^{*}, \eta_{t}>0$

solving the two adjoint equations

$t\in[s, u]$ : $\{\begin{array}{l}-\hslash\frac{\partial\eta^{*}}{\partial t}=\hat{H}^{+}\eta^{*} \hslash\frac{\partial\eta}{\partial t}=\hat{H}\eta\eta^{*}(\mathcal{S}, q)=\eta_{s}^{*}(q) \eta(u, q)=\eta_{u}(q)\end{array}$

This means in particular that the Markovian answer to Schr\"odinger’s problem is

$\rho_{t}(q)dq=\eta_{t}^{*}\eta_{t}(q)dq$

The two adjoint heat equations and this Markovian answer justify our notations

for their associated solutions. Informally, for a self-adjoint Hamiltonian $\hat{H}$ and when
$t$ becomes $\sqrt{-1}t,$

$\rho_{t}$ is turned into Born’s interpretation of the wave function $\psi$ . The

product form of $\rho_{t}$ reintroduces a version of time symmetry in a problem of classical

statistical physics! We are therefore entitled to interpret the probability measures in

question as the Euclidean version of Feynman’s quantum mechanical “measure” [II]
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FYom now on we shall consider a specific example, sufficient to show the main features

of this non conventional Euclidean approach, namely

$\hat{H}=-\frac{\hslash^{2}}{2}\Delta+\hslash A\nabla+\frac{\hslash}{2}\nabla.A-\frac{1}{2}|A|^{2}+V$

for potentials $A:\mathbb{R}^{n}arrow \mathbb{R}^{n}$ and $V:\mathbb{R}^{n}arrow \mathbb{R}$ bounded below.

The associated process $X_{t},$ $s\leq t\leq u$ , is a Markovian diffusion, with initial proba-

bility $\rho_{s}(x)dx$ , forward drift:

$D_{t}X= \lim_{\Delta t\downarrow 0}E_{t}[\frac{X_{t+\Delta t}-X_{t}}{\Delta t}]=\hslash\nabla\log\eta_{t}(X)-A(X)$

and final probability $\rho_{u}(z)dz$ for the backward drift,

$D_{t}^{*}X= \lim_{\triangle t\downarrow 0}E_{t}[\frac{X_{t}-X_{t-\Delta t}}{\triangle t}]=-\hslash\nabla\log\eta_{t}^{*}(X)-A(X)$

The coexistence of two drifts for the same process should not be a surprise. They pro-

vide the mathematical justification of Feynman’s uncertainty principle [c.f. Feynman-

Hibbs (7-45)] in the form

$E[X_{j}(t) \lim_{\triangle t\downarrow 0}E_{t}[\frac{X(t)-X(t-\Delta t)}{\triangle t}]_{k}-\lim_{\triangle t\downarrow 0}E_{t} [\frac{X(t+\Delta t)-X(t)}{\Delta t}]_{k}X_{j}(t)]=\hslash\delta_{jk}$

where $E_{t}$ denotes the conditional expectation given $X_{t}$ and $E$ the absolute one.
It will be crucial that $D_{t}$ , extended by It\^o calculus to an operator acting on any

$f(X_{t}, t)$ , $f\in C_{0}^{\infty}(\mathbb{R}^{n}\cross \mathbb{R})$ , the infinitesimal generator of $X_{t}$ , kills $\mathcal{P}_{t^{-}}$ martingales and
$D_{t}^{*}$ ( $c.f$. backward It\^o calculus) kills $\mathcal{F}_{t}$-martingales. And, as well, that $D_{t}=D_{t}^{*}= \frac{d}{dt}$

on smooth trajectories $tarrow X_{t}$ , i.e., at the “classical limit”’ $\hslash=0$ where the uncertainty

principle disappears.

In the above specific example, the decomposition of the drifts into a curl free part and

a divergence free one (a choice of gauge for $A$ ) is geometrically meaningful (“Helmholtz

decomposition The complete solution of Schr\"odinger’s (Markovian) problem requires

to specify now two positive functions $\eta_{s}^{*}$ and $\eta_{u}$ in the joint probability $M_{m}$ . Since the

data of Schr\"odinger problem are $\{\rho_{s}, \rho_{u}\}$ , the marginals of $M_{m}$ provide a nonlinear and

integral system of equations for $\eta_{s}^{*}$ and $\eta_{u}$ :

$\{\begin{array}{l}\eta_{s}^{*}(x)\int h(s, x, u, z)\eta_{u}(z)dz=\rho_{s}(x)\eta_{u}(z)\int\eta_{s}^{*}(x)h(\mathcal{S}, x, u, z)dx=\rho_{u}(z)\end{array}$

Beurling has proved in 1960 that for a given integral kernel $h>0$ positive and

continuous on any locally compact configuration space $\mathcal{M}$ there is a unique pair of

positive $(\eta_{8}^{*}, \eta_{u})$ , not necessarily integrable, solutions of this system, for any given

strictly positive $\{\rho_{s}, \rho_{u}\}.$
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Special cases

Let us consider the one dimensional case, with $A=V=0$ in $\hat{H}$ . Then the integral

kernel $h=h_{0}$ is the Gaussian one.

1) The following example was already considered by Schr\"odinger. It corresponds to
$\{\eta_{s}^{*}(x)=\rho_{s}(x), \eta_{0}(z)=1\}$ on $\mathcal{M}=\mathbb{R}.$

$\eta_{t}^{*}(q)=\int\rho_{8}(x)h_{0}(\mathcal{S}, x, t, q)dx \eta_{t}(q)=1, \forall t\in[s, u]$

$D_{t}X=0, D_{t}^{*}X=-\hslash\nabla\log\eta_{t}^{*}(X)$

i.e. $X_{t}=$ usual Wiener $W_{t}$ with $\rho_{s}(x)dx.$

This original example of Schr\"odinger is interesting. It is clear that, in spite of

preserving some time symmetry via the use of two adjoint heat equations, this framework

will supply much more Bernstein measures than those relevant for quantum dynamics

: the relation between $\eta_{t}^{*}(q)$ and $\eta_{t}(q)=1,$ $\forall t\in[s, u]$ is manifestly quite distinct from

any analogue of complex conjugate in $L^{2}(\mathbb{R})$ .

Also notice that when $\rho_{s}=\delta_{x}$ the backward drift reduces to $D_{t}^{*}X= arrow Xt\frac{-x}{-s}.$

2) Consider, in the same case 1), a permutation $\{\eta_{s}^{*}(x)=1, \eta_{u}(z)=\rho_{u}(z)\}$ . Then,
clearly, $\forall t\in[s, u],$

$\eta_{t}^{*}(q)=1, \eta_{t}(q)=\int h_{0}(t, q, u, z)\rho_{u}(z)dz$

$D_{t}X=\hslash\nabla\log\eta_{t}(X) , D_{t}^{*}X=0$

$X_{t}=is$ a “backward” Wiener $W_{t}^{*}$ , with final probability $\rho_{u}(z)dz.$

3) Some call “reversible Brownian (a bad probabilistic terminology in our context)

in the same case 1), $\{\eta_{s}^{*}(x)=1, \eta_{u}(z)=1\}$ corresponding to the trivial drifts $D_{t}X=$

$D_{t}^{*}X=0.$

If $R$ denotes the reference measure of this “flat” Brownian motion on $\Omega=C([s, u];\mathbb{R})$

a modern version of Schr\"odinger is formulated in terms of relative entropy of any measure
$P$ on $\Omega$ with respect to $R$ , i.e.,

$H(P|R)= \int_{\Omega}\log(\frac{dP}{dR})dP$

and Schr\"odinger’s problem can be expressed as the minimization problem:

$H(P|R) arrow\min$
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among all the measures $P(\Omega)$ such that $P_{s}=\mu_{s},$ $P_{u}=\mu_{u}$ are given.

Ref: H. F\"ollmer [8], L. Wu, A.B. Cruzeiro, J.C.Z. [18], C. L\’eonard, S. Roelly, J.C.Z.

[21].[III]

\S 3. Key point of Feynman’s Path Integral strategy : infinite dimensional

version of stationary phase for $\hslasharrow 0$ . Hamilton Least Action principle

A fundamental aspect of Feynman’s Path integral approach is his use of an infi-

nite dimensional version of the stationary phase principle when $\hslasharrow 0$ , interpreted as

Hamilton least Action principle for the trajectories of the underlying classical system.

This aspect has been particularly investigated by S. Albeverio, R. Hoegh-Krohn and S.

Mazzucchi.

In our context, the topic is now to describe the dynamics of $X_{t},$ $t\in[s, u]$ , solving

Schr\"odinger’s problem. In other terms, for the Hamiltonian $\hat{H}$ of the specific example,

what is the probabilistic counterpart of Feynman’s equation of motion in $\mathcal{M}=\mathbb{R}^{3}$ :

$<\ddot{\omega}(\tau)>s_{L}=<-\nabla V(\omega(\tau))+\dot{\omega}\wedge$ rotA $>s_{L}$

where the left hand side denotes some time discretization of the acceleration, $<\cdot>s_{L}$

its transition element and the right hand side is the classical Lorentz force?

For us, the starting point is the following Action functional (with final boundary

condition $S_{u}$ )

$J[X( \cdot)]=E_{xt}\{\int_{t}^{u}\mathcal{L}(X_{\tau}, DX_{\tau})d\tau+S_{u}(X_{u})\}$

$=E_{xt} \{l^{u}\frac{1}{2}|D_{\tau}X|^{2}+V(X_{\tau})d\tau+\int_{s}^{u}A\circ dX_{\tau}+S_{u}(X_{u})\}$

where $E_{xt}$ is the conditional expectation $E[\ldots|X_{t}=x]$ . Feynman had already sug-

gested the need of Stratonovich integral for the vector potential $A.[IV]$

Let $\mathcal{D}_{J}$ denote the domain of $J$ :
$\mathcal{D}_{J}=$ {diffusions $X.$ $<<$ Wiener $P_{W}^{\hslash}$ , with fixed diffusion matrix, and unspecified drift}
$X\in \mathcal{D}_{J}$ is called an extremal of $J$ iff

$0=E_{xt}[ \lim_{\epsilonarrow 0}\frac{J[X+\epsilon\delta X]-J[X]}{\epsilon}]$

$\forall\delta X$ in the Cameron-Martin Hilbert space. Then

$0=E_{xt} \int_{t}^{u}(\frac{\partial \mathcal{L}}{\partial X}-D_{\tau}(\frac{\partial \mathcal{L}}{\partial D_{\tau}X}))\delta X_{\tau}d\tau+E_{xt}\{(\frac{\partial \mathcal{L}}{\partial D_{\tau}X}+\nabla S_{u})\delta X_{u}\}$

So $X_{\tau}$ extremal implies the (a.s.) Stochastic Euler-Lagrange equations.
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$(SEL)\{\begin{array}{l}D_{\tau}(\frac{\partial \mathcal{L}}{\partial D_{\tau}X})-\frac{\partial \mathcal{L}}{\partial X}=0 t<\tau<u\frac{\partial \mathcal{L}}{\partial D_{\tau}X}(X_{u}, DX_{u})=-\nabla S_{u}(X_{u}) X(t)=x\end{array}$

In our example,

$D_{\tau}D_{\tau}X=\nabla V(X)+D_{\tau}X\wedge$ rotA $+ \frac{\hslash}{2}$ rot rot $A$

The left-hand side is a well defined version of Feynman’s $<\ddot{\omega}(\tau)>s_{L}$ . The second

term of the r.h. $s$ . is the (Euclidean) Lorentz force and the last one a stochastic $(\hslash-$

dependent) deformation term.

Let us define, as classically, the momentum $P$ as

$P= \frac{\partial \mathcal{L}}{\partial D_{\tau}X}(X_{\tau}, D_{\tau}X)$

under the hypothesis $\det$ $( \frac{\partial^{2}\mathcal{L}}{\partial DX^{l}\partial DX^{j}})\neq 0$ so that this relation is solvable in $D_{\tau}X=$

$\Phi(P, X)$ .
Define the Hamiltonian by

$\mathcal{H}(X, P)=P\Phi(P, X)-\mathcal{L}(X, \Phi(P, X))$

For instance, in our example,

$\mathcal{H}=\frac{1}{2}|P-A(X)|^{2}-V(X)-\frac{\hslash}{2}\nabla.A$

Then the stochastic Hamiltonian (a.s.) equations hold:

(SH) $\{\begin{array}{l}D_{\tau}X=\frac{\partial \mathcal{H}}{\partial P}D_{\mathcal{T}}P=-\frac{\partial \mathcal{H}}{\partial X}\end{array}$

In our example,

$\{\begin{array}{l}D_{\tau}X=P-AD_{\tau}P=D_{\tau}X\wedge rotA +D_{\tau}X.\nabla A+\frac{\hslash}{2} rot rot A+\frac{\hslash}{2}\triangle A+\nabla V\end{array}$

Those (stronger) counterparts of Feynman’s equations of motion hold true in the

method of Stochastic deformation. The definitions are such that, at the classical limit
$\hslash=0$ , we recover classical Lagrangian and Hamiltonian mechanics.

Although (SEL) and (SH) involve only the increasing filtration and, therefore, break

manifestly the invariance under time reversal, this one can be re-established using the
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information contained in the other filtration. The same processes are described, in this

sense, from different perspectives (and boundary conditions).[V]

We shall consider the stochastic deformation of classical system on $\mathcal{M}=\mathbb{R}^{n}$ , with

Hamiltonian $H(p, q)= \frac{1}{2}|p|^{2}+V(q)$ for $V$ smooth and bounded below. In this case,

the stochastic deformation of the associated Hamilton-Jacobi equation is known as

Hamilton-Jacobi-Bellman equation for a scalar field $S=S(q, t)$ :

$- \frac{\partial S}{\partial t}+\frac{1}{2}|\nabla S|^{2}-V+\frac{\hslash}{2}\triangle S=0 (HJB)$

whose only stochastic deformation appears, in fact, in the last term. The relation of

this equation with the above Action functional $J[X(\cdot)]$ $($ for $A=0)$ is, of course, well

known in Stochastic Control theory (C.f. H. Fleming, H.M. Soner) but our approach

will be quite different, founded on a dynamical interpretation.

It follows from those classical results of stochastic control that the relation between

$S$ and critical points $X_{t}$ of $J$ is very simple.

The extremal (in fact minimizer) of $J$ has the drift

$D_{t}X=-\nabla S(X, t)$

for $S$ a smooth classical solution of (HJB). Of course such strong regularity conditions on
$S$ are not necessary, but they will be sufficient for our present purpose, more geometric

in nature.

It follows indeed that the gradient of HJB equation coincides with SEL equation

for the Lagrangian of our example when $A=0$ This is the stochastic deformation

of a classical integrability condition for smooth trajectories (C.f. J.C.Z., Journal of

Geometric Mechanics, 2009).

A complete solution of HJB equation is defined as $S(q, t, \alpha)$ $:=S_{\alpha}(q, t)$ , $\alpha=(\alpha^{1}, \alpha^{n})$ ,

$n$ real parameters such that $\det$ $( \frac{\partial^{2}S}{\partial q^{i}\partial\alpha^{k}})\neq 0$ and $S(q, t, \alpha)$ solves (HJB) for all $\alpha.$

The following stochastic deformation of Jacobi’s integration Theorem can be proved:

To find a solution $X_{t}^{\alpha}(M_{t})$ , $P_{t}^{\alpha}(M_{t})$ of (SH):

$\{\begin{array}{l}D_{t}X=\frac{\partial \mathcal{H}}{\partial P}D_{t}P=-\frac{\partial \mathcal{H}}{\partial X}\end{array}$

where $M_{t}=$ $(M_{t}^{1}, M_{t}^{n})=are$ martingales of $X_{t}^{\alpha}(M_{t})$ we have to:

a) Solve $n$ implicit equations $\frac{\partial}{\partial}S\vec{\alpha^{l}}(q, t)=-M_{t}^{i}$ as $q=X_{t}^{\alpha}(M_{t})$ ;

b) Supplement $X_{t}^{\alpha}(M_{t})$ by $P_{t}^{\alpha}=P_{t}^{\alpha}(M_{t})=-\nabla_{q}S_{\alpha}(X_{t}^{\alpha}(M_{t}), t)$ .

Then $(X_{t}^{\alpha}, P_{t}^{\alpha})$ solve $(SH)$ equations.

The proof will be given somewhere else.
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Notice that, at the classical limit $\hslash=0$ of smooth trajectories, the martingales
$M_{t}$ reduce to a collection of numbers (first integrals”’ of the system) and the whole

statement to the original Theorem of Jacobi (C.f. Giaquinta, Hildebrandt).

It follows, in particular, that for a large class of starting Hamiltonians, (SH) is

integrable in the sense that we have enough martingales. But, in general, this is not the

case.

We have, up to now, considered only Feynman’s transition amplitude, whose Eu-

clidean version is the Markovian joint probability $M_{m}$ of Bernstein processes. But, of

course, general Bernstein processes are not Markovian. And many of those are inter-

esting in physics. For instance, loops are relevant for periodic phenomena. Start from

the one dimensional Markovian bridge, $X_{t}=X_{x,0}^{z,1}(t)$ for $V=A=0$. As a Bernstein it

solves two stochastic differential equations (SDE), for $t\in[0$ , 1 $],$ $\hslash=1,$

$dX_{t}= \frac{z-X_{t}}{1-t}dt+dW_{t} d_{*}X_{t}=\frac{X_{t}-x}{t}dt+d_{*}W_{t}^{*}$

where $d,$ $d_{*}$ denote the differentials under the expectations of $D_{t},$ $D_{t}^{*}$ . The law $P^{xz}$ of

this Markovian bridge is built from the Gaussian kernel $h_{0}$ . The process is Gaussian

with expectation and covariance given by

$X_{t}\sim \mathcal{N}((1-t)x+tz, t(1-t 0\leq t\leq 1$

Observe, in particular, that it is invariant under the time reversal $tarrow 1-t.$

The loop is defined as the special case $x=z$ , i.e. $\mathcal{N}(x, t(1-t))$ . It is still Markovian.

But if $X_{0}=X_{1}$ become random, with $\mathcal{N}(0,1)$ for instance, we have a degenerate joint

probability $M$ and $X_{t}$ can be called a periodic loop, whose law is of the form

$P$
per

$= \int P^{xx}\mathcal{N}(0,1)dx$

The associated SDE are the randomized versions of the Markovian bridge ones:

$dX_{t}= \frac{X_{0}-X_{t}}{1-t}dt+dW_{t} dX_{t}=\frac{X_{t}-X_{0}}{t}+d_{*}W_{t}^{*}$

$X_{t}$ cannot be Markovian since the drifts depend on $X_{t}$ and $X_{0}$ , but the process is

still Bernstein. In fact, although the form of its covariance, $C(X_{s}, X_{t})=s(1-t)+1$

ruins the Markov property, it preserves the symmetry under time reversal.

Notes.

[I] Schr\"odinger’s idea has been often quoted, since its publication. Kolmogorov, for

instance, mentioned it (1937) in relation with reversibility of the statistical laws of nature
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(but considered only stationary situations, insufficient for the solution of Schr\"odinger

problem).

Later on N. Nagasawa (1964) developed this notion of reversibility. On the phys-

ical side, references to Schr\"odinger’s idea can be found, generally in the context of

stochastic analogies with quantum physics $({\rm Max}$ Jammer’s “The philosophy of Quan-

tum Mechanics: The interpretations of quantum mechanics in historical perspective”’

(1974) provides a good summary in Chap. 9). But, most of the time, Schr\"odinger’s

original observation was mentioned only as a physically superficial analogy between heat

equation and Schr\"odinger equation (C.f., for instance, N. Sait\^o, M. Namiki, “On the

quantum-mechanics-like description of the theory of the Brownian motion and quantum

statistical mechanics”’ (1956)). Feynman’s Path integrals theory was also often referred

to allusively along the way. The few mathematicians who really tackled the mathemat-

ical content of Schr\"odinger’s idea before 85-86 are S. Bernstein, R. Fortet, A. Beurling

and B. Jamison.

Let us stress that Schr\"odinger’s problem is clearly an (unconventional) Euclidean

problem, treated as such in our approach of stochastic deformation.

[II] In the traditional Euclidean approach, the analytical counterpart of our Marko-

vian joint probability $M_{m}$ , for $\eta_{s}^{*}$ and $\eta_{u}$ real valued and bounded is the scalar product

in the $L^{2}$ quantum Hilbert space, $<\eta_{s}^{*}|e^{-}\hslash 1(u-s)\hat{H}\eta_{u}>2$ or, expressed in terms of

Wiener measure $\mu_{W},$

$\eta_{s}^{*}(\omega(\mathcal{S}))(\exp-\frac{1}{\hslash}\int_{s}^{u}V(\omega(\tau))d\tau)\eta_{u}(\omega(u))d\mu_{W}(\omega)$ .

It has been used for versions of Feynman-Kac formula at least from E. Nelson (1964).

But although the two boundary terms $\eta_{s}^{*},$
$\eta_{u}$ are arbitrary, in those versions, our ap-

propriate pair $(\eta_{s}^{*}, \eta_{u})$ must solve Schr\"odinger’s nonlinear integral system of equations

whose solution was shown by Beurling in 1960. This will have deep consequences in the

dynamical structure of our stochastic deformation.

[III] In his St. Flour entropic reinterpretation of the diffusions constructed by us
along Schr\"odinger’s strategy, H. F\"ollmer (1988) called them

$\langle$

Schr\"odinger’s bridge We
prefer to reserve this name for those singular cases corresponding to two Dirac boundary

probability densities.

[IV] The idea of such a stochastic version of calculus of variations is due to the

japanese theoretical physicist Kunio Yasue, in the context of Nelson “stochastic me-
chanics Nelson approach was a radical (real time) attempt to interpret quantum the-

ory in terms of classical stochastic processes (“Derivation of the Schr\"odinger equation

from Newtonian Mechanics 1966). What Yasue did was to introduce the associated
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Lagrangian mechanics and variational principles. The mathematical problems of his

approach were, in fact, mainly due to the dynamical problems of Nelson theory.

Until 1985-6 Nelson’s “real time”’ framework was regarded as independent from

Schr\"odinger’s Euclidean one.

For his variational principle Yasue needed to assume that the two boundary random

variables $X_{8}$ and $X_{u}$ are fixed during the variation, an hypothesis seemingly involving

the data of their joint probability $dM(x, z)$ . This is the origin of my own interest in

Schr\"odinger’s idea and its mathematical interpretation.

It had been suspected by many that Nelson’s mechanics and Schr\"odinger framework

were related. For instance by B. Jamison himself (private communication), whose NSF

project in this direction was rejected, or by L. de la Pena-Auerbach (1967) quoted

in Jammer’s book. All such attempts were pointing toward the influence on Nelson’s

processes of a nonlocal potential in addition to the physical ones (A and $V$ in our

example). And indeed, in 1985-6 (JMP) it was shown that, at the expense of the

introduction of such a “modified potential Schr\"odinger’s method allowed a completely

different (and more explicit) reconstruction of Nelson’s diffusions. This was verified

many times afterwards (R. Carmona (1985), M. Nagasawa (1989), P. Cattiaux, C.

L\’eonard (1995) $\cdots$ ).

The hidden role, in Nelson mechanics, of this nonlocal potential (well known as the
“Bohm potential c.f. [10]) has dramatic dynamic consequences. Consider Feynman

one dimensional computation of the transition element $<\omega(\mathcal{S})\omega(t)>s_{L}$ for a free particle

on the time interval $[0, T]$ in terms of the underlying classical (free) trajectories $tarrow q(t)$ .

He found (Feynman, Hibbs p. 179-80):

$<\omega(s)\omega(t)>s_{L}=\{$ $q(s)q(t)q(s)q(t)++i \hslash\frac {}{}i\hslash\frac{s(T-t)}{t(\tau_{-s}^{T}),T}$

if $0\leq s\leq t\leq T$

if $0\leq t\leq \mathcal{S}\leq T$

where he interpreted the last terms as a quantum deformation. In our stochastic defor-

mation inspired by Schr\"odinger, we are, of course, dealing with the Brownian bridge,

the simplest of all Bernstein diffusions associated with $V=0$ . The result is

$E[X_{s}X_{t}]=\{$ $q(s)q(t)q(s)q(t)++ \hslash\frac{}{}\hslash\frac{s(T-t)}{t(\tau^{T}-s),T}$

if $0\leq s\leq t\leq T$

if $0\leq t\leq s\leq T$

i.e. the expected Euclidean counterpart of Feynman’s computation.

Now consider the same Brownian bridge in Nelson’s stochastic mechanics. It is not

associated with $V=0$ but with a complicated quadratic and time dependent potential,

depending also on the starting and ending points $x$ and $z$ . In fact, the physical potential

is still $V=0$ but Bohm nonlocal one is not. The predictions of stochastic mechanics

have little to do with those of quantum mechanics as soon as more than one time is
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involved. On this basis Nelson renounced to his original theory in 1985 and never came

back to it except to stress the “mystery of stochastic mechanics”’ ([11]). To paraphrase

a famous comment of Wolfgang Pauli (C.f. Wikipedia “Not even wrong Nelson’s

stochastic mechanics was mathematically consistent and physically wrong, but on the

interesting side. Nevertheless it contained technical tools (for instance the need of two

filtrations) without which I would not have been able to understand and develop what is

known today as the Schr\"odinger problem and its consequences. It would be ridiculous,

nevertheless, to attribute the paternity of Nelson’s stochastic mechanics to Schr\"odinger.

[V] The first almost sure equations of this kind for diffusion processes were due to

E. Nelson (1967). They were different from ours, mixing up the informations of the

two filtrations. They have never been used constructively in stochastic mechanics. In

particular, no stochastic counterpart of the classical notion of first integrals has ever
been found in this context.
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Prospects.

-Recently, ideas on Bernstein processes were used in the context of Optimal transport

theory :

C. L\’eonard, “A survey of Schr\"odinger problem and some of its connections with

optimal transport Discrete Cont. Dynam. Syst. $A$ , 34, 4, 1533 (2014) (and references

therein)

-The community of Geometric Mechanics (field inspired by V. Arnold, S. Smale, J.M.

Souriau, Abraham and Marsden) started recently to “randomize” classical mechanics.

Our Stochastic deformation can be regarded in this way.

In particular (with applications to Navier-Stokes) M. Arnaudon, X. Chen, A. B.

Cruzeiro, “Stochastic Euler-Poincar\’e reduction J. Math. Physics, 55, 081507 (2014).
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