<table>
<thead>
<tr>
<th>Title</th>
<th>ON THE DECOMPOSITION OF THE HOCHSCHILD COHOMOLOGY GROUP OF A MONOMIAL ALGEBRA SATISFYING A SEPARABILITY CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>板場 綾子</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2015), 1967: 44-52</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/224261</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON THE DECOMPOSITION OF THE HOCHSCHILD COHOMOLOGY GROUP OF A MONOMIAL ALGEBRA SATISFYING A SEPARABILITY CONDITION

AYAKO ITABA
Department of Mathematics,
Tokyo University of Science

ABSTRACT. In this note, we consider the finite connected quiver Q having two subquivers $Q^{(1)}$ and $Q^{(2)}$ with $Q = Q^{(1)} \cup Q^{(2)} = (Q_{0}^{(1)} \cup Q_{0}^{(2)}, Q_{1}^{(1)} \cup Q_{1}^{(2)})$. Suppose that $Q^{(i)}$ is not a subquiver of $Q^{(j)}$ where $\{i, j\} = \{1, 2\}$. For a monomial algebra $\Lambda = kQ/I$ obtained by the quiver Q, when the set $AP(n)$ ($n \geq 0$) of overlaps constructed inductively by linking generators of I satisfies a certain separability condition, we propose the method so that we construct a minimal projective resolution of Λ as a right Λ^{e}-module and calculate the Hochschild cohomology group of Λ.

1. INTRODUCTION

First of all, we recall the definition of Hochschild cohomology (see [S]). For a finite-dimensional algebra A over a field k, the Hochschild cohomology groups $HH^{n}(A)$ of A is defined by

$$HH^{n}(A) := \text{Ext}^{n}_{A^{e}}(A, A) (n \geq 0),$$

where $A^{e} := A^{op} \otimes_{k} A$ is the enveloping algebra of A. Note that there is a natural one to one correspondence between the family of A-A-bimodules and that of right A^{e}-modules. Moreover, the Hochschild cohomology rings $HH^{*}(A)$ of A is the graded algebra defined by

$$HH^{*}(A) := \text{Ext}^{*}_{A^{e}}(A, A) = \bigoplus_{i \geq 0} \text{Ext}^{i}_{A^{e}}(A, A)$$

with the Yoneda product.

The low-dimensional Hochschild cohomology groups are described as follows:

- $HH^{0}(A) = Z(A)$ is the center of A.
- $HH^{1}(A)$ is the space of derivations modulo the inner derivations. A derivation is a k-linear map $f : A \to A$ such that $f(ab) = af(b) + f(a)b$ for all $a, b \in A$. A derivation $f : A \to A$ is an inner derivation if there is some $x \in A$ such that $f(a) = ax - xa$ for all $a \in A$.
- $HH^{2}(A)$ measures the infinitesimal deformations of the algebra A.

One important property of Hochschild cohomology is its invariance under Morita equivalence, stable equivalence of Morita type and derived equivalence.

In general, it is not easy to calculate the Hochschild cohomology of a finite-dimensional algebra. In order to calculate the Hochschild cohomology groups of a quiver algebra, can we use calculations of the Hochschild cohomology groups of quiver algebras obtained by subquivers of the original quiver? Hence, we consider Hochschild cohomology of an algebra obtained by "linking" two algebras as the analogy of the following two studies. In [H], for

This note is a survey article of a joint work with Takahiko Furuya and Katsunori Sanada. See [IFS] for the detail.
a finite-dimensional algebra A and $M \in \text{mod} A$, Happel studied the one-point extensions $B = A[M] = \begin{pmatrix} A & M \\ 0 & k \end{pmatrix}$ of A and show that there exists the long exact sequence connecting the Hochschild cohomology of A and B. In [BO], for a finite-dimensional algebra over a field k, Bergh and Oppermann studied the Hochschild cohomology of twisted tensor products and applied this to the class of finite-dimensional algebras known as quantum complete intersections.

Let k be an algebraically closed field and \mathcal{Q} a finite connected quiver. Then $k\mathcal{Q}$ denotes the path algebra of \mathcal{Q} over k in this paper. Let I be an admissible ideal of $k\mathcal{Q}$. If I is generated by a finite number of paths in \mathcal{Q}, then I is called a monomial ideal and $\Lambda := k\mathcal{Q}/I$ a monomial algebra. For a finite-dimensional monomial algebra $\Lambda = k\mathcal{Q}/I$, using a certain set $AP(n)$ of overlaps constructed inductively by linking generators of I, Bardzell gave a minimal projective Λ^{e}-resolution $(P_{\bullet}, \phi_{\bullet})$ of Λ in [B] (so called Bardzell’s resolution). By using Bardzell's resolution, the Hochschild cohomology of monomial algebras are studied in the following papers [GS], [GSS], [FS], etc.

In this note, for a finite-dimensional monomial algebra Λ, we propose a method so that we easily calculate the Hochschild cohomology groups of Λ under some conditions. Let \mathcal{Q} be a finite connected quiver and $\mathcal{Q}^{(i)} (i = 1, 2)$ a subquiver of \mathcal{Q} such that $\mathcal{Q} = \mathcal{Q}^{(1)} \cup \mathcal{Q}^{(2)} = (\mathcal{Q}^{(1)}_{0} \cup \mathcal{Q}^{(2)}_{0}, \mathcal{Q}^{(1)}_{1} \cup \mathcal{Q}^{(2)}_{1})$. Let $I^{(1)} = \langle X \rangle$ (resp. $I^{(2)} = \langle Y \rangle$) be a monomial ideal of $k\mathcal{Q}^{(1)}$ (resp. $k\mathcal{Q}^{(2)}$) for X (resp. Y) a set of paths of $k\mathcal{Q}^{(1)}$ (resp. $k\mathcal{Q}^{(2)}$) and $I = \langle X, Y \rangle$ a monomial ideal of $k\mathcal{Q}$. We assume that I and $I^{(i)} (i = 1, 2)$ are admissible ideals. Then we define $\Lambda = k\mathcal{Q}/I$, $\Lambda_{(1)} = k\mathcal{Q}^{(1)}/I^{(1)}$ and $\Lambda_{(2)} = k\mathcal{Q}^{(2)}/I^{(2)}$. Hence Λ and $\Lambda_{(i)}$ are finite-dimensional monomial algebras for $i = 1, 2$. For the monomial algebra Λ, under a separability condition (i.e. $\mathcal{Q}^{(1)}_{1} \cap \mathcal{Q}^{(2)}_{1} = \emptyset$), we investigate the minimal projective Λ^{e}-module resolution of Λ given by Bardzell ([B]). Moreover, under an additional condition, we show that, for $n \geq 2$, the Hochschild cohomology group $\text{HH}^{n}(\Lambda)$ of Λ is isomorphic to the direct sum of the Hochschild cohomology groups $\text{HH}^{n}(\Lambda_{(1)})$ and $\text{HH}^{n}(\Lambda_{(2)})$.

Throughout this note, for all arrows a of \mathcal{Q}, we denote the origin of a by $o(a)$ and the terminus of a by $t(a)$. Also, for simplicity, we denote \otimes_{k} by \otimes. For the general notation, we refer to [ASS].

2. THE SET $AP(n)$ OF OVERLAPS AND BARDZELL’S RESOLUTION

In this section, following [B] and [GS], we will summarize the definition of the set $AP(n)$ ($n \geq 0$) of overlaps.

Definition 2.1. A path $q \in k\mathcal{Q}$ overlaps a path $p \in k\mathcal{Q}$ with overlap pu if there exist u, v such that $pu = vq$ and $1 \leq l(u) \leq l(q)$, where $l(x)$ denotes the length of a path $x \in k\mathcal{Q}$. Note that we allow $l(x) = 0$ here.

A path q properly overlaps a path p with overlap pu if q overlaps p and $l(u) \geq 1$.

Let $\Lambda = k\mathcal{Q}/I$ be a finite-dimensional monomial algebra where $I = \langle \rho \rangle$ has a minimal set of generators ρ of paths of length at least 2.
Definition 2.2. For \(n = 0, 1, 2 \), we set

- \(AP(0) := Q_0 = \{v_0, v_1, v_2\} \) (the set of all vertices of \(Q \));
- \(AP(1) := Q_1 = \{a_1, a_2, a_3\} \) (the set of all arrows of \(Q \));
- \(AP(2) := \rho \).

For \(n \geq 3 \), we define the set \(AP(n) \) of all overlaps \(R^n \) formed in the following way: We say that \(R^2 \in AP(2) \) maximally overlaps \(R^{n-1} \in AP(n-1) \) with overlap \(R^n = R^{n-1} u \) if

1. \(R^{n-1} = R^{n-2} p \) for some path \(p \) and \(R^{n-2} \in AP(n-2) \);
2. \(R^2 \) overlap \(p \) with overlap \(p u \);
3. there is no element of \(AP(2) \) which overlaps \(p \) with overlap being a proper prefix of \(p u \).

The construction of the paths in \(AP(n) \) may be illustrated with the following picture of \(R^n \):

![Diagram](image)

Remark 2.1. ([B]) Note that for \(n \geq 2 \), \(AP(n) = AP(n)^{op} \).

In short, overlaps are constructed by linking generators of an admissible monomial ideal \(I \). A sequence of those generators of \(I \) is called the associated sequence of paths ([GHZ]).

Example 2.1. Let \(Q \) be a quiver

![Diagram](image)

bound by \(I = \langle a_1a_2a_3, a_2a_3a_1, a_3a_1a_2 \rangle \). We set the algebra \(\Lambda = kQ/I \). Then we set

- \(AP(0) := Q_0 = \{v_0, v_1, v_2\} \), \(AP(1) := Q_1 = \{a_1, a_2, a_3\} \),
- \(AP(2) := \{a_1a_2a_3, a_2a_3a_1, a_3a_1a_2\} \).

For \(n \geq 3 \), considering all overlaps linking by generators of \(I \) inductively, we have the following:

- \(AP(3) = \{a_1a_2a_3a_1, a_2a_3a_1a_2, a_3a_1a_2a_3\} \),
- \(AP(4) = \{a_1a_2a_3a_1a_2, a_2a_3a_1a_2a_3, a_3a_1a_2a_3a_1\} \), ...,
- \(AP(n) = \{a_1a_2a_3a_1a_2a_3a_1a_2a_3\} \).

For example, the associated sequence of paths corresponding to \(a_1a_2a_3a_1, a_2a_3a_4a_1, a_3a_1a_2a_3 \in AP(4) \) are \((a_1a_2, a_2a_3, a_3a_1), (a_2a_3, a_3a_1, a_1a_2), (a_3a_1, a_1a_2, a_2a_3) \), respectively.

Example 2.2. Let \(Q \) be a quiver

![Diagram](image)
bound by $I' = \langle a_1a_2, a_2a_3 \rangle$. We set the algebra $\Lambda' = k\mathcal{Q}/I'$.

- $AP(0) := Q_0 = \{v_0, v_1, v_2\}$, $AP(1) := Q_1 = \{a_1, a_2, a_3\}$,
- $AP(2) := \{a_1a_2, a_2a_3\}$.

Considering all overlaps linking by generators of I inductively,
- $AP(3) = \{a_1a_2a_3\}$,
- $AP(n) = \emptyset$ for all $n \geq 4$.

For a monomial algebra $\Lambda = k\mathcal{Q}/I$, by using the set $AP(n)$, Bardzell determined a minimal projective Λ^e-resolution $(P_\bullet, \phi_\bullet)$ of Λ in [B].

Definition 2.3. Let $(P_\bullet, \phi_\bullet)$ be the minimal projective Λ^e-resolution of Λ in [B]. Then, for $n \geq 0$, we set

$$P_n = \coprod_{R^m \in AP(n)} \Lambda o(R^m) \otimes t(R^m) \Lambda.$$

From [B], if $R^{2n+1} \in AP(2n+1)$, then there uniquely exist $R_{j}^{2n}, R_{k}^{2n} \in AP(2n)$ and some paths a_j, b_k such that $R^{2n+1} = a_j = b_k R^{2n}$.

For even degree elements $R^{2n} \in AP(2n)$, there exist $r \geq 1$, $R_{l}^{2n-1} \in AP(2n-1)$ and paths p_l, q_l for $l = 1, 2, \ldots, r$ such that $R^{2n} = p_1R_{1}^{2n-1}q_1 = \cdots = p_r R_{r}^{2n-1}q_r$.

Remark 2.2. Note that $o(R_{j}^{2n}) \otimes a_j \in \Lambda o(R_{j}^{2n}) \otimes t(R_{j}^{2n}) \Lambda$ and $b_k \otimes t(R^{2n}) \in \Lambda o(R_{k}^{2n}) \otimes t(R_{k}^{2n}) \Lambda$. Also, note that $p_l \otimes q_l \in \Lambda o(R_{l}^{2n-1}) \otimes t(R_{l}^{2n-1}) \Lambda$.

Definition 2.4. The map $\phi_{2n+1} : P_{2n+1} \rightarrow P_{2n}$ is given as follows. If $R^{2n+1} = R_{j}^{2n}a_j = b_k R_{k}^{2n} \in AP(2n+1)$, then

$$o(R^{2n+1}) \otimes t(R^{2n+1}) \mapsto o(R_{j}^{2n}) \otimes a_j - b_k \otimes t(R_{k}^{2n}).$$

The map $\phi_{2n} : P_{2n} \rightarrow P_{2n-1}$ is given as follows. If $R^{2n} = p_1R_{1}^{2n-1}q_1 = \cdots = p_r R_{r}^{2n-1}q_r$, then

$$o(R^{2n}) \otimes t(R^{2n}) \mapsto \sum_{i=1}^{r} p_i \otimes q_i.$$

The following result is the main theorem in [B].

Bardzell's Theorem ([B, Theorem 4.1]) Let \mathcal{Q} be a finite quiver, and suppose that $\Lambda = k\mathcal{Q}/I$ is a monomial algebra with an admissible ideal I. Then the sequence

$$\cdots \rightarrow P_{n+1} \xrightarrow{\phi_{n+1}} P_n \xrightarrow{\phi_n} \cdots \xrightarrow{\phi_2} P_1 \xrightarrow{\phi_1} P_0 \xrightarrow{\pi} \Lambda \rightarrow 0$$
is a minimal projective resolution of Λ as a right Λ^e-module, where π is the multiplication map.

3. The Decomposition of Hochschild Cohomology Groups

Before stating main theorem, we recall our setting:
- $Q = Q^{(1)} \cup Q^{(2)}$,
- $I^{(1)} = (X)$ be a monomial ideal generated by X a set of paths of $kQ^{(1)}$,
- $I^{(2)} = (Y)$ a monomial ideal generated by Y a set of paths of $kQ^{(2)}$,
- $I = (X,Y)$ a monomial ideal of kQ,
- $\Lambda = kQ/I$, $\Lambda^{(1)} = kQ^{(1)}/I^{(1)}$, $\Lambda^{(2)} = kQ^{(2)}/I^{(2)}$: finite-dimensional algebras,
- $AP(2) := X \cup Y$, $AP^{(1)}(2) := X$, $AP^{(2)}(2) := Y$.

Then, as in the definition of $AP(n)$ of overlaps, we define $AP^{(1)}(n)$, $AP^{(2)}(n)$. Moreover, we define projective Λ^e-modules as follows:

$$P_n^{(1)} = \prod_{R^n \in AP^{(1)}(n)} \Lambda o(R^n) \otimes t(R^n) \Lambda,$$

$$P_n^{(2)} = \prod_{R^n \in AP^{(2)}(n)} \Lambda o(R^n) \otimes t(R^n) \Lambda,$$

$$P_n = \prod_{R^n \in AP(n)} \Lambda o(R^n) \otimes t(R^n) \Lambda.$$

To prove our main result, we need the following lemma. As mentioned in Introduction, we consider the separability condition $AP^{(1)}(1) \cap AP^{(2)}(1) = \emptyset$.

Lemma 3.1. ([IFS, Lemma 3.1]) Let $i \in \{1, 2\}$. If we assume $AP^{(1)}(1) \cap AP^{(2)}(1) = \emptyset$, then we have the following:

(a) For all $n \geq 1$, $AP^{(i)}(n) = AP^{(i)}(n) \cup AP^{(2)}(n)$.

(b) For all $n \geq 1$, $AP^{(1)}(n) \cap AP^{(2)}(n) = \emptyset$.

(c) Let $n \geq 1$ and $p^n \in AP(n)$. Then R^n is a path of $kQ^{(i)}$ if and only if $R^n \in AP^{(i)}(n)$.

By Bardzell’s Theorem and Lemma 3.1, we have the following proposition.

Proposition 3.2. ([IFS, Proposition 3.2]) If the condition $Q^{(1)} \cap Q^{(2)} = \emptyset$ holds, then, in the following minimal projective resolution of Λ:

$$\cdots \rightarrow P_{n+1} \xrightarrow{\phi_{n+1}} P_n \xrightarrow{\phi_n} P_{n-1} \rightarrow \cdots \xrightarrow{\phi_2} P_2 \xrightarrow{\phi_1} P_1 \xrightarrow{\phi_0} P_0 \xrightarrow{\pi} \Lambda \rightarrow 0,$$

for any $n \geq 1$, P_n is isomorphic to $P_n^{(1)} \oplus P_n^{(2)}$ as right Λ^e-modules and $\phi_n = \phi_n^{(1)} \oplus \phi_n^{(2)}$, where $\phi_n^{(i)} : P_n^{(i)} \rightarrow P_n^{(i)}$ ($i = 1, 2$) is the restriction of ϕ_n.

Remark 3.1. For $i = 1, 2$, $b_k \in \Lambda (i) o(R_k^{2n})$, $a_j \in t(R_j^{2n}) \Lambda (i)$, $p_l \in \Lambda (i) o(R_l^{2n+1})$ and $q_i \in t(R_i^{2n+1}) \Lambda (i)$ actually hold. So, for $n \geq 1$, $\phi_n^{(i)}$ sends $\prod_{R_n^{(i)} \in AP^{(i)}(n+1)} \Lambda (i) o(R_n^{2n+1}) \otimes t(R_n^{2n+1}) \Lambda (i)$ to $\prod_{R_n \in AP^{(i)}(n)} \Lambda (i) o(R^n) \otimes t(R^n) \Lambda (i)$ (not just to $\prod_{R_n \in AP^{(i)}(n)} \Lambda (i) o(R^n) \otimes t(R^n) \Lambda (i)$). Therefore, $\prod_{R_n \in AP^{(i)}(n)} \Lambda (i) o(R^n) \otimes t(R^n) \Lambda (i)$ for the minimal projective resolution of $\Lambda (i)$ ($i = 1, 2$).
The following theorem is our main result.

Theorem 3.3. ([IFS, Theorem 3.3]) If the condition $Q_{1}^{(1)} \cap Q_{1}^{(2)} = \emptyset$ holds and, for each $i = 1, 2$, $o(R^n) \Delta t(R^n) = o(R^n) \Lambda t(R^n)$ holds for any $n \geq 1$ and any $R^n \in AP^{(i)}(n)$, then we have the direct sum decomposition of Hochschild cohomology groups

$$HH^n(\Lambda) \cong HH^n(\Lambda_{(1)}) \oplus HH^n(\Lambda_{(2)})$$

for any $n \geq 2$.

Proof. By Proposition 3.2, we obtain the following right Λ^{e}-projective resolution of Λ:

$$\cdots \to P_{n+1} \xrightarrow{\phi_{n+1}} P_{n} \xrightarrow{\phi_{n}} P_{n-1} \to \cdots \xrightarrow{\phi_{2}} P_{1} \xrightarrow{\phi_{1}} P_{0} \xrightarrow{\pi} \Lambda \to 0,$$

where for any $n \geq 1$, $P_n = P_n^{(1)} \oplus P_n^{(2)}$ and $\phi_{n+1} = \phi_{n+1}^{(1)} \oplus \phi_{n+1}^{(2)}$.

Applying $Hom_{\Lambda^{e}}(\cdot, \Lambda)$ to this resolution, we have the following sequence:

$$0 \to \widehat{P_0} \xrightarrow{\widehat{\phi_1}} \widehat{P_1} \xrightarrow{\widehat{\phi_2}} \cdots \xrightarrow{\widehat{\phi_n}} \widehat{P_n} \xrightarrow{\widehat{\phi_{n+1}}} \widehat{P_{n+1}} \to \cdots,$$

where $\widehat{P_n} = Hom_{\Lambda^{e}}(P_n, \Lambda)$, $\widehat{\phi_n} = Hom_{\Lambda^{e}}(\phi_n, \Lambda)$. By the assumption, if $p^n \in AP^{(i)}(n)$, then p^n is a path of $kQ^{(i)}$ for each $i (i = 1, 2)$. So we have, for any $n \geq 1$,

$$\widehat{P_n} = Hom_{\Lambda^{e}}(P_n, \Lambda) = Hom_{\Lambda^{e}}(P_n^{(1)} \oplus P_n^{(2)}, \Lambda)$$

$$= Hom_{\Lambda^{e}}(\bigoplus_{p^n \in AP^{(1)}(n)} \Lambda o(p^n) \otimes t(p^n) \Lambda) \oplus Hom_{\Lambda^{e}}(\bigoplus_{p^n \in AP^{(2)}(n)} \Lambda o(p^n) \otimes t(p^n) \Lambda)$$

$$= Hom_{\Lambda_{(1)}^{e}}((\coprod_{p^n \in AP^{(1)}(n)} \Lambda o(p^n) \otimes t(p^n) \Lambda_{(1)}), \Lambda_{(1)}) \oplus Hom_{\Lambda_{(2)}^{e}}((\coprod_{p^n \in AP^{(2)}(n)} \Lambda o(p^n) \otimes t(p^n) \Lambda_{(2)}), \Lambda_{(2)})$$

Also, by Remark 3.1, we have, for any $n \geq 1$,

$$\widehat{\phi_{n+1}} = Hom_{\Lambda^{e}}(\phi_{n+1}, \Lambda) = Hom_{\Lambda^{e}}(\phi_{n+1}^{(1)} \oplus \phi_{n+1}^{(2)}, \Lambda)$$

$$= Hom_{\Lambda^{e}}(\phi_{n+1}^{(1)}, \Lambda) \oplus Hom_{\Lambda^{e}}(\phi_{n+1}^{(2)}, \Lambda)$$

$$= Hom_{\Lambda_{(1)}^{e}}(\phi_{n+1}^{(1)}, \Lambda_{(1)}) \oplus Hom_{\Lambda_{(2)}^{e}}(\phi_{n+1}^{(2)}, \Lambda_{(2)}) = \phi_{n+1}^{(1)} \oplus \phi_{n+1}^{(2)}.$$
Hence the complex giving the Hochschild cohomology groups $HH^n(\Lambda) \ (n \geq 2)$

$$\overrightarrow{P_1} \overset{\phi_2}{\rightarrow} \ldots \overset{\phi_n}{\rightarrow} \overrightarrow{P_{n+1}} \rightarrow \ldots$$

is decomposed into the following direct sum of complexes:

$$P^{(1)}_1 \oplus P^{(2)}_1 \overset{\phi^{(1)}_2 \oplus \phi^{(2)}_2}{\rightarrow} \ldots \overset{\phi^{(1)}_n \oplus \phi^{(2)}_n}{\rightarrow} \overrightarrow{P_{n+1}^{(1)}} \oplus \overrightarrow{P_{n+1}^{(2)}} \rightarrow \ldots$$

Therefore, we have $HH^n(\Lambda) \cong HH^n(\Lambda_{(1)}) \oplus HH^n(\Lambda_{(2)})$ for any $n \geq 2$.

Remark 3.2. For $n = 0, 1$, the above equation fails in general (see Example 4.3 for the case $n = 1$).

If $Q^{(1)}_n \cap Q^{(2)}_n = \{v_0\}$ and $v_0\Lambda v_0 = kv_0$, then we have $Q^{(1)}_n \cap Q^{(2)}_n = \emptyset$. Also, by Lemma 3.1 and Theorem 3.3, we have the following corollary.

Corollary 3.4. ([IFS, Corollary 3.4]) In the case $Q^{(1)}_n \cap Q^{(2)}_n = \{v_0\}$ and $v_0\Lambda v_0 = kv_0$, we have the direct sum decomposition of the Hochschild cohomology groups

$$HH^n(\Lambda) \cong HH^n(\Lambda_{(1)}) \oplus HH^n(\Lambda_{(2)})$$

for any $n \geq 2$.

Remark 3.3. Hence, for a finite dimensional monomial algebra obtained by linking some quivers bound by monomial relations successively, we can also decompose the Hochschild cohomology groups as in Corollary 3.4.

4. **EXAMPLES**

In this section, we give examples of monomial algebras satisfying the condition $AP^{(1)}(1) \cap AP^{(2)}(1) = \emptyset$.

Example 4.1. Let Q be a quiver

```
\begin{center}
\begin{tikzpicture}[baseline=(current  bounding  box.center)]
\node (a) at (0,0) {$a_1$};
\node (b) at (1,0) {$b_1$};
\node (c) at (0,1) {$a_2$};
\node (d) at (1,1) {$b_2$};
\node (e) at (0,2) {$a_3$};
\node (f) at (1,2) {$b_3$};
\node (g) at (0,3) {$a_4$};
\node (h) at (1,3) {$b_4$};
\node (i) at (2,1) {$v_0$};
\node (j) at (2,2) {$v_1'$};
\node (k) at (2,3) {$v_2'$};
\node (l) at (3,1) {$v_0'$};
\node (m) at (3,2) {$v_1$};
\node (n) at (3,3) {$v_2$};
\draw (a) -- (c);
\draw (b) -- (d);
\draw (c) -- (e);
\draw (d) -- (f);
\draw (e) -- (g);
\draw (f) -- (h);
\draw (a) -- (b);
\draw (a) -- (d);
\draw (b) -- (c);
\draw (b) -- (f);
\draw (c) -- (e);
\draw (c) -- (h);
\draw (d) -- (f);
\draw (d) -- (g);
\draw (e) -- (g);
\draw (e) -- (h);
\draw (f) -- (h);
\draw (f) -- (i);
\draw (g) -- (i);
\draw (g) -- (j);
\draw (h) -- (i);
\draw (h) -- (j);
\draw (i) -- (k);
\draw (i) -- (m);
\draw (j) -- (k);
\draw (j) -- (m);
\end{tikzpicture}
\end{center}
```

bound by $I = \langle a_1a_2, a_2a_3, a_3a_1, b_1b_2, b_2b_3, b_3b_4 \rangle$. We set the algebra $\Lambda = kQ/I$. Let $Q^{(1)}$ be the subquiver of Q bound by $I^{(1)} = \langle a_1a_2, a_2a_3, a_3a_1 \rangle$ and $Q^{(2)}$ the subquiver of Q bound by $I^{(2)} = \langle b_1b_2, b_2b_3, b_3b_4 \rangle$. We set $\Lambda^{(i)} = kQ^{(i)}/I^{(i)}$ for $i = 1, 2$. Then $Q^{(1)} \cap Q^{(2)} = \emptyset$ holds and for each $i = 1, 2$, $o(p^n)\Lambda t(p^n) = o(p^n)\Lambda^{(i)} t(p^n)$ holds for any $n \geq 1$ and $p^n \in AP^{(i)}(n)$. Applying Corollary 3.4, we obtain the direct sum decomposition of the Hochschild cohomology groups $HH^n(\Lambda) \cong HH^n(\Lambda_{(1)}) \oplus HH^n(\Lambda_{(2)})$ for any $n \geq 2$. Also, since $\Lambda^{(i)} (i = 1, 2)$ is a self-injective Nakayama algebra, we know the dimension of $HH^n(\Lambda^{(i)})$ from [EH, Propositions 4.4, 5.3] for $i = 1, 2$, and so we have the dimension of $HH^n(\Lambda)$ by the decomposition above.

Example 4.2. Let Q be a quiver

```
bound by

\[ I = \langle a_1a_2 \cdots a_m, a_2a_3 \cdots a_{m+1}, \ldots, a_na_1 \cdots a_{-n+m+1}, b_1b_2 \cdots b_{m'}, b_2b_3 \cdots b_{m'+1}, \ldots, b_{n'}b_1 \cdots b_{-n'+m'+1} \rangle \]

for any integers \( m, m' \geq 2 \) with \( m \leq n \) and \( m' \leq n' \). We set the algebra \( \Lambda = k\mathcal{Q}/I \). Let \( \mathcal{Q}^{(1)} \) be the subquiver of \( \mathcal{Q} \) bound by \( I^{(1)} = \langle a_1a_2 \cdots a_m, a_2a_3 \cdots a_{m+1}, \ldots, a_na_1 \cdots a_{-n+m+1} \rangle \) and \( \mathcal{Q}^{(2)} \) be the subquiver of \( \mathcal{Q} \) bound by \( I^{(2)} = \langle b_1b_2 \cdots b_{m'}, b_2b_3 \cdots b_{m'+1}, \ldots, b_{n'}b_1 \cdots b_{-n'+m'+1} \rangle \), where \( \mathcal{Q}_0^{(1)} \cap \mathcal{Q}_0^{(1)} = \{v_0, v_1\} \) and \( \mathcal{Q}_1^{(1)} \cap \mathcal{Q}_1^{(2)} = \emptyset \). We set \( \Lambda^{(i)} = k\mathcal{Q}^{(i)}/I^{(i)} \) for \( i = 1, 2 \). Then the condition of Corollary 3.4 is satisfied. Applying Corollary 3.4, we obtain the direct sum decomposition of the Hochschild cohomology groups \( HH^n(\Lambda) \cong HH^n(\Lambda^{(1)}) \oplus HH^n(\Lambda^{(2)}) \) for any \( n \geq 2 \).

**Example 4.3.** Let \( \mathcal{Q} \) be a quiver

bound by \( I = \langle a_1a_2, a_2a_3, a_3a_4, a_4a_1, b_1b_2, b_2b_3, b_3b_4, b_4b_1 \rangle \). We set the algebra \( \Lambda = k\mathcal{Q}/I \). Let \( \mathcal{Q}^{(1)} \) be the subquiver of \( \mathcal{Q} \) bound by \( I^{(1)} = \langle a_1a_2, a_2a_3, a_3a_4, a_4a_1 \rangle \) and \( \mathcal{Q}^{(2)} \) be the subquiver of \( \mathcal{Q} \) bound by \( I^{(2)} = \langle b_1b_2, b_2b_3, b_3b_4, b_4b_1 \rangle \), where \( \mathcal{Q}_0^{(1)} \cap \mathcal{Q}_0^{(1)} = \{v_0, v_1\} \) and \( \mathcal{Q}_1^{(1)} \cap \mathcal{Q}_1^{(2)} = \emptyset \).

We set \( \Lambda^{(i)} = k\mathcal{Q}^{(i)}/I^{(i)} \) for \( i = 1, 2 \). Then \( AP^{(1)}(1) \cap AP^{(2)}(1) = \emptyset \) holds and for each \( i = 1, 2 \), \( o(R^n)\Lambda t(R^n) = o(R^n)\Lambda^{(i)} t(R^n) \) holds for any \( n \geq 1 \) and any \( R^n \in AP^{(i)}(n) \). Applying Theorem 3.3, we obtain the direct sum decomposition of the Hochschild cohomology groups \( HH^n(\Lambda) \cong HH^n(\Lambda^{(1)}) \oplus HH^n(\Lambda^{(2)}) \) for any \( n \geq 2 \).
On the other hand, by direct computations, we have $\dim_k HH^1(\Lambda) = 3$ and $\dim_k HH^1(\Lambda_{(i)}) = 1 \ (i = 1, 2)$. Hence the above decomposition does not hold for $n = 1$.

REFERENCES


AYAKO ITABA
DEPARTMENT OF MATHEMATICS
TOKYO UNIVERSITY OF SCIENCE
KAGURAZAKA 1-3, SHINJUKU, TOKYO 162-8601, JAPAN
E-mail address: j1110701@ed.tus.ac.jp

CURRENT ADDRESS:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
SHIZUOKA UNIVERSITY
OHYA 336, SHIZUOKA 422-8529, JAPAN
E-mail address: itaba.ayako@shizuoka.ac.jp