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AN ESTIMATE OF THE ISOVARIANT BORSUK-ULAM CONSTANT
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ABSTRACT. We shall discuss the isovariant Borsuk-Ulam constant determined from the
weak isovariant Borsuk-Ulam theorem. We first illustrate some properties of the Borsuk-
Ulam constant and next provide an estimate of the isovariant Borsuk-Ulam constant for
the special unitary group SU(n). ‘

1. BACKGROUND

Borsuk-Ulam type results for G-maps between (linear) G-spheres were studied by many
researchers and various generalizations were shown. In particular, the following general-

ization is well known; see [3] for example.

Theorem 1.1. Let G be (C,)* a product of cyclic groups of prime order p or TF a (k-
dimensional) torus. Suppose that G acts smoothly and fized-point-freely on spheres Sy and
Sy. If there exists a (continuous) G-map f : S; — Sa. then the inequality

dim S; < dim S,
holds.

On the other hand, T. Bartsch [1] proved that such a Borsuk-Ulam result does not hold
for G not being a p-toral group. A compact Lie group G is called p-toral if there is an
exact sequence 1 - T — G — P — 1, where T is a torus and P is a finite p-group.

As a variation of the Borsuk-Ulam theorem, the isovariant Borsuk-Ulam theorem was
first studied by A. G. Wasserman [9]. Let G be a compact Lie group. AG-map f: X - Y
is called G-isovariant if f preserves the isotropy subgroups, i.e., Gy = Gy(;) forany z € X.
In other words, it is a G-map such that fig() : G(z) — Y is injective on each orbit G(z)
of z € X. From Wasserman’s results, one sees the following.
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Theorem 1.2 (Isovariant Borsuk-Ulam theorem). Let G be a solvable compact Lie group.
If there exists a G-isovariant map f : SV — SW between linear G-spheres, then

dimV — dim V¢ < dim W — dim W€
holds.

Wasserman conjectures that this theorem holds for all finite groups. This is unsolved
at present; however, we showed a weak version of the isovariant Borsuk-Ulam theorem

for an arbitrary compact Lie group.

Theorem 1.3 (Weak isovariant Borsuk-Ulam theorem ([5, 6])). There ezists a positive

constant ¢ > 0 such that
c(dimV —dim V€) < dim W — dim W¢
for any pair of representations V and W with a G-isovariant map f : SV — SW.

Definition. The isovariant Borsuk-Ulam constant cg of G is defined to be the supremum

of such a constant c¢. (If G =1, then set ¢z = 1 as convention.)

When ¢¢ = 1, G is called a Borsuk-Ulam group (BUG for short); namely, a Borsuk-
Ulam group G is a compact Lie group for which the isovariant Borsuk-Ulam theorem holds.
In particular, a solvable compact Lie group is a Borsuk-Ulam group by Theorem 1.2, and
several nonsolvable Borsuk-Ulam finite groups are also known; for the detail, see {7, 8, 9].
However, no one knows connected Borsuk-Ulam groups other than a torus. Therefore we
would like to investigate cg and provide some estimates at least. We illustrate general
properties of cg in section 2 and we provide an estimate cg for G = U(n) in section 3; in

fact, we notice
n

n+1
whose complete proof will be written elsewhere.

Cu(n) 2

2. PROPERTIES OF cg

The following result is a generalization of Wasserman’s result and is proved by a similar

argument as in [9].

Proposition 2.1. If 1 - K — G — Q — 1 is an ezxact sequence of compact Lie groups,
then
min{cg,co} < cg < cg.

In particular, if K is a Borsuk-Ulam group, then cg = cg.
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Using this inductively, we have
Corollary 2.2. If 1 = Hy<Hy<Hy<---<H, =G, then

min {cy,/q. < cq.
lgif’r‘{ Hz/Hz—l} —_ G

As an example, one sees the following.

Example 2.3. It follows that cym) = csum) = cpsum). In particular, csyz) = Cso(3) since

PSU(2) = SO(3).
Proof. There is an exact sequence
1—C,— S'%xSU(n) — Un) — 1.
Since C,, is a Borsuk-Ulam group, it follows from Proposition 2.1 that cy) = cs1xsu(m)-
Next, there is an exact sequence
1 — 8" — S x SU(n) — SU(n) — 1.

Since 5! is a Borsuk-Ulam group, it follows that CS1xSU(n) = CSU(n)- LHUS Cy@m) = CsU(n)-
Since the center of SU(n) is isomorphic to C,, it follows that cpsum) = csum)- O

3. ESTIMATION OF cy(y)

Let T denote the maximal torus 7" of U(n) given by diagonal matrices:
t O
T = t; € S'(c C)
O tn
We set
d — dim U7
v =P dim U

In order to estimate cy,), we use the fact cy() > 1 — dy(n) deduced from a result of [6].

l U : nontrivial irreducible U(n)—representation} .

n
n+1"

1
Theorem 3.1. dy) = P

This is proved by representation theory. The irreducible complex representations of

and hence cy(ny >

U(n) are parametrized by A in
e = Ou AT Nz 2 A

Let V3 denote the irreducible U(n)-representation corresponding to A € A. (Then ) is the
highest weight of V3.) Since Resy : R(U(n)) — R(T)"" is isomorphic, where W, = S, is
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the Weyl group of U(n), the character x, of ResrV) is a homogenous symmetric Laurent
polynomial in Z[t¥?, - - - ,tE1] with a form
@) =D mawtt = > ma(p)tht -t (¢ = diag(ty, - ,ta) € T).
HEZL™ Nyl
The coefficient my(u) is the multiplicity of a weight u, i.e., the dimension of the weight

space corresponding to u:
my(p) =dim{v e Vy|t-v=trv forallt € T} > 0.

Let My := {u € Z"||u| = |A| and u < A}, which is a finite set. Here |u| =3 ., u, and
< is the dominant order on Z" defined by

k k
PR =) <> N (1<Vk<n).

i=1 i=1

The following results can be found in [2, 4].

Proposition 3.2. Let A € A and u € Z™.
(1) ma(p) #0 < p€ M.
(2) ma(X) =1 for A € A.

(3) ma(w - ) = ma(1) for any w € W, where w- = (ki Humin)

(4) W, acts on My, by permutation as in (3) and for any u € My, W, (u)NA consists of
one element. Therefore MyNA is a complete system of representatives of My/Wh.

Thus the character has a form
xx(t) = Z ma(p)tt = Z m (1) Pu(t),
HEM), HEMANA

where P,(t) =3 ew, (u t”-
Proposition 3.3. Let G = U(n) and A € A.

(1) dim V3 = xa(1) = Spenr, (1)

(2) dim ViT = m,(0), the constant term of x»(t).

B)dimVI >0 < 0e My, < Aeh={A=0N, W) EZ' |\ =2
Any D d =0}

Furthermore, the dimension of V), is described in terms of the highest weight A € A.

Proposition 3.4 (dimension formula for U(n) ([2, 4])).
Hz<g(>‘ )‘ + ] - 2)
Hz(g(] - )

dim V,\ =
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On the other hand, computation of the multiplicity is not so easy (if A is large); how-
ever several multiplicity formulas are known; for example, Freudenthal formula, Kostant
formula, and combinatorially my(u) can be given as a Kostka number (= the number of
certain semi-standard Young tableaux). We use Freudenthal’s multiplicity formula; see

[4] for example.

3.1. Outline of proof of Theorem 3.1. We may assume A € Ay and A # 0, since
dim V¥ = 0 if A\ € Ay. Let (—,—) denote the (standard) inner product on R™. Let
aij = e; — e; for ¢ # j, where e; is the i-th fundamental unit vector. All a;; form the root
system of type A,-1. Lét Ry = {a;;|1 <4 < j < n} the set of positive roots and set

1 n—1n-3 n—3 n-1
p'"izo‘”( 2 T2 T2 T2 )
a€Ry
Applying Freudenthal’s multiplicity formula to u = 0, we have an inequality
d
(¥) : ma(0)K) < 2n(n — 1)dZmA(uk),
k=1

where K, = |M)?> + 2(\, p) and py, := kay, = (k,0,---,0,—k) € Ag. Since px € M,
(1 <k <d), xa(t) has a form

d
xa(t) = my(0) + me(,uk)Pmc (t) + other terms,
k=1
where P, (t) = 3, ;1" = 3. tf¢*, which has n(n — 1) terms. This shows
d
dim Vi = xa(1) = ma(0) + Y _ ma(ux)n(n — 1).
k=1
Using the inequality (*), we obtain
K

Since K = H)\H2 +2(\, 0) 2 A2+ X2 + (n— 1)(A1 — An), it follows that
dim V¥ o1
dimV, ~n+1

On the other hand, applying the multiplicity formula to A = 4, one sees

dim V:: =n-—1,

and by the dimension formula, dimV,, = (n + 1)(n — 1). Hence it follows that
dim V1 _ 1
dimV,, n+1

27
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1
Thus we have dU(n) = m O

Remark. In case of n = 2, the theorem provide an estimate cu(z) > 2/3; however, this

may be improved by a further argument; in fact, we show that cy() > 4/5 in [6].
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