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ABSTRACT. We shall discuss the isovariant Borsuk-Ulam constant determined from the
weak isovariant Borsuk-Ulam theorem. We first illustrate some properties of the Borsuk-
Ulam constant and next provide an estimate of the isovariant Borsuk-Ulam constant for
the special unitary group $SU(n)$ .

1. BACKGROUND

Borsuk-Ulam type results for $G$-maps between (linear) $G$-spheres were studied by many

researchers and various generalizations were shown. In particular, the following general-

ization is well known; see [3] for example.

Theorem 1.1. Let $G$ be $(C_{p})^{k}$ a product of cyclic groups of prime order $p$ or $T^{k}a$ (k-

dimensional) torus. Suppose that $G$ acts smoothly and fixed-point-freely on spheres $S_{1}$ and

$S_{2}$ . If there exists $a$ (continuous) $G$ -map $f$ : $S_{1}arrow S_{2}$ . then the inequality

$\dim S_{1}\leq\dim S_{2}$

holds.

On the other hand, T. Bartsch [1] proved that such a Borsuk-Ulam result does not hold

for $G$ not being a $p$-toral group. A compact Lie group $G$ is called $p$-toral if there is an

exact sequence $1arrow Tarrow Garrow Parrow 1$ , where $T$ is a torus and $P$ is a finite $p$-group.

As a variation of the Borsuk-Ulam theorem, the isovariant Borsuk-Ulam theorem was

first studied by A. G. Wasserman [9]. Let $G$ be a compact Lie group. A $G$-map $f$ : $Xarrow Y$

is called $G$-isovariant if $f$ preserves the isotropy subgroups, i.e., $G_{x}=G_{f(x)}$ for any $x\in X.$

In other words, it is a $G$-map such that $f_{|G(x)}$ : $G(x)arrow Y$ is injective on each orbit $G(x)$

of $x\in X$ . From Wasserman’s results, one sees the following.
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Theorem 1.2 (Isovariant Borsuk-Ulam theorem). Let $G$ be a solvable compact Lie group.

If there exists a $G$ -isovariant map $f$ : $SVarrow SW$ between linear $G$ -spheres, then

$\dim V-\dim V^{G}\leq\dim W-\dim W^{G}$

holds.

Wasserman conjectures that this theorem holds for all finite groups. This is unsolved

at present; however, we showed a weak version of the isovariant Borsuk-Ulam theorem

for an arbitrary compact Lie group.

Theorem 1.3 (Weak isovariant Borsuk-Ulam theorem ([5,6 There exists a positive

constant $c>0$ such that

$c(\dim V-\dim V^{G})\leq\dim W-\dim W^{G}$

for any pair of representations $V$ and $W$ with a $G$ -isovariant map $f:SVarrow SW.$

Definition. The isovariant Borsuk-Ulam constant $c_{G}$ of $G$ is defined to be the supremum

of such a constant $c.$ $(If G=1,$ then $set c_{G}=1 as$ convention. $)$

When $c_{G}=1,$ $G$ is called a Borsuk-Ulam group (BUG for short); namely, a Borsuk-

Ulam group $G$ is a compact Lie group for which the isovariant Borsuk-Ulam theorem holds.

In particular, a solvable compact Lie group is a Borsuk-Ulam group by Theorem 1.2, and

several nonsolvable Borsuk-Ulam finite groups are also known; for the detail, see [7, 8, 9].

However, no one knows connected Borsuk-Ulam groups other than a torus. Therefore we

would like to investigate $c_{G}$ and provide some estimates at least. We illustrate general

properties of $c_{G}$ in section 2 and we provide an estimate $c_{G}$ for $G=U(n)$ in section 3; in

fact, we notice

$c_{U(n)} \geq\frac{n}{n+1}$

whose complete proof will be written elsewhere.

2. PROPERTIES OF $c_{G}$

The following result is a generalization of Wasserman’s result and is proved by a similar

argument as in [9].

Proposition 2.1. If $1arrow Karrow Garrow Qarrow 1$ is an exact sequence of compact Lie groups,

then

$\min\{c_{K}, c_{Q}\}\leq c_{G}\leq c_{Q}.$

In particular, if $K$ is a Borsuk- Ulam group, then $c_{G}=c_{Q}.$
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Using this inductively, we have

Corollary 2.2. If $1=H_{0}\triangleleft H_{1}\triangleleft H_{2}\triangleleft\cdots\triangleleft H_{r}=G$ , then

$\min_{1\leq i\leq r}\{c_{H_{i}/H_{i-1}}\}\leq c_{G}.$

As an example, one sees the following.

Example 2.3. It follows that $c_{U(n)}=c_{SU(n)}=c_{PSU(n)}$ . In particular, $C_{SU(2)}=c_{SO(3)}$ since

$PSU(2)\cong SO(3)$ .

Proof. There is an exact sequence

$1arrow C_{n}arrow S^{1}\cross SU(n)arrow U(n)arrow 1.$

Since $C_{n}$ is a Borsuk-Ulam group, it follows from Proposition 2.1 that $c_{U(n)}=c_{S^{1}\cross SU(n)}.$

Next, there is an exact sequence

$1arrow S^{1}arrow S^{1}\cross SU(n)arrow SU(n)arrow 1.$

Since $S^{1}$ is a Borsuk-Ulam group, it follows that $c_{S^{1}\cross SU(n)}=c_{SU(n)}$ . Thus $c_{U(n)}=c_{SU(n)}.$

Since the center of $SU(n)$ is isomorphic to $C_{n}$ , it follows that $c_{PSU(n)}=c_{SU(n)}.$
$\square$

3. ESTIMATION OF $c_{U(n)}$

Let $T$ denote the maximal torus $T$ of $U(n)$ given by diagonal matrices:

$T=\{(\begin{array}{lll}t_{1} O \ddots O t_{n}\end{array}) |t_{i}\in S^{1}(\subset \mathbb{C})\}.$

We set

$d_{U(n)}= \sup\{\frac{\dim U^{T}}{\dim U}|U$ : nontrivial irreducible $U(n)-representation\}.$

In order to estimate $c_{U(n)}$ , we use the fact $c_{U(n)}\geq 1-d_{U(n)}$ deduced from a result of [6].

Theorem 3.1. $d_{U(n)}= \frac{1}{n+1}$ , and hence $c_{U(n)} \geq\frac{n}{n+1}.$

This is proved by representation theory. The irreducible complex representations of

$U(n)$ are parametrized by $\lambda$ in

$\Lambda=\{\lambda=(\lambda_{1}, \cdots, \lambda_{n})\in \mathbb{Z}^{n}|\lambda_{1}\geq\cdots\geq\lambda_{n}\}.$

Let $V_{\lambda}$ denote the irreducible $U(n)$ -representation corresponding to $\lambda\in\Lambda$ . (Then $\lambda$ is the

highest weight of $V_{\lambda}.$ ) Since ${\rm Res}_{T}:R(U(n))arrow R(T)^{W_{n}}$ is isomorphic, where $W_{n}\cong S_{n}$ is
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the Weyl group of $U(n)$ , the character $\chi_{\lambda}$ of ${\rm Res}_{T}V_{\lambda}$ is a homogenous symmetric Laurent

polynomial in $\mathbb{Z}[t_{1}^{\pm 1}, \cdots, t_{n}^{\pm 1}]$ with a form

$\chi_{\lambda}(t)=\sum_{\mu\in \mathbb{Z}^{n}}m_{\lambda}(\mu)t^{\mu}=\sum_{\mu\in \mathbb{Z}^{n}}m_{\lambda}(\mu)t_{1}^{\mu_{1}}\cdots t_{n}^{\mu_{n}} (t=diag(t_{1}, \cdots, t_{n})\in T)$
.

The coefficient $m_{\lambda}(\mu)$ is the multiplicity of a weight $\mu$ , i.e., the dimension of the weight

space corresponding to $\mu$ :

$m_{\lambda}(\mu)=\dim\{v\in V_{\lambda}|t\cdot v=t^{\mu}v$ for all $t\in T\}\geq 0.$

Let $M_{\lambda}$ $:=\{\mu\in \mathbb{Z}^{n}||\mu|=|\lambda|$ and $\mu\preceq\lambda\}$ , which is a finite set. Here $| \mu|=\sum_{i=1}^{n}\mu_{i}$ , and
$\preceq is$ the dominant order on $\mathbb{Z}^{n}$ defined by

$\mu\preceq\lambda\Leftrightarrow\sum_{i=1}^{k}\mu_{i}\leq\sum_{i=1}^{k}\lambda_{i}(1\leq\forall k\leq n)$ .

The following results can be found in [2, 4].

Proposition 3.2. Let $\lambda\in\Lambda$ and $\mu\in \mathbb{Z}^{n}.$

(1) $m_{\lambda}(\mu)\neq 0\Leftrightarrow\mu\in M_{\lambda}.$

(2) $m_{\lambda}(\lambda)=1$ for $\lambda\in\Lambda.$

(3) $m_{\lambda}(w\cdot\mu)=m_{\lambda}(\mu)$ for any $w\in W_{n}$ , where $w\cdot\mu=(\mu_{w^{-1}(1)}, \cdots, \mu_{w^{-1}(n)})$ .

(4) $W_{n}$ acts on $M_{\lambda}$ by permutation as in (3) and for any $\mu\in M_{\lambda},$ $W_{n}(\mu)\cap\Lambda$ consists of
one element. Therefore $M_{\lambda}\cap\Lambda$ is a complete system of representatives of $M_{\lambda}/W_{n}.$

Thus the character has a form

$\chi_{\lambda}(t)=\sum_{\mu\in M_{\lambda}}m_{\lambda}(\mu)t^{\mu}=\sum_{\mu\in M_{\lambda}\cap\Lambda}m_{\lambda}(\mu)P_{\mu}(t)$
,

where $P_{\mu}(t)= \sum_{\nu\in W_{n}(\mu)}t^{\nu}.$

Proposition 3.3. Let $G=U(n)$ and $\lambda\in\Lambda.$

(1) $\dim V_{\lambda}=\chi_{\lambda}(1)=\sum_{\mu\in M_{\lambda}}m_{\lambda}(\mu)$ .

(2) $\dim V_{\lambda}^{T}=m_{\lambda}(0)$ , the constant term of $\chi_{\lambda}(t)$ .

(3) $\dim V_{\lambda}^{T}>0\Leftrightarrow 0\in M_{\lambda}\Leftrightarrow\lambda\in\Lambda_{0}:=\{\lambda=(\lambda_{1}, \cdots, \lambda_{n})\in \mathbb{Z}^{n}|\lambda_{1}\geq\cdots\geq$

$\lambda_{n}, \sum_{i}\lambda_{i}=0\}.$

Furthermore, the dimension of $V_{\lambda}$ is described in terms of the highest weight $\lambda\in\Lambda.$

Proposition 3.4 (dimension formula for $U(n)$ ([2,4

$\dim V_{\lambda}=\frac{\prod_{i<j}(\lambda_{i}-\lambda_{j}+j-i)}{\prod_{i<j}(j-i)}.$
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On the other hand, computation of the multiplicity is not so easy (if $\lambda$ is large); how-

ever several multiplicity formulas are known; for example, Freudenthal formula, Kostant

formula, and combinatorially $m_{\lambda}(\mu)$ can be given as a Kostka number $(=the$ number of

certain semi-standard Young tableaux). We use Freudenthal’s multiplicity formula; see

[4] for example.

3.1. Outline of proof of Theorem 3.1. We may assume $\lambda\in\Lambda_{0}$ and $\lambda\neq 0$ , since

$\dim V_{\lambda}^{T}=0$ if $\lambda\not\in\Lambda_{0}$ . Let -) denote the (standard) inner product on $\mathbb{R}^{n}$ . Let

$\alpha_{ij}=e_{i}-e_{j}$ for $i\neq j$ , where $e_{i}$ is the i-th fundamental unit vector. All $\alpha_{ij}$ form the root

system of type $A_{n-1}$ . Let $R_{+}=\{\alpha_{ij}|1\leq i<j\leq n\}$ the set of positive roots and set

$\rho:=\frac{1}{2}\sum_{\alpha\in R+}\alpha=(\frac{n-1}{2}, \frac{n-3}{2}, \cdots, -\frac{n-3}{2}, -\frac{n-1}{2})$ .

Applying Freudenthal’s multiplicity formula to $\mu=0$ , we have an inequality

$(*):m_{\lambda}( O)K_{\lambda}\leq 2n(n-1)d\sum_{k=1}^{d}m_{\lambda}(\mu_{k})$ ,

where $K_{\lambda}$ $:=\Vert\lambda\Vert^{2}+2(\lambda, \rho)$ and $\mu_{k}$
$:=k\alpha_{1n}=(k, 0, \cdots, 0, -k)\in\Lambda_{0}$ . Since $\mu_{k}\in M_{\lambda}$

$(1\leq k\leq d)$ , $\chi_{\lambda}(t)$ has a form

$\chi_{\lambda}(t)=m_{\lambda}(0)+\sum_{k=1}^{d}m_{\lambda}(\mu_{k})P_{\mu_{k}}(t)+$ other terms,

where $P_{\mu_{k}}(t)= \sum_{i\neq j}t^{k\alpha_{ij}}=\sum_{i\neq j}t_{i}^{k}t_{j}^{-k}$ , which has $n(n-1)$ terms. This shows

$\dim V_{\lambda}=\chi_{\lambda}(1)\geq m_{\lambda}(0)+\sum_{k=1}^{d}m_{\lambda}(\mu_{k})n(n-1)$ .

Using the inequality $(*)$ , we obtain

$\dim V_{\lambda}\geq(1+\frac{K_{\lambda}}{2d})m_{\lambda}(0)$ .

Since $K_{\lambda}=\Vert\lambda\Vert^{2}+2(\lambda, \rho)\geq\lambda_{1}^{2}+\lambda_{n}^{2}+(n-1)(\lambda_{1}-\lambda_{n})$ , it follows that

$\frac{\dim V_{\lambda}^{T}}{\dim V_{\lambda}}\leq\frac{1}{n+1}.$

On the other hand, applying the multiplicity formula to $\lambda=\mu_{1}$ , one sees

$\dim V_{\mu_{1}}^{T}=n-1,$

and by the dimension formula, $\dim V_{\mu_{1}}=(n+1)(n-1)$ . Hence it follows that

$\frac{\dim V_{\mu_{1}}^{T}}{\dim V_{\mu_{1}}}=\frac{1}{n+1}.$
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Thus we have $d_{U(n)}= \frac{1}{n+1}.$ $\square$

Remark. In case of $n=2$ , the theorem provide an estimate $c_{U(2)}\geq 2/3$ ; however, this

may be improved by a further argument; in fact, we show that $c_{U(2)}\geq 4/5$ in [6].
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