<table>
<thead>
<tr>
<th>品目</th>
<th>トピック</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>タイトル</td>
<td>ポリゴンの空間における根の有限度の問題（変形群の新しい話題）</td>
</tr>
<tr>
<td>著者</td>
<td>山口 耕平</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 新しい変形群の話題</td>
</tr>
<tr>
<td>頃</td>
<td>2015-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/224267</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

Kyoto University
Note on the space of polynomials with roots of bounded multiplicity

山口耕平 (Kohhei Yamaguchi)
電気通信大学 情報理工学研究科
(University of Electro-Communications)

Abstract

We study the homotopy type of the space $SP^d_n(X)$ consisting of all d particles in X with multiplicity less than n. When $X = \mathbb{C}$, this space may be identified with the space SP^d_n of all monic complex coefficient polynomials $f(z) \in \mathbb{C}[z]$ of degree d without roots of multiplicity $\geq n$. In this paper we announce the main result given in [8] concerning to the homotopy stability dimension of this space which improves that obtained in the previous paper [3].

1 Introduction.

Basic definitions and notations. For spaces X and Y, let $Map^*(X, Y)$ denote the space consisting of all continuous base-point preserving maps from X to Y with the compact-open topology. When X and Y are complex manifolds, we denote by $Hol^*(X, Y)$ the subspace of $Map^*(X, Y)$ consisting of all base-point preserving holomorphic maps.

For each integer $d \geq 1$, let $Map_d^*(S^2, \mathbb{C}P^{n-1}) = \Omega_d^2\mathbb{C}P^{n-1}$ denote the space of all based continuous maps $f : (S^2, \infty) \to (\mathbb{C}P^{n-1}, [1 : 1 : \cdots : 1])$ such that $[f] = d \in \mathbb{Z} = \pi_2(\mathbb{C}P^{n-1})$, where we identify $S^2 = \mathbb{C} \cup \{\infty\}$ and choose $\infty \in S^2$ and $[1 : 1 : \cdots : 1] \in \mathbb{C}P^{n-1}$ as the base points of S^2 and $\mathbb{C}P^{n-1}$, respectively. Let $Hol_d^*(S^2, \mathbb{C}P^{n-1})$ denote the subspace of $\Omega_d^2\mathbb{C}P^{n-1}$ consisting of all based holomorphic maps.

Let S_d denote the symmetric group of d letters. Then the group S_d acts on the space $X^d = X \times \cdots \times X$ (d-times) by the coordinate permutation and let $SP^d(X)$ denote the d-th symmetric product of X given by the orbit space $SP^d(X) = X^d/S_d$.

Let $F(X, d) \subset X^d$ denote the subspace consisting of all $(x_1, \cdots, x_n) \in X^d$ such that $x_i \neq x_j$ if $i \neq j$. Since $F(X, d)$ is S_d-invariant, we define the orbit space $C_d(X)$ by $C_d(X) = F(X, d)/S_d$. The space $C_d(X)$ is usually called the configuration space of unordered n-distinct points in X. Note that there is an inclusion $C_d(X) \subset SP^d(X)$.

Let $P^d(\mathbb{C})$ denote the space consisting of all monic polynomials

$$f(z) = z^d + a_1z^{d-1} + \cdots + a_d \in \mathbb{C}[z]$$
of the degree d. Similarly, let SP_n^d denote the subspace of $\text{P}^d(\mathbb{C})$ consisting of all monic polynomials $f(z) \in \text{P}^d(\mathbb{C})$ without root of multiplicity $\geq n$.

Definition 1.1. Note that each element $\alpha \in \text{SP}^d(X)$ can be represented as the formal sum $\alpha = \sum_{k=1}^r n_k x_k$, where $\{x_k\}_{k=1}^r$ are mutually distinct points in X and each n_k is a positive integer such that $\sum_{k=1}^r n_k = d$. Then by using the notation, we define the subspace $\text{SP}_n^d(X) \subset \text{SP}^d(X)$ by

$$\text{SP}_n^d(X) = \{ \sum_{k=1}^r n_k x_k \in \text{SP}^d(X) : n_k < n \text{ for any } 1 \leq k \leq r \}.$$

Note that there is an increasing filtration $\emptyset = \text{SP}_1^d(X) \subset \text{C}_d(X) = \text{SP}_2^d(X) \subset \text{SP}_3^d(X) \subset \cdots \subset \text{SP}_d^d(X) \subset \text{SP}_{d+1}^d(X) = \text{SP}^d(X)$.

Remark 1.2. (i) If $X = \mathbb{C}$ we can easily see that there is a natural homeomorphism $\text{P}^d(\mathbb{C}) \cong \text{SP}^d(\mathbb{C})$ by identifying $\text{P}^d(\mathbb{C}) \ni \prod_{k=1}^r (z-\alpha_k)^{n_k} \mapsto \sum_{k=1}^r n_k \alpha_k \in \text{SP}^d(\mathbb{C})$, where $(\alpha_1, \cdots, \alpha_r) \in \text{F}(\mathbb{C}, r)$ and $\sum_{k=1}^r n_k = d$. It is also easy to see that there is a natural homeomorphism $\text{SP}_n^d \cong \text{SP}_n^d(\mathbb{C})$ by using this identification.

(ii) It is easy to see that the space $\text{Hol}_n^d(S^2, \mathbb{C}P^{n-1})$ can be identified with the space consisting of all n-tuples $(f_1(z), \cdots, f_n(z)) \in \text{P}^d(\mathbb{C})^n$ of monic polynomials of the same degree d such that polynomials $f_1(z), \cdots, f_n(z)$ have no common root. \square

Definition 1.3. Define the jet map $j_n^d: \text{SP}_n^d \to \Omega^d_2 \mathbb{C}P^{n-1} \simeq \Omega^2 S^{2n-1}$ by

$$j_n^d(f)(x) = \begin{cases} [f(x) : f(x) + f'(x) : f(x) + f''(x) : \cdots : f(x) + f^{(n-1)}(x)] & \text{if } x \in \mathbb{C} \\ [1 : 1 : \cdots : 1] & \text{if } x = \infty \end{cases}$$

for $(f, x) \in \text{SP}_n^d \times S^2$, where we identify $S^2 = \mathbb{C} \cup \infty$.

Remark 1.4. A map $f: X \to Y$ is called a homotopy equivalence (resp. a homology equivalence) up to dimension D if the induced homomorphism $f_* : \pi_k(X) \to \pi_k(Y)$ (resp. $f_* : H_k(X, \mathbb{Z}) \to H_k(Y, \mathbb{Z})$) is an isomorphism for any $k < D$ and an epimorphism if $k = D$. Similarly, it is called a homotopy equivalence (resp. a homology equivalence) through dimension D if $f_* : \pi_k(X) \to \pi_k(Y)$ (resp. $f_* : H_k(X, \mathbb{Z}) \to H_k(Y, \mathbb{Z})$) is an isomorphism for any $k \leq D$.

\square

2 The main result.

The previous results. Let M_g denote closed Riemann surface of genus g, and let $* \in M_g$ be its base-point. Note that $M_g = S^2$ if $g = 0$. Then, recall the following two results given in [12] and [3].
Theorem 2.1 ([12]; the case $g \geq 1$). If $g \geq 1$, there is a map $SP_d^g(M_g \setminus \{\ast\}) \to \text{Map}_0^g(M_g, \mathbb{C}P^{n-1})$ which is a homology equivalence up to dimension $D(d, n)$, where $\lfloor x \rfloor$ is the integer part of a real number x and $D(d, n)$ denotes the positive integer given by

$$D(d, n) = \begin{cases} \lfloor \frac{d}{2} \rfloor & \text{if } n = 2 \\ \lfloor \frac{d}{n} \rfloor - n + 3 & \text{if } n \geq 3 \end{cases} \square$$

Remark 2.2. Recently the much better stability dimension for the case $g \geq 1$ was obtained by A. Kupers and J. Miller in [?] (cf. [5], [6], [10]).

Theorem 2.3 ([3]; the case $g = 0$). If $g = 0$, the jet map

$$j_n^d : SP_n^d \to \Omega_0^d \mathbb{C}P^{n-1} \simeq \Omega^2 S^{2n-1}$$

is a homotopy equivalence up to dimension $(2n - 3) \lfloor \frac{d}{n} \rfloor$ if $n \geq 3$ and it is a homology equivalence up to dimension $\lfloor \frac{d}{n} \rfloor$ if $n = 2$. \square

Theorem 2.4 ([4], [11]). There is a homotopy equivalence

$$SP_n^d \simeq \text{Hol}_{\lfloor \frac{d}{n} \rfloor}^*(S^2, \mathbb{C}P^{n-1})$$

and there is a stable homotopy equivalence $SP_2^d \simeq \text{Ho1}_{\lfloor \frac{d}{2} \rfloor}(S^2, \mathbb{C}P^{1})$ if $n = 2$. \square

The new result. We can improve the stability dimension of the above result for $n \geq 3$ as follows:

Theorem 2.5 ([8]). If $n \geq 3$ and $g = 0$, the jet map $j_n^d : SP_n^d \to \Omega_0^d \mathbb{C}P^{n-1} \simeq \Omega^2 S^{2n-1}$ is a homotopy equivalence through dimension $D(d, n) = 2n - 3(\lfloor \frac{d}{n} \rfloor + 1) - 1$. \square

Acknowledgements. The author is supported by JSPS KAKENHI Grant Number 26400083.

References

Department of Mathematics, University of Electro-Communications
1-5-1 Chufugaoka, Chofu, Tokyo 182-8585, Japan
E-mail: kohhei@im.uec.ac.jp