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L*°-decay property for parabolic-elliptic Keller-Segel
systems with porous-medium diffusion

Sachiko Ishida*
Department of Mathematics
Tokyo University of Science

Abstract. This paper deals with the Keller-Segel system (KS)q of parabolic-elliptic type
with porous-medium diffusion. In this type Sugiyama-Kunii [16] established the L"-decay
property (1 < 7 < oo} of solutions to (KS)q with small initial data when ¢ > m + 1% (m
denotes the intensity of diffusion and ¢ denotes the nonlinearity). However, the L°-
decay property was not obtained yet. Therefore this paper gives the L>-decay property

of solutions to (KS)o with small initial data when ¢ >m + .

1. Introduction and results

In this paper we consider the following quasilinear degenerate Keller-Segel system of
parabolic-elliptic type:

% =V (VU™ —u47tVo) in RY x (0, 00),
(KS)o 0=Av—v+u in RN x (0, 00),
u(z,0) = uo(z), z € RY,

where N € N, m > 1, ¢ > 2. The initial data satisfies
(1.1) up > 0, up € LI(RN) N LOO(RN).

The minimal Keller-Segel system of parabolic-parabolic type, i.e., (KS)g with m = 1,
q = 2 and the second equation replaced with

% =Av — v+ u,

was proposed by Keller-Segel [6], and power type was studied by Sugiyama-Kunii [16]
(see also Sugiyama [13] and Ishida-Yokota [2], [3]). On the other hand, the system (KS),
of parabolic-elliptic type was considered by [16]. In particular, (KS)y with m = 1 and
g = 2 is called the Nagai model, and investigated until now (see e.g., Nagai-Senba-Yoshida
[11], Nagai [10], Sugiyama [12], [14], [15] and Kozono-Sugiyama [7]; see also T. Suzuki
[18]). These models describe a part of cellular slime molds with the chemotaxis at the
life cycle. Usually u(z,t) shows the density of cellular slime molds and v(z,t) shows the
density of the semiochemical at place x and time ¢.
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The purpose of this paper is to give the L*-decay property of solutions to (KS), with
small initial data when ¢ > m + % Substituting the second equation Av = v — u into
the first equation in (KS)o implies

o
(E1) a—t‘ = Au™ — V™ Vo — u T Ay

= Au™ — Vui™t Vo + uf — w1,
This is analogous to the following nonlinear degenerate heat equation:

0z

(NLD) = Az™ 427 in RN x (0, 00).
The studies for (NLD) and (KS)o in Table 1.1 are currently known.
(NLD) (¢ > m+ 2) (KS)o (g =m+ £)
Ir B (t + 1)‘NZmﬁ,15+2'r_:l
Decay property (Sugiyama-Kunii [16])
of z(t) or u(t) P
L™ (Kawanago {5]) Unsolved (A)
Barenblatt sol. (m > 1)
. (Luckhaus-Sugiyama [8])
) L - Heat kernel (m = 1)
of 123&1;3‘;/;05( ) (Luckhaus-Sugiyama, [9])
as t — oo Barenblatt sol. (m > 1)
- (Kawanago [5])
L Heat kernel (m = 1) Unsolved (B)
(Kawanago [5])

Table 1.1. The known results for (NLD) and (KS)o with small initial data.

Therefore our aim is to give an answer to the unsolved part (A) in Table 1.1.
Before stating our result we define global weak solutions to (KS)g.

Definition 1.1. Let T > 0. A pair (u,v) of non-negative functions defined on R x (0, T)
is called a weak solution to (KS)g on [0,T) if

(a) u € L>=(0,T; LP(RM)) (Vp € [1,00]), w™ € L%(0,T; H(RM)),
(b) v € L=(0,T; HY(RY)),
(c) (u,v) satisfies (KS)o in the distributional sense, i.e., for every ¢ € CP(RY x [0,T)),

T
/ / (VU™ Vo —ud Vv - Vo — up;) dedt = / uo(x)p(z,0) dz,
0o JRV RN

T
/ / (Vv - Vo + vp — up) dedt = 0.
0o JRM

In particular, if T > 0 can be taken arbitrarily, then (u,v) is called a global weak solution
to (KS)O



We now state our main result in this paper.

Theorem 1.1. Let N e N, m > 1, ¢ > 2. Let m and ¢ satisfy
>m+ 2
q N
Assume further that ug satisfy (1.1) and

luoll, 3 (g < MIN{8, 8 (g my» Oy Oung}  when g >m+1(N 2 3), N =1,2

(1.2)
Juoll 3 < min{d,, 5, Gu,ry Gu,ro } when g <m + 1(N > 3),
where )
4 4 -2 T
bur = min {1, AT (a2 ey
: 20-2rC"’ \29-2(r +m — 1)2C"

C'=C'(r,m,q,N), C" = C"(r,m,q, N) r3 = r3(m, q, N) (defined in subsection 3.2) and
ro=max{N —m+1,m—3,N(g—m) —m+ 1} are positive constants. Then (KS), has
a non-negative weak solution (u,v) on [0, 00) which satisfies the following decay property:

(1.3) ()] oy < Kt~ 7T = Kt™Fm097 | a.a. ¢ € (0,00),
(1.4) ()] ey < Kot + p) T, aa t € [5p,00),

where ¢, = —Zfi(q —-m), K = K(|lug| pa, Crg,73,m,q, N) > 0 is a constant, p € (0,1] is
arbitrary and KP = I(P(pv CT31r3a ”uOHLl’ HUO”L‘?M HUO|IU3>va7N) (_> o0 as p — 0) is a

positive constant, where C,. is the constant given in Proposition 2.1.

The decay rate in Theorem 1.1 may be best possible, because of the following two
reasons.
Flirst Reason: As stated above, (KS)o can be rewritten as the equation (E1) like (NLD).
From comparing the diffusion term Au™ with the aggregation term v in (E1), (KS)o has
the global solvability and the solution has L"-decay property when ¢ > m + % and the
initial data is sufficiently small ([16]). Kawanago [5] showed the L®-decay property for
(NLD) when ¢ > m + 2, that is, if the initial data is sufficiently small, then (NLD) has
a global solution which satisfies

'lz(t)HLoo(]RN) S A40t_;1_1T = Motn*}—v'(?n'%,

where ¢, = £ (g —m) and My > 0 is some constant. Hence we expect that the solution
o (KS)p has
1 N
llw(t) || Loomry < M1t~ a1 = Myt~ N1+

where M, is some constant.
Second Reason: Sugiyama-Kunii [16] showed the L'- decay property of solutions to (KS)g:

(1.5) Nlu@ller <C (1+8)7% re[l,o0),
where

N r—1
Nm—-1)+2 r

o =
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Giving an eye to the decay rate «, we have

N T_1_+ N
Nm-1)+2 r Nm—-1)+2

(r — 00).

Hence we expect that the solution to (KS), has
N
Hu(t) ”Loo(]RN) < Myt Nem-TiF2

where M, is some constant.

One of the difficulties in showing the L*°-decay estimates is that the coefficient C, — oo
as r — oo in (1.5) (see the definition of C, in Proposition 2.1 below), and hence the L*°-
decay property is not obtained by the limiting process in (1.5). To evade this problem and
obtain the L*-decay property we establish the following two kinds of L>°-L" estimates
without assuming that the initial data is small (see Section 3):

(M lu)l =5 < ) (Sulh)ls @my + ()7 ),

(1) )l gmary < CONE+ )Tl = §)l5mqum) + ol (¢ + p) T2,

where ¢, = J(g —m), C(r), and 5’(7‘) are positive constants. We can obtain the L-
decay properties (1.3) and (1.4) by combining the L’-decay estimate with (I) and (II),
respectively. The condition ¢ > m + £ is necessary to show that the coefficient C(r) is
bounded as 7 — co. The proofs of (I) and (II) are based on R. Suzuki [17] in which he
studied the following equation:

0z m g v TN
(E2) EzAz +a-VzP+29 inRY x (0,00),
where m > 1, p,q > 1, a € RY, a # 0. He proved that the solution to (E2) has the
following decay property when ¢ > m + —]2\7: if the initial data is sufficiently small, then

1 2()] poo(mrvy < M3 Hlin{t_N(m'IY)+24*,t—N(m%“}, a.a. t>0,

where ¢, = %(q —m), M3 > 0 is some constant. Also from this, we can expect that the
solution to (KS)y has the L*-decay properties (1.3) and (1.4). Moreover, he showed in
[17] that the solution to (E2) behaves like the Barenblatt solution (m > 1) or the Heat
kernel (m = 1) when ¢ > m+ % and p > m + §.

Finally, we glance at the unsolved part (B) in Table 1.1. From the known results for
the behavior of solutions ([5], 8], [9] and [17]), we conjecture that the solution to (KS),
has a similar behavior in the case where ¢ > m + % and the initial data is small. This
conjecture will be discussed in our forthcoming paper.

This paper is organized as follows. In Section 2 we recall the L"-decay of solutions to
(KS)o. First we deal with the case where N > 2 in Section 3, because the approximation is
different between more than one dimension and 1D. Section 3 consists of two subsections.
Section 3.1 gives the L*®-bound of solutions to (KS)g. Section 3.2 is the main part of this
paper, where the L*°-decay of solutions to (KS)g is obtained. Finally we consider the case

where N =1 in Section 4.



2. L"-decay property

First we state the result on the global existence and L"-decay property of solutions to
(KS)o. This proposition is stated in [16, Theorem 3].

Proposition 2.1 (global existence of weak solutions to (KS)y). Let N € N, m > 1,
q > 2. Suppose that m and q satisfy the super-critical condition, i.e.,
q=>m-+ -2—
- N

Let the initial data satisfy (1.1) and the smallness condition (1.2) in Theorem 1.1. Then
(KS)o has a non-negative global weak solution (u,v) which has the mass conservation law:

(2.1) lu®)llzy@yy = lluoll gy, >0,

Moreover, t = [lu(t)||zr@yy (1 <7 < 00) is a non-increasing function with the following
decay property:

(2:2) [u@llr@vy < C(1+28)7"%, 1 €[l,00), £ 20,
where

’ N r—1
2.3 = .
(23) “ Nm-1)+2 r ~’

(r+m—1)? 1 N __r=l

24) C,= . N N0 Tyl b,
(24) max{ S s (Vo) ol }

Remark 2.1. The non-negativity of the solutions is obtained from the standard argument
and the comparison principle (see [16]).
Remark 2.2. In [16], they assume the smallness only HuOHLg(q_m) (N > 1). However

from the approximation to the nonlinear term in the first equation in (KS)g, when m+ /lv <
g<m+1(N > 3), we should assume the smallness of HUOHLWJ} (see [4]).

Remark 2.3. In [16], it seems difficult to prove the L*-bound of the approximate solution
without assuming that uy = 0. Indeed, they assume the smallness ”’U/O“LNgq—mz < yr =

Cor”q{Tl to obtain the L™-estimate. If r — oo in this assumption, then it should be
HUO“LNgq—ml = 0. To overcome the difficulty we give a proof by using Moser’s iteration
technique (cf. R. Suzuki [17, Section 3.1]).

3. The case where N > 2

In this section we establish two kinds of “L®-L" estimates” of solutions to (KS),. The
first one is for the L>-bound (Proposition 3.1) and the second is for L>-decay property
(Proposition 3.5). In the end of this section we prove Theorem 1.1 (N > 2). Now we
introduce the approximate problem:

Ou, m_
c';jf =V (V(ue + &)™ = (ue + €2-2) 20, Vo) in RV x (0,T), (1),
(KS). 0=Av, — v +u in RY x (0,7), ---(2).

ue(z,0) = upe(x), ve(,0) = vy (), z € RV,
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where N > 2, m > 1, ¢ > 2 and £ € (0,1). The initial data ug, € C(RY) is given as
Uge := (pe * ug) (¢, where p, is a mollifier such that

05&ec?m%,mm&c3m@,/;uwm:L
]RN

and (. is a cut-off function, i.e., { () := ((sz), where ¢ is a fixed function in C$°(RY)
such that

os<51,qm={l(t

Remark 3.1. Let T > 0. Let u. be a solution to (KS), on [0,T"). Then the following
continuity holds:

(3.1) lue(@)ll r@ey € C([0,T1) (¥ € (1, 00)).

Indeed, reading the standard argument to construct the local (approximate) solution
again (see [16, Proposition 8, Lemmas 11 and 12|, Amann [1, Theorem IV.1.5.1]), we
see that u, € C([0,T}; L*(R")) for every o € (N, 0¢). This fact together with the mass
conservation law (2.1) implies the continuity (3.1). This continuity will be used in Lemma
3.3.

Remark 3.2. If ug satisfies the smallness condition as in Theorem 1.1. then the approx-
imate solution u. has the same L™-decay as (2.2) and t — [|uc(t)||L-r~y i & non-increase
function.

3.1. L*°-bounds

The next proposition shows the L®-bound of the solution u to (KS),. Indeed, (3.3)
(in Proposition 3.1) implies that ||u(t)|| e@®r) < Ko a.a. t € (p, T) for every p > Q.

Proposition 3.1 (L™-estimate of solutions to (KS)g). Let N > 2, m > 1, ¢ = 2,
e €(0,1) and T > 0. Let (u,v) be a weak solution to (KS)o on [0,T). Assume that m
and q satisfy

(3.2) >m-+-2
: q> N

and ug satisfies (1.1) and the smallness condition (1.2) in. Theorem 1.1. Then the following
estimate holds:

(3.3) lu(t) pm@ny < Kit” 075, aa. t € (0,T),

where ¢, = J(g—m), K1 = Ki(|luollze-, Cryym, ¢, N) > 0 and C,, is the same constant
as in Proposition 2.1.

The proof of this proposition employs the similar method to R. Suzuki [17, Section
4]. For this purpose we prepare three lemmas.
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T. Let
P <1,

Lemma 3.2. Let N >2,m>1,¢>2,e€ (0,1), T >0and 0 <t <t
(ue,ve) be a unique solution to (KS)e on [0,T). Let (t) € CH{[ty,ts)) with 0
Y(t1) =0, P(tz) = 1. Assume that m and q satisfy (3.2). Then forr > q,

IA A

dm(r —q+1)(r —q) [®
(r —gq+m)?

r— rgrm y
(34) Nl g, + 17 Ol
# e U [ 9 Oy
to
< / W () e (D5 ey

to t2
+277%(r — q) (/ ote ($) 1z eyt + 57«,1/ e (5
t)

t1

o dt) .

Lr q+2(]RN)

Proof. Let r > 2. Multiplying the first approximate equation (1), by 47! and integrating
it over RV, we obtain

35) = ety
dml(r r4m—1 2 4 —1
< - A )y~ P [0

o . -
+ Uy + £3-2)9" 2 Vo, - Vol 1 dz.
£ € €
RN

Multiplying (3.5) by 1¥(t) and integrating it by parts over ({1, t2), we see that

I O A L
e [ o1 Ol
_Am(r - 1)em!

r

] to r g2)
/t ST ()20 ey + 7 /t W) Ty dt.

We denoted by I the third term on the right-hand side of (3.5). We make an estimation
of I,. Letting

F(s):z/(r-i-s“m_?)qg’" Ydr, 72>0,5>0, € (0,1)
0

and noting that
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we find by (2), that
(3.7) IL=—(r- 1)/ F(ue)Av, dz
RN
=—(r— 1)/ (Ve — ue) F'(ue) dx
RN
- £ € dz
<(r 1)/RNuF(u) X

q—2 (0 __ g—2.m(,. 1

S )] / A P G| / W da.
r+q—2 Jrv T RN

Hence it follows from (3.6), (3.7) and 0 < 9 <1 that

dmr(r—1) [®

(r+m-—1)2J

emdm(r

r+m—1
(3.8) ue(t2) |-y + () |Vue 2 (t)HiQ(IRN) dt
/ QL’ HVug HLO(IRN) dt

< / W) (8 gy

t2
F 22— 1) / DI gy + e ) .
Replacing r with r — g+ 1 in (3.8), we obtain (3.4) for r > q. ad
Lemma 3.3. Let N > 2, m > 1, ¢ > 2, ¢ € (0,1) and T > 0. Let (ue,ve) be a
unique solution to (KS). on [0,T). Put [ = [r,7+ s] and I' = [t — 0,7 + 8] with

= andr, > q, +qg—11is

0<o<t<T+s8<T. Putq,:=%(g—m), h:= sup [lu.(t)l|%

te[0,7)
some constant. Assume further that m and q satisfy (3.2) and § > 0 satisfies

(3.9) g7t < 1.

Then forr >r,,

(3.10) 10 (Y1 k(r—ga1)4m—1 + Z1k(r—g41)) *
4
< (—6“1“ + 297 (r — q))Ym + 297 (r — @) 21 g2
o

where k=14 %, uo = po(h,m,q, N) and

=// ugdmdt+(~8—+—g)—h5r, Ly = // u, dxdt.
1 JRY e ‘ 1JRN

Proof. Let 7 > q. From (3.1) we can take £ € I such that

rnax/ up (L) d:r:/ L) da.
tel  JpN RN



Let . N
~ ~T7+0 ~ - 7
Y(t) = =———, t1i=7—0, =t
W= b ’

and note that 0 < ¢ < 1, P(£1) = 0, %(f2) = 1,0 < P'(t) = 72— < Land [f1, 6] C T/
Then we can substitute w, t; and £, into 9, t; and ¢, in (3.4) and thus, we have

(3.11)
max/ ul" It (t) do
RN

tel
/]//RN ot gt + 2972 (r — )/(nue(t)ngr(w)+em11u5( = W(RN)) dt.

Next letting

. 1, tel[r,r+s, -, -
t):= tii=T—0, la:=7T+Ss
v {—0“2(t -7 +1, ter—o,7), ' 2

and noting that 0 < ¢ < 1, z@(t}) =0,9(5) =1,0< 7,!3’(75) <ZandC [t1,65) C I', we
can substitute zﬁ, t, and ¢, into 1), t; and tp in (3.4). Hence we see that
(3.12)

—q+1

2 /1 | /R T dadt + 277 (r — g) /1 / (nug O @y + gmnug(t)u;:zjz(m) dt,

where 1 := min{1, igf W}, vy := min{1, inf dm{r—9)Y and r, > L(g=m)+g-1
T>Tw r

, (r+m—q)* Sr. T—q+1
is some constant. Combining (3.11) with (3.12), we have

‘ r—g+1
(3.13) max » wy ITH(t) dx

A% e dt + ™! Ve B @) dt
+ v | us (O ey dt + ™ i “ ue * () 2@wm

/p/RN 0+ o dt 4 29- 1(7’—-q)( I/||u5 5 dt + ™ /Ilue T dy )

We estimate the first term on the right-hand side of (3.13). Set

N _
Es(t) = {z € RY;uc(z,t) 2 6}, ¢.:= (g —m), b= sup Jlue()|%. e,
te[0,7)

Noting that |I'| = s + o, we see that for r > max{q, 7"*} =r.(>q +qg—1),

(3.14) / / ug“q“dxdt:( / / + / / )ug‘q“da:dt
rJRrN 1" JEst)  J1 JRN\E;s(t)

< gt / / ul dxdt + 674" (s + o).
rJry
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To estimate the left-hand side of (3.13), we use the Sobolev type inequality in [17, Lemma
2.9]:

(3.15) [/{/Rdedm]% <Cp {ntlgx/w ;fqad“/]/wwfﬁdxdt},
)

where a >0, 6 =2(% +1), k=1+ %, f € C(I;L*(R"Y)) N L*(I; HY(RY)) and Cy is a
r+rmn—
positive constant depending only on N. Applying (3.15) with f = u. * anda = %EJTJ;)

r—g+1
or f=u * and a =2, we find that forr > ¢ —1,

(3. 16
k 1 1 ® 1 =g
C’ // (r=g+1)+m- dxdt} <max [ w7 () da:+/||Vue 2 ()| gn dt,
RN I

tel RN

1 . T—gq+1 .
(3.17) // froard) drdt} < max u ) de 4+ [ Vue ® (t)HZL?(RN)dt'
CO RN tel RN I

Let r > max{r,,q — 1} = r,. Plugging (3.16)—(3.17) into (3.14) to left- and right-hand
sides of (3.13), respectively, we have

1
(3.18) / / ykr—a+)+m= ld:vdt} / / ukr-a+1) dxdt}’“
l/k RN 203/10 RN

{ ~§79H L 297 (r — ¢) // ul drdt + (S+J)5’° g—atlp
I RN

+ 297%™ (r — q) // ul" 72 dxdt.
r Jry

Adding #2799t} to the both sides of (3.18), we obtain

1
(3.19) ——-—V?/k {// k-t +m-1 d:rdt}k +229 i 7 gr-a--atip
2C, 1JRN a

1
em-1 Ic(r g+1) k
c'l/k / /[R ) dmdt}

< [Bsert p2ir - o)) / / Wl dudt + ~3-7 (s + o) b7
ag I JRN g

+ 297 1™ (r — q)/ / ul~7? dxdt
I JRN

[ §-TH 4 99 1(r _ g) // ol dzdt + S+")h<v}
I ]RN 6

+ 297 1™ (r — q)/ / ul =92 drdt.
rJRry

kr—q+1)+m—-1=k(r—qg.—qg+1)+q. +q—1,

Since 067! < 1 and



it follows that

(3.20) (54 O graavs _ {S+0 st tme 1}%( 1 >%<3+0h>1"x
'

o gbi—1 o

1-1 (é+0)]2 k(r—g+1)+m~1 g
H b

i\

=

Taking (3.20) in the left-hand side of (3.19) and using the inequality (A+ B)% < A% +B
(A, B > 0), we have

/'LO{// uk(r—q+l)+m—1 dxdt + (S + U)hék(1‘—q+1)+m»—1
£
I JRN

g9
m— 1// k(r—g+1) dtdt}%
RN

h
[ 5 q+1+2‘12r—q // ol dudt + 3:5”’) 5}
7 ]RN

+ 207 1e™(r — g) / / ul "9t dxdt,
rJr¥

2, hl_k} Thus we obtain (3.10). O

(‘r,

where o 1= min{ 225 0 20

Lemma 3.4. Let N>2, m>1,¢>2,c€ (0,1), T>0and0 < x<7<7+s5<T.
Let (ug,ve) be a unique solution to (KS)e on [0,T). Assume that m and q satisfy (3.2)
and § satisfies

X6t < 1.

Then the following estimate holds:

1—(ge+g—1
(3.21) el e, RN))

< [2B2k)RT] P { (1 4™ / / “drdt+ s+ )hé” Q*}
RN

where k = 1+ %, ¢ = Z(g—m), 11 = ri(m,q, N) > 1, h = sup fJlu.(t)|% and
tel0,T)
B = B(h,r1,Xx,0,m,q,N) > 0 are constants.

Proof. Let g, := %—(q~m‘), k= 1+%, Mi=¢G+qg—1 Ag:= %—kq—l and let r, > Ag
be some constant. First let the sequence {A,}, C R be defined by

A1 =7y = max{r., Ao, Ao}.

{/\n = o1 —q+ Dk+m—1,

Thus

(3.22) An = Ao+ (r1 — Xo)k™ L.

133



134

Since k =1+ % > 1, it follows that

At > An, 71 <A <rk™! and  lim M, = co.

n—oo

Next define the sequence {A,}, C R as

An—q+2=(An-1—q+ 1k,
A1 — + 2= T,
and then,
An = Ao + (7"1 - Ao)kn_l.
- Since k =1+ % > 1, it follows that

A1 > Ap, 1 <A< k™! and lim A, = co.

n—o0o

Let I, := [t — 27"y, 7 + 5] and § > 0 such that x67~! < 1. Then (3.9) holds for 4:
{(r=27) - (-2} = (27" <1 (n>1)

and thus, we can put [ = I,,4; and I’ = [, in (3.10). Setting

27"x)h
Jp = / / u drdt + &S—j_——jg)—»é’\" + em/ / uln =% dydt,
In JRN 94 In JRY

we see from (3.10) that

(323) MOJH-H% S { + 2q_1()\n - Q) + QQ*I(An - Q)}Jn

2-ny 491
Now we evaluate the coefficients in (3.23). Noting that 27"xd9"! < 1, A, < rik™! and
A, <7k, we find that

4

Rl + 277 (A — ) + 277 (An — ¢)

(3.24)

R g—1 _ g-1 _
§2_nx(5q_1{4+2 (An —q) +277 (A, q)}

041

< W(/\n + Ay)

IA

From (3.23) and (3.24) it follows that

2qT1

Pox 09!

(3.25) Joi1® < 2"k 1J, =: B - 2"k 1 J,.
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Therefore we obtain

1
(3.26) (Jng1) ¥
< (B-22kY)FT (B 2 F L x (B 2)J)

n— n—2
_ (QB)M—1~T+W_1~?+'f'“ (Qk;) kn—fr+m+"‘+%Jl.
From the definition of J,, and (3.22) we see that

o s
liminf(Jp41) ¥ > lim mf / / ulr da:dt Tnri TR0
n—oo 72"y JRN

n—o0

——-r —A
n+1-70 17A0

> l1mlanu€||L\n+l(T L] (RVY)

Ao
- “u5“7Ll°° (1,748, L0 (RV )Y

Hence it follows from (3.26) that

r1—A0
”Ue “L1°°(T(t‘r+s;L°° (RN))

< lim inf(JnH) w
n—co

< lilllsllp(2B)FT+m+ +1(2k)w——r+;’%:2'r+ +’€J1

n—c

= (2B)%7 (2k) &7 ((1+¢m / / ul dudt + (s + X)ha”—%).
T—-x JRN 2

Therefore we obtain (3.21). O

Now we prove Proposition 3.1. From Lemmas 3.2-3.4 we can obtain L*-L" estimate
without assuming that the initial data is small. In the proof of Proposition 3.1 we assume
the smallness condition of the initial data to apply the L"-decay property of .

Proof of Proposition 3.1. Put ¢, := %(q —m), k:=1+ % and let 7, > ¢, +¢— 1 be
some constant. Let ry := max{m + ¢ — 2,7, ¢ + ¢ — 1, % +¢—1fand0< x <t<T.
From Lemma 3.4, u, satisfies (3.21). Moreover, (3.21) implies that for a.a. 0 <t < T,

B27) s

t
< (2B)7 (2k) & (1+6m)/ / ult dwds + Lhene |
t—x /RN 2

where B = #25’; : >0, h = t%gp [lue(t )H%‘“‘N(RN = ||uge || Fo. and po = pro(m, q, N, h) is the
S

same comtant aq in the proof of Lemma 3.3. Let 0 < t < T. Taking x and § such that
=~ L in (3.27), and noting that ¢ — [luc(t)||r g~y is & non-increasing function
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on [0,T) and using the L™-decay property (see Proposition 2.1 and Remark 3.2), we see
that

t T1—gx
r1—(q*+q—1) m r i?: E)l_ q—1 }
le @y ™ < e f@ +em) / /RNuElda:ds+ °(;

< Cl{(l +5m)%/uw uy! (%) dr + g<§)1—%:_‘11:}

<o remont(Lar) T L (L)

19\9 2\2
<= T+ em, + g}t‘J——' =l

where
k

1,k
C, = (2q ”)"“1 (2k) T2

and C,, is the same constant as in (2.2). Thus we obtain

(3.28) e ()] ooy < Kole)t™ 77
= Ko(e)t™ Nim—l\ﬁ“%, a.a.te (0,T),

where

1
Ko(e) = 27:’{01(1 +&e™Cry + g}m

It follows from (3.28) that for a.a. t € (0,7),

(3.29) late (8) ]| oy < Kole)t™ 0w

This inequality and |[uge| - < ||uollzr (1 < 7 < 00) show that the right-hand side of this
inequality is independent of . Hence we see that

lu(®)]l Loomry < ligl_jglf”’us(t)“mo(w)
< lim iglf[(o(s)t—mg)‘ﬂia_«
E—>
— Kyt~ Vo

where K := Ky(1) > 0 is a constant which depends on ||ug|/ze, Cry, 71, m, ¢ and N,
Therefore we obtain the desired inequality (3.3). O

Remark 3.3. The estimate (3.3) holds for some r > r;. In fact, by recalling the defini-
tions of A\, and A,, we see that if \; = A; = r, then (3.3) holds with r; = r.
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3.2. L*°-decay property

In this subsection we prove the L*-decay property of solutions to (KS)o.

Proposition 3.5. (L™-decay property) Let N > 2, m > 1, ¢ > 2 and p € (0,1]. Let
(u,v) be a global weak solution to (KS)g on [0,00). Assume further that m and q satisfy

2
3.30 > £
( ) q>m+ N

and ug satisfies (1.1) and the smallness condition as in Theorem 1.1. Then the solution
w has the following decay property:

(3.31) ()|l poomivy < K,(t + /))'Nf"ﬁﬂ”, a.a. t € [5p,00),

where [(P = ](P(p> Ty Cr, HUOHle HUOHL"M ‘UOHL’) m,dq, N) with G = %(Q“m) andr > 13 =
r3(m, g, N) are positive constants and C, is the same constant as in Proposition 2.1.

The proof is based on [17, Sections 5-7]. To this end we need three lemmas.

Lemma 3.6. Let N >2, m>1,¢>2,€(0,1), pe (0,1] and ry is the same constant
as in Section 3.1. Let (ug,ve) be a unique solution to (KS); on [0,00). Assume that m
and q satisfy (3.2) and gy satisfies the smallness condition as in Theorem 1.1. Then for
r>r; and a.a. t € [2p,00),

r{1- 2L (1+4)}

(332) HUE(tM‘Z;(?;g“I\-T%’)_l) S C;/)Hut?( >“LT(R;«')q* )
where Gx = %(q - m) and C//) = C,l)(p,é‘, 7, |,u0€”[f7 HU’OEHLQ*)ma d, N) > 0 is a constant.

Proof. Let p € (0,1], 7 > 71 (see Section 3.1), t > 2p, ¢ = Z(¢—m) and k = 1+ Z.
Since ¢ = [Jue(t)|| - vy is & non-increasing function, we can take x and ¢ such that

x=p. 8= (et = 2w, (ool ) (D)

in (3.27) with r; = r (see Remark 3.3). Hence it follows that for a.a. ¢ > 2p,

r—{g«+q—1
e () |55

_(g=1k
—an k—1
< Gy (el = P o)

Lo [ ol oy e+ 5 (PP

- ph
<Gyt = M TGwy) (L4 ™)+ el et = D)oo

L7 (RN)

1-4=La+ L)

=, (o1 + &™) + Slhunl i) (| et = o)
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where

2q+17. rr(ti—l) kf &
Cp = (5 Ineclggony) ™ 2R

and /i is the same constant as in the proof of Lemma 3.3. Therefore we obtain (3.32),
where C) = Cp(p(1 +e™ ') + %l\u()e“;). O

Lemma 3.7. Let N >2, m>1,¢g>2,e€(0,1), pe (0,1] and t > 2p. Let (ue,ve) be
a unique solution to (KS). on [0,00). Assume that m and q satisfy (3.2). Put

(3.33) G(s) :=(r—1) /Os('r +ea2)i2 gr,

(3.34) we(T,8) 1= uge™ J2a G oo ) o

Then w, satisfies the following:

(3.35) lwe @)l wvy < lluoeller, ¢ 2 2p,
d r
(3.36) 7| wl Mt dx + /N IVwé(t)|*de <0, r>m, t>2p,
R R
(3.37) t = [Jwe(t)||Lrwny (1 <7 < 00) is a non-increasing function on [2p, 00),

where py = p1(m) is a positive constant.

Proof. First we prove (3.35). From the definition of w, and the mass conservation law,
we see that for ¢ > 2p,

lwe@®) |l 21@ryy < ue(B)ll @y = [Juoe] 1

Thus we obtain (3.35), Next we prove (3.36). Let r > 1 and t > 2p. Differentiating w,
about ¢, we see by the first approximate equation (1), (see (KS), in the top of Section 3)
that

€ _ - ‘u S o) ds
(338) ut} = e f?p G(“ 5( )”L )
X ( ’ ( ' (uE 6) (ue £q Q)Q 2’LLE VQ}E) - ugG(”UE(t)”[oo)).

Multiplying (3.38) by w?~! and integrating it over R, we have

(3:39) ~ 2 lwe (Ol z-go)

= (e‘rf;v G(”“‘(s)””")ds) X ( V  (V(ue + &)™ — (ue + e%)q—%ﬂ%)ug* dx
RN

- [ uEGluO) da)
.

— (e—rf;,,c(llm(s)luoo)ds) x (I — Iy).



139

By a similar argument from (3.5) to (3.7) in Lemma 3.2, it follows that

dm(r — 1) rm-1 4m(r — 1)em1 o
B3:40) Iy <~ VU 0 ay — T — VOl
+(r — 1)/ ue F(u,) dz,
RN
where

F(s):= / (1 + 55%)‘7‘27""‘1 dr.
0

Recalling the definition of the function G, we see that

(341) (r— 1)/ ue F(ug) de — I
RN
e N e (9] oo N
=(r— 1)/ {ue/ (T+€f1——?)q‘27rld7—u;/ (T-i"&“?‘—{")qV?dT} dx
RN 0 0

<0

Hence it follows from (3.39)—(3.41) that

(3:42) D)l gy < (e O ONIEY gz - 1)
1 m—1 r
(! Ve Ol + S 196 Ol ).
Since rimel \ rm—1
1905 gy = (emm_l)fgp(;(nuenm)ds) NVwe 2 [Ragn
by the definition of w,, we see from (3.42) that

d r m—1) [} ue(s)|| oo ) ds dmr(r — 1) rige=l p
(3_43) %HME(QHU(RN) < —6( D) f3, Glllue(s)llLee) @ m,fvwe : (t)“i’Z(RN).

Replacing 7 by r —m + 1 in (3.43) and setting u; := igf M@%l)(_r‘_@, we obtain (3.36)
for r > m. Finally we prove (3.37). From (3.43) we see that for 7 > 1,

d r
El'w€<t)“[/‘(]RN) S 07 t Z 207

0t = [lwe(t)fLr@ny (1 <7 < 00) is a non-increasing function on [2p, c0). a

The next lemma gives the L®-estimate of w,. The lemma similar to Lemma 3.8 is
proved in [17, Section 6], where they considered the following function w, instead of w:

T, 1) = e exp(— /2: lue( )% g, ds).

The proof starts with (3.36) and uses (3.37) with r = 22 r = 2 and (3.35). Thus the

next lemma is proved by using not the definition of w, but the property of w,.
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Lemma 3.8. Let N >2, m>1,¢>2,e€(0,1) and p € (0,1). Let (ue,ve) be a unique
solution to (KS), on [0,00). Assume that m and g satisfy (3.2) and uo satisfies (1.1)
and the smallness condition as in Theorem 1.1. Put G and we as in (3.33) and (3.34).
Assume further that §' > 0 satisfies

NI <1,
Then,
_N t p
. - < /m—1 2 r{ 2 _F mr—1 >
(344) [[we(t)l|peqeeny < Ca((t40)8™ ) (/,RN“’E(2 2) dotllucell126" ), ¢ 5p,

where C3 = Cs(||uoe|| L1, m, g, N) is a positive constant.

Proof of Proposition 3.5. Let p € (0,1], r > r; (see Section 3.1) and ¢ > 5p. We use
the same notation as (3.33) and (3.34). Recalling the definition of w,, we see that

(3.45) /RN wf (5 - £ o < /RN uf(5 -2,
(3.46) Jese ()l ey < exp / G(llue(s) 1) ds ) e (&) oo

It follows from (3.46), (3.44) in Lemma 3.8 and (3.45) that
(3.47)  llue(B)l ooy

r ) Gllue ()l oo ds m—1y =% ANAYS -1
< Cye oo w)ds (¢ 4 p)5m=1) 2(/RNUE(2 2)dl+uu05uua )

Take &' = (t+ p)"’\’fml—vﬂ+2 in (3.47). It follows from the L"-decay property of u. (see (2.2)
in Proposition 2.1 and Remark 3.2) that

1
[t (1) omqy < G S Ol

_ t o N1
(4 o) 7T ([ (5 8) do o+ fuolin(e+ p) )

< CyCrer 3 Olllue(5)loe) ds
— r

— t - NmT_—l 2 _ _N({-1
() (5= £ 41) T o+ ) )

= Gy’ 3 Clllue(®)llo=) ds(y 4 oy~ WEm-mws

where

Cy = C3CT (27T + [luge || 12),

Cs and C, are the same constants as in Lemma 3.8 and Proposition 2.1, respectively.

Hence we have
t

(348)  lue() |l Loomny < 04% exp(/ G(|lue(8)ll Loomm)) dS) (t+ P);N(ml’v"*r“y t>5p.

2p



Here we estimate the function G. From (3.32) in Lemma 3.6 and the L"-decay property
(2.2), it follows that a.a. t > 2p,

(3.49) G(Hue( $)|l Leo(ry) ds

|ue<<>||Loo
(r—1) // +£3-2)0 2 drds

’]"——1 L I m{g—1
= 2o [ { gy + 2y %5 Y
2p

q
—1 rt e o B
S ; / {((Cf/’”ue( )|lL{Tl(Rr>q*(1+ )})1*(q»‘+q—1) +€ﬁ)q o qq-zl }ds
qg—1/y (g=1)
_1 t mo — m(g—
_<_7’ /{(05(S—~p+1)'ﬂ_+_€qv2)q 1“6_%%?_11}d5’
q_l 2
where v 1 ) . |
6:~__JT;>__{1_q— () |
N(m =1) +2 " 2/0r—(g.+q—1)

Cy, is the same constant as in (3.32) and Cs = C5(C}, Cy,7,m, ¢, N) is a positive constant.
From (3.29) (see the proof of Proposition 3.1), (3.48) and (3.49) we see that a.a. t > 1,

(3.50)  [lu(t)]| Lo mer)
< lim ié]fl'Ue(t)|lL°°(RN)

< limint { G exo [ G(Hue( Miowigy) ds ) (¢ + p) 777 |
< hm mf [C exp (q : 1 / {(C’s(s —p+ 1)+ 5fﬁ%>q”1 _ } ds)
x (t+ p)fm%m}

1 t
= C] exp (/ Cs(s — p + 1)~Fla=D ds) (t + p)” DT
2p

1 e .
< Cf exp (/ Ce(s — p+1)7Fl-b) ds)(t—i—p)'m’-—]—vm,
2p

where Cg = C“"(T 1) When ¢ > m + %, we have

—Bg—1) = *m%{l-%(l.+ %)}r— (;:—16]—”

- _——-————N(]Zl(q_—l)ll_z <=1 (r— o).
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Hence there exists 7, such that —8(qg — 1) < —1 for r > r,. It follows that for r > ry,

0 o CF(P+ 1)—B(q41)+1
Cels —p+ 1) P gg =2 ‘
/zp s(s—p+1) Bla-1—1

Therefore we see from (3.50) and (3.51) that for 7 > rs := max{ry,r2},

(3.51)

— N
w(®)| Leomry < Kp(t + p)” Fm-DF2,

Cs(p+1)—Ala—1)+1

Py ). This is the required decay property. O

where K, Cj exp(

Proof of Theorem 1.1 when N > 2. From Propositions 3.1 and 3.5 with 7 = r3 (see
the proof of Proposition 3.5) we see that

Kt*ma a.a.te (0,00)>
Kp(t + p)_mﬁlj_lm, aa. te (50, OO)’

[w(t)|| Lo mmy < {

where ¢. = (¢ —m), p € (0,1], K = K(|uollrrs, Cry,73,m, ¢, N) > 0 and K, =
K, (p, lluoll L1, [wollLar, [[wollLs, Cry, 73, m, @, N) > 0 are constants, where C, is the same
constant as in Proposition 2.1. Thus we obtain (1.3) and (1.4). O

4. The case where N =1

In this section we consider the case where N = 1. First we introduce the approximate
problem when N = 1.

ou, H? 0 v
el m _ __ [,9-122¢ i o (1) v
= et — (W 5E) R X (0,7), (Deyat
2
(K8)e,n=1 0= 8—1—)5 — Ve + Ue in R x (0,7), o (2)en=1
8:1:2 )
Uue(,0) = upe(x), z € R,

where m > 1, ¢ > 2 and ¢ € (0,1). The initial data ug. € C§°(R) is given as uge :=
(pe * ug) ; pe is the mollifier and ¢, is the standard cut function.

Note that the nonlinear term in the first equation of (KS), ny=1 is different from the
approximate nonlinear term in the case where N > 2 (see (KS), in Section 3). The reason
is that the condition ¢ > m + 7%7 gives ¢ > 3 when N = 1. This condition relates with
| Ve ()] Lo wn) (see [16, Proposition 9]). Differentiating the nonlinear term V(ui™Vv)
in (KS)o about z formally to obtain the estimate of ||V (#)|| Lo(rn), we see that

q—3% Ou @
c’?;vj 82,2 8%1

P N
5o V(I V) = (0 - 1(a =) > u

i=1
N
0 (0u Ov 0
— -2_—_ —(uI A i=1....-.N.
@) (o) T gAY LN



Therefore if ¢ > 3, then it is not necessary to approximate the nonlinear term to non-
degenerate type (see Remark 2.2).

We obtain the following two propositions by the proofs parallel to Propositions 3.1
and 3.5.

Proposition 4.1 (L®-estimate when N =1). Letm > 1, ¢ > 2, and T > 0. Let (u,v)
be a weak solution to (KS)o on [0,T). Assume further that m and q satisfy

qg=>m-+2

and ug satisfies (1.1) and the smallness condition (1.2) in Theorem 1.1. Then the following

estimate holds: .
’ lu(®)]| Lo@) < Kot ™% a.a. t € (0,7),

where q.. = 57, Ky = Ky(|luollgaes, Crymy g, N), 7 > 7' = 7'(m,q, N) are positive
constants and C,. is the same constant as in Proposition 2.1.

Proposition 4.2 (L*-decay property when N = 1). Let m > 1, ¢ > 2 and p € (0,1].
Let (w,v) be a global weak solution to (KS)y. Assume further that m and q satisfy

q>m+2

and ug satisfies (1.1) and the smallness condition (1.2) in Theorem 1.1. Then the solution

u has the following decay property:
[u(t)| ooy < KL(E+ p)"75T,  aa. t € [5p,00),

where Kj, = K, (p, |luoll s, [[uol LI woller,r, Crymag, N), 7 > 7" = 1"(m,q,N) are
positive (onsmm‘e where C, s fh(’ same constant as in Proposition 2.1.

To prove Proposition 4.2 we need that ¢ — ||w,(t)||z~r) is a non-increasing function
on [2p,00), where

t

We (2, t) := u, eXp(" [Jue (s )HLOO(RN) )

2p

because we use (3.37) with r = 222 = 0o for N = 1 as stated in the front of Lemma 3.8).
N-1

This property of w, is proved as follows. From a similar proof to Lemma 3.7 we see that
t = Jlwe(t)lzrmy (1 <7 < 00) is a non-increasing function on [2p,00). Let ¢t > s > 2p.
Then we have

(4.1) lwe(®)ll @y < fwe(S)llzrmy (1 <7 <o00).
It follows from Proposition 4.1 that
lwe(t)l| o) < |ue()llLoo@) < Kat™ I, aa.t > 2p,
and hence w,(t) € L*(R) (a.a. t > 2p). Letting 7 — co in (4.1), we have
lwe ()l o) < we(s)llLom) aca.t 2 s> 2p.

Therefore we see that ¢ — [[w.(t)| L) is a non-increasing function on [2p, c0).

143
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Proof of Theorem 1.1 when N = 1. Combining Propositions 4.1 and 4.2 with 7 =
7 := max{r’,r"} , we obtain

[?t’vn‘l}r?w, a.a. t € (0,00),

[w(®) | 2oy < {f(p(H p) w1, aa. t € [5p,00),

where ¢.. = 5=, p € (0,1], K = f?([(z,f) and I?p = I?,,(K;,F) are positive constants.
Thus we obtain (1.3) and (1.4). O
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