Title: Multicriteria Multipliers of Banach-valued Functions on Locally Compact Abelian Group (Nonlinear Analysis and Convex Analysis)

Author(s): Lai, Hang-Chin; Lee, Jin-Chirng; Liu, Cheng-Te

Citation: 数理解析研究所講究録 (2015), 1963: 1-8

Issue Date: 2015-10

URL: http://hdl.handle.net/2433/224193

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Multicriteria Multipliers of Banach-valued Functions on Locally Compact Abelian Group*

Hang-Chin Lai†,‡ Jin-Chirng Lee§ Cheng-Te Liu§

Jan, 10, 2015

Abstract

Let G be a locally compact Abelian (LCA) group, A a commutative Banach algebra, “X” and “Y” denote the Banach spaces of A-module. $L^1(G,A)$ stands for the space of all A-valued commutative Banach algebra with convolution product. $L^p(G,X)$, $1 \leq p \leq \infty$, for each p, is a Banach space. In this note, we study the multipliers of $L^1(G,A)$ and the representation of the homomorphism $L^1(G,A)$ module multipliers of $L^1(G,A)$ to $L^p(G,Y)$ which can be identified by $L^1(G,A) \otimes L^q(G,Y^*)^*$ under reasonable conditions, where $1 < p < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$. The multipliers of $L^1(G,A)$ to $C_0(G,X)$ is also subscribed.

Key words and phrases: locally compact Abelian (LCA) group, separable Banach space, Radon Nikodym property, multipliers, invariant operator, projective tensor product space.

1 Introduction and preliminaries

Let G be a locally compact Abelian (= LCA) group with Haar measure dt and dual group \hat{G}. Let A be a commutative Banach algebra with a bounded approximate identity. A continuous linear map $T \in \mathfrak{L}(A) \cong \mathfrak{L}(A,A)$ is called a multiplier of A if

$$T(a \cdot b) = a \cdot Tb = (Ta) \cdot b \text{ for all } a, b \in A.$$

Denote by $\mathfrak{M}(A)$ the space of all multipliers for A.

Clearly, $\mathfrak{M}(A)$ is a Banach subalgebra of $\mathfrak{L}(A)$. In particular, if $A = L^1(G)$, a

*RIMS NACA 2014, Kokuloku, Kyoto University, Japan.
†Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30013.
‡E-mail: hclai@math.nthu.edu.tw
§Department of Applied Mathematics, Chung Yuan Christian University, Taoyuan, Taiwan 32023.
commutative group algebra under convolution product, then the multiplier algebra \(\mathfrak{M}(L^1(G)) \) has the following equivalent statements (i)\(~\)~(iv). (See Larsen [7], cf also Lai, Lee and Liu [1]):

Theorem 1. Let \(T \in \mathcal{L}(L^1(G)) \). Then the following statements are equivalent.

(i) \(T \) commutes with convolution (call \(T \) a multiplier)

\[T(f * g) = Tf * g = f * T(g), \text{ for all } f, g \in L^1(G) \]

(ii) \(T \) commutes with translation operator \(\tau_a \) (\(a \in G \)). (call \(T \) an invariant operator)

\[T \tau_a = \tau_a T, \tau_a f(t) = f(t - a), \text{ for all } a \in G, \]

(iii) \(\exists ! \) a \(\mu \in M_b(G) \), space of all bounded regular Borel measures such that,

\[Tf = \mu * f, \text{ for all } f \in L^1(G). \]

(iv) there exists a bounded function \(\phi \) on \(\hat{G} \) such that

\[\hat{Tf} = \phi \hat{f} \text{ or } \phi = \hat{\mu} \in \overline{M_b(G)} \subsetneq C^b(\hat{G}). \]

It is remarkable that

(a) the Fourier transforms \(\hat{L^1(G)} = A(\hat{G}) \subsetneq C_0(\hat{G}) \) is dense of 1st category in \(C_0(\hat{G}) \), the continuous function on \(\hat{G} \), vanishing at infinite.

(b) Similarly, it is known that the Fourier – Stieltjes transforms:

\(\hat{\mu} \in \overline{M_b(G)} \subsetneq C^b(\hat{G}) \), the space of all bounded continuous functions on \(\hat{G} \).

By Theorem 1, we see that the definition of multipliers is in various types. Actually the concept of multiplier comes from Fourier Series of a function \(f \) by using a bounded sequence \(\phi(n) \) multiply the Fourier coefficient \(c_n \) of \(f \), it still approve as a Fourier coefficient of another function of \(g \). This ideal leads to study for multipliers in harmonic analysis on locally compact Abelian group \(G \).

In this Note, we would like to extend the multipliers of \(L^1(G) \) to the multipliers of \(L^1(G,A) \) as well as multipliers of \(L^1(G,X) \) to \(L^1(G,Y) \) under module homomorphism of Banach vetor – valued functions defined on LCA group \(G \), and compare
2 Multipliers of Banach algebra.

Let A be a commutative Banach algebra, we say that a Banach space X is A-module if

$$AX \subset X, \text{ and } \| a \cdot x \|_X \leq \| a \|_A \| x \|_X \text{ for each } a \in A, x \in X.$$

and X is said to be an essential A-module if

$$AX = X, \text{ and } \| ax \|_X \leq \| a \|_A \| x \|_X \text{, for each } a \in A, x \in X.$$

For convenience, we give following Theorem to check that an A-module Banach space to be essential.

Theorem 2. Let A be a commutative Banach algebra with uniform bounded approximate identity. Then any A-module Banach space is essential.

For example, the group algebra $L^1(G)$ has bounded approximate identity: $\{e_\alpha\}$, where $e_\alpha = e_\alpha = \frac{\chi_{V_\alpha}}{|V_\alpha|}$, where $\{V_\alpha\}$ is defined by an open neighborhood system of the identity $\theta \in G$ with ordered by $\alpha < \beta$ if $V_\beta \subset V_\alpha$, then $\| e_\alpha \|_1 = \int_G \frac{\chi_{V_\alpha}}{|V_\alpha|} dt = 1$. Thus by Theorem 2, directly we get easily that

$$L^1(G) * L^p(G) = L^p(G), \text{ if } 1 < p < \infty$$

if $p = \infty$, we choose $C_0(G)$, the space of continuous functions vanishing at infinite on G, we also have

$$L^1(G) * C_0(G) = C_0(G)$$

Remark 1 It is remarkable that not every Banach algebra has a bounded approximate identity. For example, the space

$$A^p(G) = \{ f \in L^1(G) | \hat{f} \in L^p(\hat{G}), 1 < p \leq \infty \} \subset L^1(G)$$
for each \(p, \, 1 \leq p < \infty \). But there is an approximate identity \(\{ e_{\alpha} \} \) in \(L^{1}(G) \) with Fourier transform \(\hat{e}_{\alpha} \) having compact support in \(\hat{G} \) for each \(\alpha \), then \(\hat{e}_{\alpha} \in L^{p}(\hat{G}) \) shows that \(\{ e_{\alpha} \} \) is also an approximate identity of \(A^{p}(G) \), but this system \(\{ e_{\alpha} \} \) of approximate identity is not uniform bounded in \(A^{p}(G) \). (cf. Lai [2, p254])

3 Multipliers of Banach Module Homomorphism

Let \(A \) be a commutative Banach algebra and \(X, Y \) \(A \)-module Banach spaces. A bounded linear operator \(T \in \mathcal{L}(X, Y) \) satisfying

\[
T(ax) = a(Tx) \quad \text{for all} \quad a \in A, \, x \in X,
\]

is called a multiplier of \(X \) to \(Y \) under \(A \)-module. The space of such multipliers is \(A \)-module homomorphisms from \(X \) to \(Y \) and is denoted by

\[
\mathfrak{M}_{A}(X, Y) = \text{Hom}_{A}(X, Y) = \{ T \in \mathcal{L}(X, Y) \mid T(ax) = a(Tx), \, a \in A, \, x \in X \}.
\]

It is a closed subalgebra of \(\mathcal{L}(X, Y) \), the space of all bounded linear mappings of \(X \) into \(Y \). In particular, if \(A = X = Y = \mathcal{L}^{1}(G) \), then the multiplier space \(\mathfrak{M}(\mathcal{L}^{1}(G)) \) coincides with the expression of isometrically isomorphic relations “\(\cong \)” as follows.

\[
\mathfrak{M}(\mathcal{L}^{1}(G)) = \text{Hom}_{\mathcal{L}^{1}(G)}(\mathcal{L}^{1}(G), \mathcal{L}^{1}(G)) \cong (\mathcal{L}^{1}(G), \mathcal{L}^{1}(G)) \cong M_{b}(G).
\]

where \((E(G), F(G)) \) stands for the space of all invariant operators commute with translation operator \(\tau_{a} \) on the function spaces of \(E(G) \) to \(F(G) \).

In general, the multiplier space \(\text{Hom}_{A}(X, Y^{*}) \) was characterized by Rieffel [8] as the following dual space of the module tensor product \(X \otimes_{A} Y \):

\[
\text{Hom}_{A}(X, Y^{*}) \cong (X \otimes_{A} Y)^{*},
\]

where \(\otimes_{A} \) denotes the \(A \)-module tensor product defined by \(X \otimes_{A} Y = X \otimes_{\gamma} Y / K \). \(K \) is the closed linear subspace of the complete projective tensor product space \(X \otimes_{\gamma} Y \) generating by elements: \(ax \otimes y - x \otimes ay \), for \(a \in A, \, x \in X, \, y \in Y \)

Here \(\otimes_{\gamma} \) is the completion of the algebra tensor \(X \otimes Y \) under the largest reasonable cross norm \(\gamma \), and

\[
X \otimes Y = \{ u = \sum_{i} x_{i} \otimes y_{i} \mid \sum_{i} \| x_{i} \|_{X} \| y_{i} \|_{Y} < \infty \}\]
with norm $\gamma(u) \equiv \|u\| = \inf_{u} \sum_{i} \|x_{i} \otimes y_{i}\| = \inf_{u} \sum_{i} \|x_{i}\|_{x}\|y_{i}\|_{y}$, \(\inf\) means that the infimum is taken by all representations of \(u = \sum_{i} x_{i} \otimes y_{i}\) in \(X \otimes Y\).

The reasonable crossnorm means that
\[u \in X \otimes Y, \ u = x \otimes y \text{ implies } \|u\| = \|x \otimes y\| = \|x\|_{X} \|y\|_{Y}; \]
and \(u = \sum_{i} x_{i} \otimes y_{i}, \ \|u\| = \inf \sum_{i} \|x_{i}\|_{X} \|y_{i}\|_{Y}\).

Note that a bounded linear operator \(T \in \text{Hom}_{A}(X,Y^{*})\) in (3.4) corresponding a continuous linear functional \(\psi\) on \(X \otimes_{A} Y\) is given by
\[(Tx)(y) = \psi(x \otimes y) \text{ for all } x \in X, y \in Y.\]

Here \(\text{Hom}_{A}(X,Y^{*}) = \mathcal{M}_{A}(X,Y^{*})\) is the space of all \(A\)–module homomorphisms from \(X\) to \(Y^{*}\), the topological dual of \(Y\), that is, each \(T \in \text{Hom}_{A}(X,Y^{*})\) satisfies
\[T(ax) = a(Tx) \text{ for all } a \in A, x \in X, Tx \in Y^{*}.\]

where \(T\) is a bounded linear operator from \(X\) to \(Y^{*}\); \(X \otimes_{A} Y\) denotes the \(A\)–module tensor product space of \(X\) and \(Y\).

There are some known results in scalar-valued function space of \(L^{1}(G)\)–module by convolution. We state three typical \(L^{1}(G)\)–module multiplier problems as follows.

Theorem 3. (i) \(\text{Hom}_{G}(L^{1}(G),L^{1}(G)) \cong M_{b}(G)\), (by Theorem 1, (iii) \(\iff\) (i))

where \(\text{Hom}_{G} = \text{Hom}_{L^{1}(G)}\), and \(M_{b}(G)\) is the space of all bounded regular Borel measures on \(G\).

(ii) \(\text{Hom}_{G}(L^{1}(G),L^{p}(G)) \cong (L^{1}(G) \otimes_{G} L^{q}(G))^{*} = (L^{q}(G))^{*} = L^{p}(G)\),
for \(1 < p < \infty, \ \frac{1}{p} + \frac{1}{q} = 1\) where \(\otimes_{G} = \otimes_{L^{1}(G)}\).

(iii) \(\text{Hom}_{G}(L^{p}(G),L^{p}(G)) \cong (L^{p}(G) \otimes_{G} L^{q}(G))^{*} \cong S_{p}(G)^{*},\)
where \(S_{p}(G)\) is a Banach algebra generated by
\[\{u = \sum_{i} f_{i} g_{i} : f_{i} \in L^{p}(G), g_{i} \in L^{q}(G), \sum_{i} \|f_{i}\|_{p} \|g_{i}\|_{q} < \infty\}\]
under pointwise product and the norm is defined by (cf. Larsen [7])
\[\|u\| = \inf \sum_{i} \|f_{i}\|_{p} \|g_{i}\|_{q}; \ u = \sum_{i} f_{i} \cdot g_{i} \in S_{p}(G)\}.\]
4 Multipliers of Banach-valued Functions on G.

Let A be a commutative semi-simple Banach algebra with bounded approximate identity. Assume X is on A-module Banach space. It is not hard to prove that $L^1(G,A) = L^1(G)\otimes_A A$. Since both $L^1(G)$ and A have bounded approximate identity, thus $L^1(G,A)$ is a commutative Banach algebra with bounded approximate identity.

By Theorem 2
\[
L^1(G,A) \ast L^p(G,X) = L^p(G,X), \quad 1 < p < \infty
\]

Denote by
\[
L^1(G,A) = \{ f : G \rightarrow A \mid f \text{ is measurable and is Bochner integrable on } G \}
\]

Then $L^1(G,A)$ is a commutative Banach algebra, under convolution. Actually
\[
|f \ast g(t)|_A \leq \int_G |f(s-t)|_A |g(s)|_A \, ds = \|g\|_1 \int_G |f(s-t)|_A \, ds = \|g\|_1 \|f\|_1,
\]

\[
\|f \ast g\|_1 = \int_G |f \ast g(t)|_A \, dt \leq \|g\|_1 \int_G |f(s-t)|_A \, dt \leq \|g\|_1 \|f\|_1.
\]

Denote by
\[
L^p_X = \{ f : G \rightarrow X \mid f \text{ is measurable and } |f(\cdot)|_X \in L^p(G) \}, 1 \leq p < \infty,
\]

\[
\|f\|_p = \left(\int_G |f(t)|_X^p \, dt \right)^{\frac{1}{p}}, \text{ for } f \in L^p_X, 1 \leq p < \infty \quad (2.1)
\]

and for $p = \infty$, \[\|f\|_{\infty} = \text{esssup}_{t \in G} |f(t)|_X \] for $f \in L^\infty_X \quad (2.2)

Show that $L^p_X, 1 \leq p \leq \infty$ are Banach spaces with the norm $\|f\|_p, 1 \leq p < \infty$, as (2.1) and if $p = \infty$, the norm is taken $\|\cdot\|_{\infty}$ as (2.2). If $X = \mathbb{C}$, the complex numbers, then

\[
L^p_X = L^p = L^p(G), 1 \leq p \leq \infty.
\]

If X and Y are A-module Banach space, the multiplier space of X to Y is given by
\[
\text{Hom}_A(X,Y) = \{ T \in \mathcal{L}(X,Y) \mid T(ax) = aT(x), a \in A, x \in X \}.
\]
Recall [8], Rieffel characterized the homomorphism module multiplier is represented by the dual space of module tensor product as the following form:

$$Hom_{A}(X,Y^{*}) \cong (X \otimes A Y)^{*} \text{ or } Hom_{A}(X,Y) \cong (X \otimes A Y^{*})^{*}. \text{ (if } Y \text{ is reflexive)}$$

where \otimes_{A} is namely module tensor product of X into Y^{*} or of X into Y and Z^{*} denotes the dual space of the Banach space Z. The space \otimes_{A} is the complete projective tensor product $X \otimes_{\gamma} Y^{*}$ quotients by K, that is, $X \otimes_{A} Y = X \otimes_{\gamma} Y^{*}/K$.

Here K is the closed linear subspace of the projective tensor product space $X \otimes_{\gamma} Y$ generated by the elements $ax \otimes y - x \otimes ay$; for $a \in A, x \in X, y \in Y$ and $X \otimes_{\gamma} Y$ is the completion of the algebra tensor $x \otimes y$ under the $\gamma-$norm, and

$$X \otimes Y = \{u = \sum_{i} x_i \otimes y_i \mid x_i \in X, y_i \in Y, \sum_{i} \|x_i\| \|y_i\| < \infty\}$$

$$\gamma(u) = \inf_{u} \left\{ \sum_{i} \|x_i\| \|y_i\| \mid u = \sum_{i} x_i \otimes y_i \in Y \right\}$$

$$= \|\|u\|| = \inf_{u} \left\{ \sum_{i} \|x_i \otimes y_i, x_i \in X, y_i \| \right\} = \inf_{u} \sum_{i} \|x_i\| \|y_i\|$$

where \inf_{u} means that the infimum is taken by all representations of $u = \sum_{i} x_i \otimes y_i$ in $X \otimes Y$, and the tensor norm. We state the following Theorem for the characterization of the invariant operators. For detail, we consult Lai [3,4] and [6] cf. also Lai [5].

Theorem 4. Let X and Y be Banach spaces. Then the following two statements are equivalent.

(a) $T \in (L^{1}(G,Y),L^{1}(G,X))$ is an invariant operator.

(b) There exists a unique continuous linear map $L \in \mathcal{L}(Y,M_{b}(G,X))$ such that $T(f \otimes y) = f * L_{y}$ for all $f \in L^{1}(G), y \in Y$.

Moreover, $(L^{1}(G,Y),L^{1}(G,X)) \cong \mathcal{L}(Y,M_{b}(G,X))$.

Theorem 5. Let A be a commutative semi-simple Banach algebra (not necessarily with identity) and X a Banach A-module. Then

(5.1) $Hom_{L^{1}(G,A)}(L^{1}(G,A),L^{1}(G,X)) \cong Hom_{A}(A,M_{b}(G,X))$.
In Lai [6], he showed that an invariant operator is also a multiplier if and only if the A in $L^1(G,A)$ must be scalar space \mathbb{C}.

Theorem 6. Let A be a commutative Banach algebra with identity of norm 1. X be a unit linked, order-free, Banach-module and A a faithful representation on X, then each invariant operator $T : L^1(G,A) \rightarrow F(G,X)$ is a multiplier if and only if $A \cong \mathbb{C}$. Here $F(G,X) = L^p(G,X)$ for each p, $1 \leq p \leq \infty$, or $F(G,X) = C_0(G,X)$.

References

