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[P-INDEPENDENCE OF GROWTH BOUNDS OF
FEYNMAN-KAC SEMIGROUP AND ITS
APPLICATIONS

MASAYOSHI TAKEDA

1. INTRODUCTION

A. Beurling and J. Deny [2], [3] initiated the theory of Dirichlet
forms. Using potential theory of Dirichlet forms, M. Fukushima [17]
succeeded in the construction of symmetric Hunt processes associated
with Dirichlet forms. Since then, the theory of Dirichlet forms has
been developed by many persons as a useful tool for analyzing sym-
metric Markov processes. The theory of Dirichlet forms is an L?-theory,
and which is a reason why the theory is suitable for treating sin-
gular Markov processes. On the other hand, the theory of Markov
processes is, in a sense, an L!-theory. To bridge this gap, we have
studied the LP-independence of growth bounds of Markov semigroups,
more generally, of generalized Feynman-Kac (Schrédinger) semigroups
([10],[13),33],[35],[38]). The LP-independence enables us to control L>-
properties of the symmetric Markov process; in fact, we can state, in
terms of the bottom of L2-spectrum, a necessary and sufficient condi-
tions for the integrability of Feynman-Kac functionals ([32]) and for the
stability of Gaussian both side estimates of Schrodinger heat kernels
([34)).

For the proof of the LP-independence, we apply arguments in the
Donsker-Varadhan large deviation theory. The large deviation princi-
ple for a symmetric Markov process is governed by its Dirichlet form,
namely, the rate function is identified with its Dirichlet form. Hence we
can expect that the LP-independence is fulfilled for symmetric Markov
processes satisfying the large deviation principle. This is our key idea.
Z.-Q. Chen [10] recently derives the LP-independence by a different
method (by employing, so called, the gauge theorem) and extends our
results.

Let X be a locally compact separable metric space and m a posi-
tive Radon measure on X with full support. Let M = (X}, P, () be
an irreducible m-symmetric Markov process on X with strong Feller
property. Here ( is the lifetime of M. We further assume that M is in
Class (I) or Class (II) (Definition 2.1, Definition 2.2 in Section 2). Let
i be a signed smooth Radon measure on X in Class Ko, (Definition
3.1). Denote by A:(x) the continuous additive functional with Revuz
correspondence to p (see (2.3) below).
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We define the generalized Feynman-Kac semigroup {p}'}:>0 by

pi f(z) = Eq [exp(A:(p)) f(Xe)],
and the Schrodinger type operator formally by
HES = Lf +uf,
where L is the generator of the Markov process M. We then see that

the semigroup {p/ }+>o is the one generated by H*, pi' = exp(tHH).
We define the LP-growth bound of {p} };~o by

o1
Ap(p) = “tllglo EIOg 1PEllpe 1 <p< o0,
where || - ||, is the operator norm from LP(X;m) to LP(X;m). The
LP-independence of the growth bounds of {p}}:~o means that
Ap() = Xo(p), 1< Vp<oo.
We now have the next theorem.

Theorem 1.1. ([35], [43]) Let u be a measure in the class Koo.
(i) Assume that M is in Class (I). Then A,(u) is independent of p.
(ii) Assume that M is in Class (II). Then \,(p) is independent of p
if and only if Aa(u) < 0.

Theorem 1.1 (ii) says that the LP-independence for a symmetric
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Markov process in Class (II) is completely determined by the L2-growth

bound. Z.-Q. Chen and D. Kim and K. Kuwae [13] recently extend
Theorem 1.1 to Feynman-Kac semigroups generated by more general
additive functionals.

As mentioned above, the idea for the proof of Theorem 1.1 lies in
the Donsker-Varadhan theory, the large deviation theory for occupation
distributions. We denote by (£, F) the Dirichlet form generated by the
symmetric Markov process M. We then see that the semigroup {p}'}+0
generates the bilinear form £#:

Sﬂ(u,u)zﬁ(u,u)—/uzdu. u € F,
x

Let P(X) be the set of probability measures on X equipped with the
weak topology. We define the function Igu on P(X) by

_ eV ifv=f-m VfeF
(1.1) leu(v) = { 0o otherwise.
For w € Q with 0 < ¢t < {(w), we define the occupation distribution
Li(w) € P(X) by
1 t
Lw)(4) = 5 [ 14X (w))ds,
0

where 14 is the indicator function of the Borel set A C X. We then
have the next theorem:
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Theorem 1.2. Assume that M is in Class (I). Let u be a measure in
Keo- '
(i) For each open set G C P(X),

.1 . .
h{gglf Zlog]Ez [eA W. I, eGt< Q] > —l}g(f; Ieu(v).
(i) For each closed set K C P(X),

1
limsup - log sup E, [eAt(“); Lie K,t< C} < —inf Teu(v).
t—00 zeX veK
Theorem 1.2 was proven in [35] and [43]. Applying Theorem 1.2 to
G = K = P(X), we see that

im 1 Aclw). —
tll)lgo < log:g{) E, [e*W:t < (] = —uel’lgl(fX) Ieu(v)

(1.2) = —inf {8“(u,u) cu € F, / qum:.l}.
b
The equation (1.2) leads us to Theorem 1.1 (i). Indeed, noting that
sup E, [e*®); ¢ < ¢] = sup pf'1(z) = [|pf ]lco 0
zeX zeX

and by the spectral theorem

(13)  Ao(y) = inf {5“(u,u) ueF /X w2dm = 1} |

we have A (1) = o) by (1.2), which implies that A,(u) is indepen-
dent of p by the Riesz-Thorin interpolation theorem ([12, 1.1.5]).

The method for the proof of Theorem 1.1 (ii) is different from that
of Theorem 1.1 (i): we first note that if the state space X is compact,
only the Feller property is necessary for the proof of the upper bound.
We thus extend the Markov process M to the one-point compactifica-
tion X, by making the infinity oo a trap, and derive the upper bound
for this extended Markov process. Then the rate function becomes a
function on the set of probability measures on X, not on X; in this
way, the adjoined point co makes a contribution to the rate function.
We show that the infimum of the rate function on the set of probability
measures on X, is equal to the infimum of the original rate function
on the set of probability measures on X, if and only if the L?-spectral
bound is non-positive. Consequently we obtain a necessary and suffi-
cient condition for the LP-independence. The idea of considering the
contribution to the rate function from oo is due to A. Budhiraja and P.
Dupuis [6], where a large deviation principle of occupation distributions
was proved for Markov processes without stability property.

We applied Theorem 1.1 (i) to random time-changed processes of
symmetric Markov proeesses, and considered the gaugeability, the sta-
bility of heat kernels as stated above ([18, Chapter 6]). We applied
Theorem 1.1 (ii) to symmetric a-stable processes, the Lévy process
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on R? generated by the fractional Laplacian (-A)*/2, 0 < a < 2,
and showed the large deviation principle for their additive functionals
([41]). In this note we give another application of Theorem 1.1 (ii); we
deal with the criticality for Schrédinger operators based on recurrent
symmetric a-stable processes. More precisely, let M® be a symmetric
a-stable process. It is known that M is transient for d > « and re-
current for d(= 1) < a < 2. Let (£, D(£®)) be the Dirichlet form
on L?(R!) generated by M?* (see (6.1), (6.2)). Let u = u™ — u~ be a
signed Radon measure in the Kato class, where p* (resp. p~) is the
positive (resp. negative) part of u. We define

(1.4) A(p) = inf {S"+ (u,u) : u € De(EF), _/]R1 widy” = 1} ,

where £#" (u,u) = £ (u,u) + Joi v?dut and D, (E#") is the extended
Dirichlet space of the Dirichlet form (4", D(E*")). Let G** (z,y) be
the Green function of the subprocess of M by exp(—Aéﬁ), where

Al " is the positive continuous additive functional associated with p*.
We assume that the negative part u~ is Green-tight with respect to
G*" (z,y) (for definition, see (6.4)).

For the measure p, let H* be a Schrodinger type operator defined
by (—d?/dz?)*/? + . We say H* critical (resp. subcritical) if A(p) = 1
(resp. A(p) > 1). In B. Simon [25], H* is said to be critical if Ao () = 0
but Ao ((1+€)u) < 0 for all € > 0, and subcritical if Aoo((1 + €)u) = 0
for some € > 0. We see from the LP-independence that if p is, in
addition, Green-tight with respect to the 1-resolvent density of M, in
particular p has a compact support, our definition is equivalent with
Simon’s (Lemma 6.1).

We consider properties of H#-harmonic functions when H* is critical
or subcritical. More precisely, we prove that there exists no positive
bounded H*-harmonic function if #* is subcritical (Proposition 6.8).
Moreover, we show that if the measure u has compact support and H*
1s critical, then there exists a bounded H*-harmonic function uniformly
lower-bounded by a positive constant (Proposition 6.5). Employing this
fact, we can derive that if Ay () = 0, then

Boo (1) = sup [|e™|| 0,00
t>0

is finite (Lemma 6.7). When M is the 2-dimensional Brownian mo-
tion, Simon [25] conjecture that for a potential with compact support
Aoo(pt) = 0 implies Boo(p) < oo. Murata [23] solved his conjecture
completely by characterizing the criticality or subcriticality by the ex-
istence of positive H*-harmonic functions with some growth orders.
Lemma 6.7 is an extension to recurrent symmetric a-stable processes.
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We would like to emphasis that when H* is critical, A(u) = 1, the
function h attaining the infimum in (1.4) is just an #*-harmonic func-
tion. Indeed, we show in Section 4 that the function A is continuous and
possesses a probabilistic property of H#-harmonicity: for any relatively
compact domain D C R!,

(1.5) h(z) = E, [exp(—-A’T‘D)h(XTD)] , T €D,

where 7p is the first exit time from D.

Throughout this paper, m is the Lebesgue measure and B(z,r) is
an open ball with radius 7 centered at . We write B(r) when z is the
origin. We use c, C, ..., etc as positive constants which may be different
at different occurrences.

2. DIRICHLET FORMS AND SYMMETRIC MARKOV PROCESSES

In this section we briefly review the theory of Dirichlet forms, sym-
metric Markov processes and Feynman-Kac semigroups. Let X be a
locally compact separable metric space and X, the one-point com-
pactification of X with adjoined point co. Let m be a positive Radon
measure on X with full support. Let M = (Q, M, My, 6, X¢, Pz, () be
an m-symmetric Markov process on X. Here, {M,} is the minimal
(augmented) admissible filtration, {6;}:>0 is the shift operator satisfy-
ing X,(6;) = Xs4¢ identically for s,z > 0, and ¢ is the lifetime of M,
¢ =inf{t > 0: X, = co}. Let {p;}s>0 and {Gs}s>0 be the semigroup
and the resolvent of M: for a bounded Borel function f on X

pef(z) =E,[f(Xy);t <], Gaf(z) = /000 e Pp, f(x)dt.

Throughout this paper, we make two assumptions on M.

Assumption I. (Irreducibility) If a Borel set A is ps-invariant,
i;e.,
p(1af)(z) = Lapef(z), m-ae. for Vt >0, Vf € L*(X;m) N Bp(X),

then A satisfies either m(A) = 0 or m(X \ A) = 0. Here By(X) is the
space of bounded Borel functions on X.

Assumption II. (Strong Feller Property) For eacht > 0, p;(By(X)) C
Cy(X), where Cy(X) is the space of bounded continuous functions on
X.

We introduce two classes of symmetric Markov processes.

Definition 2.1. A symmetric Markov process M is said to be in Class
(1), if for any € > 0, there exists a compact set K C X such that

(2.1) sup G1lg<(z) <,
zcX

Here 1y is the indicator function of the complement of K.



MASAYOSHI TAKEDA

Definition 2.2. A symmetric Markov process M is said to be in Class
(II), if its semigroup {p:}i>0 is conservative, p;1 = 1, and satisfies
Pt(Coo(X)) C Coo(X). Here Coo(X) is the space of continuous func-
tions on X wvanishing at the infinity.

Let {Gs(z,y)}s>0 be the resolvent kernel defined by

Gz, y) = / eBip(t,z,y)dt, B> 0.
0

If the Markov process M is transient, then Go(z,y) < co z # y. In
this case, we simply write G(z,y) for Go(z,y) and call it the Green
function. By [18, Lemma 4.2.4] the density Gs(zx,y) is assumed to
be a non-negative Borel function such that G(z,y) is symmetric and
B-excessive in z and in y.

By the right continuity of sample paths of M, {p; };+>0 can be extended
to an L?*(X;m)-strongly continuous contraction semigroup, {T}}:>o
([18, Lemma 1.4.3]). The Dirichlet form (£, F) generated by M is
defined by

1
F=<uecL*X;m): im=(u— Tyu,w)m < 0o ¢,
(22) t—0 ¢
2) )
E(u,v)z}ei_r)%?(u—ﬂu,v)m, u,v € F,

where (u,v)p, is the inner product on L%(X;m).

If an AF {A,;}:>0 is positive and continuous with respect to ¢ for each
w € A, the AF is called a positive continuous additive functional (PCAF
in abbreviation). Under the absolute continuity condition, “quasi ev-
erywhere” statements are strengthened to “everywhere” ones. More-
over, we can defined notions without exceptional set, for example,
smooth measures in the strict sense or positive continuous additive
functional in the strict sense (cf. [18, Section 5.1]). Here we only
treat the notions in the strict sense and omit the phrase “in the strict
sense” .

We denote Soo the set of positive Borel measures p such that p(X) <
oo and Gyu(z)(= [, Gi(z,y)u(dy)) is uniformly bounded in z € X.
A positive Borel measure p on X is said to be smooth if there exists a
sequence {F,}%2, of Borel sets increasing to X such that 1g, - u € Soo
for each n and

P, (hm ox\g, > g) =1, VreX, (5.1.28)
n—oo0

where ox\g, is the first hitting time of X \ E,. We denote by S;
the totality of smooth measures. By [18, Theorem 5.1.4], there ex-
ists a one-to-one correspondence (Revuz correspondence) between
smooth measures and PCAFs as follows: for each smooth measure p,
there exists a unique PCAF {A;};>( such that for any f € B, (X) and

106



LP-INDEPENDENCE OF GROWTH BOUNDS

v-excessive function h (y > 0), e "'p;h < h,

23 ;grélmh.m [ / tf(Xs)dAs] - [ et

Here, Epm[-] = [L E m(dz). We denote by A;(u) the PCAF
of the Smooth measure ,u For a signed smooth measure M= pt—pu,
we define A;(p) = Ap(p™) — Ag(p™).

3. GENERALIZED FEYNMAN-KAC SEMIGROUPS

In this section we introduce classes of local and non-local potentials.
For a signed Borel measure p, we write its total variation by |u|. Fol-
lowing Chen (8], [9], we define classes of potentials.

Definition 3.1 (Kato measure, Green tight measure).

(I) A signed Borel measure p is said to be the Kato measure (in
notation, p € K) if |u| € S; and

%1_% :2){2 Eg[A:(|p])] =

(II) A measure p € K is said to be the 3-Green tight measure (in
notation, p € Ko g) if for any € > 0 there exist a compact subset K
and a positive constant & > 0 such that

sup | Ga(z,y)|pl(dy) <,
zeX JKc

and for any Borel set B C K with |u|(B) < 6,
sup / Galz, y)lpl(dy) < e
For a positive measure p on X, denote

Gpu(x / Ga(x,y)p(dy).

We note that for any 8 > 0, Keo g = Koo1- Indeed, for a positive
measure i on X, let pge(-) = p(K°N-). Since by the resolvent equation
Gapge = Gypre + (v — B)GsGypre, 0< <7,

we have

o < 1ol + 2 G

We simply write Koo for Koo,1 and call a measure in Ky a 1-Green
tight measure. Moreover, if the Markov process is transient, a measure
B € Koop is called a Green tight measure. We remark that Ky C

Koo C K ([8]).

We now provide an inequality proved in P. Stollmann and J. Voigt
[26].

v
”Gﬁ/J’KC o0 ™ BHG'WUJKC 00
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Theorem 3.1. Let u € K. Then for each 5 > 0,
B [ P@n(dn) < |Gaule- Esu), uET,
X

where Eg(u,u) = E(u,u) + B, u)m.

Let {p/'}+>0 be the L?-semigroup generated by H*: pl' = exp(tH*).
The semigroup {pf }¢>0 is expressed by

pi f(z) = Eg[exp(Ae(p)) f(X2)].
Next two theorems on the generalized Feynman-Kac semigroups {p} }+>o

follows from Albeverio, Blanchard and Ma [1, Theorem 4.1] and Chung
[11, Theorem 2| respectively.

Theorem 3.2. Let p € K. There ezist constants ¢ and k(u) such
that
195 lpp < Cen(“)t> 1<Vp<oo, t>0.

Here, || - ||pp means the operator norm from LP(X;m) to LP(X;m).

Theorem 3.3. Suppose that a symmetric Markov process M is in Class,
(IT). Then for i € Koo, p; (Coo(X)) C Coo(X) and pf(By(X)) C Cy(X).

4. DONSKER-VARADHAN TYPE LARGE DEVIATION PRINCIPLE

For a symmetric Markov process, its Dirichlet form governs the
Donsker-Varadhan large deviation principle, that is, the rate function
is identified with the Dirichlet form. Therefore, we can expect that if
the symmetric Markov process obeys the large deviation principle, then
the L2-theory is more dominant. In this section, we extend Donsker-
Varadhan type large deviations to symmetric Markov processes with
Feynman-Kac functional. In this case the rate function is identified
with not a Dirichlet form but a Schrodinger form.

Let u € K. We define the function g« on P(X) by

Ig,‘(u):{ ECVI V) fv=f-m, V/feF,

00 otherwise.

Let L; € P(X) be the normalized occupation distribution, that is, for
O0<t<(

(4.1) L(A) = % / 1a(X)ds, A€ B(X)

We then have the lower bound estimate.

Theorem 4.1 ([20, Theorem 4.1]). For each open set G C P(X),

1
(4.2) litrg(i)glf ZlogIEx [exp(As(p)); Ly € Gt < (] > —31615 Ieu(v).

We have the next theorem by the same argument as in [36].
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Theorem 4.2. Assume that a symmetric Markov process M is in Class
(I). Then for each closed set K C P(X),

lim supllog supE; [exp(A:(p)); Lt € K,t < (] < — inf Ieu(v).
t—o0 zeX veK

We will show in section 6 that the infimum of Icu(v) is attained at

the normalized ground state of the generalized Schrodinger operator

H*. In this sense, Theorem 4.1 and Theorem 4.2 is regarded as a

large deviation principle form not the invariant measure but the ground

state. The essential idea of the proof of Theorem 4.1 and Theorem 4.2

lies in Donsker-Varadhan [14]; however, since A;(u) is not a function
of L;, we need to extend Donsker-Varadhan’s argument to Markov
processes with Feynman-Kac functional.

A key to the proof of Theorem 4.1 is the fact that any irreducible
symmetric Markov process can be transformed to a symmetric er-
godic process by a certain supermartingale multiplicative functional.
A one-dimensional absorbing Brownian motion can be transformed to
a symmetric ergodic diffusion by a drift transform. Using this fact,
they proved in Donsker-Varadhan [14] the lower estimate for the one-
dimensional Brownian motion. To prove the ergodicity, they used the
Feller test, while we apply an ergodic theorem in the Dirichlet form
theory.

A key to the proof of Theorem 4.2 is the definition of a suitable
I-function. More precisely, define x(u) by

.1
k(p) = lim n log [P [l 0,00

We see from Theorem 3.2 that x(u) is finite. For o > x(u), the resolvent
G* is defined by

G:f(x) =E, [ /0 " gmat A f(Xndt|, f € By(X).

We set

D.(H*) ={G:f:a> k), f € L*(X;m)NCy(X), f >0and f#£0}.

Each function ¢ = G4 f € D, (H*) is strictly positive because P, (0o <
¢) > 0 for any z € X by Assumption I. Here O is a non-empty open
set {x € X : f(z) > 0}. We define the generator H* by

Hru=o0u—f, u=Grfe D (H").
Suppose that u € Ky, is gaugeable, that is, |

sup E, [e%®W] < 00
zeX

and let h(x) = E, [exp (A¢(1))]. The function h(z) is strictly positive,
h(z) > ¢ > 0. Indeed, it follows from Proposition 2.2 in [8] and the

109



MASAYOSHI TAKEDA

definition of J. that for p € Ko and F € o, sup,ep Ez(Af) < o0.
Hence, by Jensen’s inequality,

- p
;g)f( E.(exp(47)) > 0.

After consideration of the Feynman-Kac functional, we define the mod-
ified I-function by

(4.3) L(v)=— inf e

dv, vewp.
sy (nh) Jx d+eh
e>0

We need to add strictly positive functions eh, because the function
H ¢/ is not always in Cy(X). Since P(X) is equiped with the weak
topology, it is crucial for the proof of Theorem 4.2 that the function
;{—;‘% belongs to Cy(X); in fact, we show the upper bound with this mod-
ified I-function /,. The function 4 is said to be a gauge function and
a necessary and sufficient condition for the measure p being gaugeable
is known (cf. [9]). An important remark on the proof of Theorem 4.1
and Theorem 4.2 is that we have only to prove these theorems for the
B-subprocess of M, the killed process by exp(—3t), 8 > 0. Owing to
this, we may assume that M is transient. In addition, we may assume
that u is gaugeable because every Green-tight measure becomes gauge-
able with respect to the B-subprocess of M for a large enough 3([9,
Theorem 3.4]). The SB-subprocess is a useful tool of studying Markov
processes. It is worth to point out that this tool becomes available
by extending the large deviation to symmetric Markov processes with
finite lifetime.

The next proposition says that this modified I-function can be iden-
tified with the Schrodinger form.

Proposition 4.3. It holds that for v € P(X),
L(v) = Ieu(v).

In [28] we proved Theorem 4.1 for symmetric Markov processes with-
out Feynman-Kac functional. We there used the identity function 1 for
the gauge function A in order to define the I-function. Note that the
identity function is excessive for the Markov semigroup generated by
L and the gauge function A is excessive for the Schrodinger semigroup
generated by H*. Hence we can regard the function I, as an extension
of the I-function in [28]. In [29] we proved the upper bound (ii) for each
compact set of P without assuming (2.1). We did not need to add eh in
(4.3) because the Markov process was supposed to be conservative and
the I-function was defined by taking the infimum over uniformly posi-
tive functions in a domain of H#. We would like to emphasize that the
function I, is independent of h if the function A is uniformly positive
and bounded, that is, I, is identical to the Schrédinger form (1.1).

When the Markov process M be in Class (II), Theorem 4.2 does not
hold generally. We thus first extend the Markov process M and the
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I-function; we define the transition density p;(z, dy) on (X, B(Xo0)):
for E € B(Xy,),

s, B) = {?%ﬂ Voo ze X,

Let M be the Markov process on X, with transition probability p;(z, dy),
that is, an extension of M with oo being a trap. Furthermore, for
i€ Ky, let the semigroup {7% }t>0 and the resolvent {G*}4s k() of M:

7 F(2) = Balexp(Au(1) (X0,
G (z) = / et f(2)dt,  f € By(Xoo).

Here, x(p) is the constant in Theorem 3.2. Then G f(z) = G2 f(z) for
:vEXand GEf(00) = f(o0)/a. Set

Dy (H*) ={p=GClg:a>r(u),g € C(Xu) with g > 0}.

We see that for ¢ = Gkg € D, (H*), limg o0 () = g(00)/cr. Let us
define the function I, on P(X,.), the set of probability measures on

Xoo, by
. e
I(v)=— inf / # ¢)dy,
¢eDLr(HM) Jx. @
where Ht¢ = aGlg — g for ¢ = Gtg € Dy (HH).

Note that M has the Feller property, while it has no longer the strong
Feller property. In the proof of the large deviation upper bound for
a Markov process with compact state space, we need only the Feller
property. Hence we have

Theorem 4.4 (Kim [20, Remark 4.1]). For each closed set K C
P(Xo0),

(4.4) lim sup ! log sup E; [exp(As(u)); Ly € K] < — inf I,(v).

t—o00 zeX veK

5. LP-INDEPENDENCE OF GROWTH BOUNDS

When the symmetric Markov process M is in Class (I), we have the
next theorem by applying Theorem 4.1 and Theorem 4.3 to G = K =
P(X).

Theorem 5.1. If M is in Class (1), then \,(1) is independent of p.

In the remainder of this section, we assume that M is in Class (II).
We note that the rate function I, . in Theorem 4.4 is defined on the space
of probability measures on X, not on X. In this sense the adjoined
point oo makes a contribution to the rate function. We see that

(51) I_y(éoo) = 07
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because H{p(00) = ap(oo) — g(oo) = g(oo) — g(oo) = 0 for any
¢ € Di(H*). P(Xw) \ {0} and (0,1] x P(X) are in one-to-one
correspondence through the map:

(5.2) v € P(Xoo)\ {00} = (W(X),0(:) = v(-)/v(X)) € (0,1] x P(X).
Lemma 5.2. For v € P(Xw) \ {00},
L) = L) = v(X) - Isu(0).

Proof. For ¢ = Gtg € D, (H*), HF¢(00) = 0 and H d(z) = HF¢(x)
for r € X. Hence for v € P(Xw),

- . HE o

I,(v)=— inf / dv

) $eDyy(A¥) Jx,, @
H

“o
— inf / dv
D1 (HH) Jx @

) H:D .
— X —2d
¢ev1+ri(ﬂu)y( )/X ) g
= V(X) . Ign(l’))

I

O
We have the next equality through the one-to-one map (5.2).
inf I,(v) = inf -1
sercton o ) = acoctibnon 0 40

In addition, noting that I,(d.) = 0, we have the next corollary.
Corollary 5.1.

(5.3) ueél(l)f(m) IL(v) = 0%%_2_1(0 l16171)1(1")() Icu(v)).

Let us denote by ||pf'||,, the operator norm of p}’ from LP(X;m) to
LP(X;m) and define

1
Ap(p) = — tlgg) 7 log |9 llpps, 1< p< o0,
We then have:
Corollary 5.2. For u € K,

G0 w2 int (0, inf wv)) = inf (0o

Noting that if Ay(p) < 0, then infocg<i (BA2(1)) = Aa(p), we have:
Corollary 5.3. If A\a(p) <0, then
Ao (K) 2 Aa(p)-
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The inequality, A2(p) > Ao (1), generally holds. Indeed,
Pt f(z) = Eolexp(As(p)) f(Xy)]
< (Eqfexp(Ae(w) f2(Xe)]) 2 - (Balexp(Ag(w))])

and
It Fllz < lpt (f2)lllsup]E [exp(At(w))].

By the symmetry and the pos1t1v1ty of i,
I = / f(@ m(dz) < 1FI3 - 124 ooo.

Hence we have ||pf'|[22 < [|P¥]|co,00, and thus Az () > Ao (1). Moreover,
by the Riesz-Thorin interpolation theorem,

IP¥ 22 < 1PE llop < 1P floos0r 1 < VP < 00
Therefore, we can conclude that

(5.5) Aa(p) 0= Mp(p) = Xa(p), 1< Vp<oo,

We see that if Ay(u) > 0, then Ao (1) = 0. Indeed, if Ao(1) > 0, then
by Corollary 5.2

Aooll) 2 int 0 inf eu(v) = inf 0(%a(u) = 0.

On the other hand, since lim,_, p'1(z) = 1, ||p{|lcoco = 1, and thus
Ass(p) 0.

Theorem 5.3. Assume that M is in Class (II). Let p € Ko. Then
Aa(p) = Ap(p) for all1 < p < oo if and only if Aa(p) < 0. In particular,
if Xo(p) > 0, then Aoo(p) = 0.

Example 5.1. (Brownian motion on H%) We consider the Brownian
motion on the hyperbolic space H® (d > 2), the diffusion process gen-
erated by the Laplace-Beltrami operator (1/2)A. The corresponding
Dirichlet form (€, F) is as follows:

S(u,u):%Aﬂd(VU,Vv)dm, u, veF

F = the closure of C3°(H%)with respect to € + (, ),

where m is the Riemannian volume. ‘
The Brownian motion is in Class (II). Hence Ao, = 0, while

2

Hence the LP-independence does not hold; However, by adding a Kato
measure p € Koo with Ay(u) < 0, the LP-independence is recovered. In
fact, we consider H* = 1/2A + 6,, where 8, is the surface measure of
the sphere centerd the origin with radius r.

(a) d =2

1/d-1)°
)\gzinf{é’(u,u)|u6f,||u||2:1}:§(——> :
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(i) 0< 7T <r19g=Ao(6:) =0, X2(d,)>0.
(it) T > 19 > 0= Ap(6r) = A2(é;), 1 < Vp < 00
Here 1y is a unique solution of

"4+1
(e" —e™")log (e + )zl.

er—1

(b) d >3
Ao(6,) =0, Xp(6,) >0, r>0.

The uniform upper bound in Theorem 4.2 is crucial for the proof
of LP-independence, and so is the condition (2.1). We see that a one-
dimensional diffusion process satisfies (2.1), if no boundaries are natural
in Feller’s boundary classification. As a result, the LP-independence
holds if no boundaries are natural. We see by exactly the same ar-
gument as in [?] that if one of the boundary points is natural, then
the LP-independence holds if and only if the L2-growth bound is non-
positive. For example, consider the one-dimensional diffusion process
with generator (1/2)A + k - d/dz on (—o00,00). Here k is a constant.
Then the both boundaries are natural and A»(0) equals k2/2, while
Aoo(0) = 0 because of the conservativeness. Consequently, Theorem
4.2 does not hold when K are the whole space P. This example was
given in [16]. Next consider the Ornstein-Uhlenbeck process, the diffu-
sion process generated by (1/2)A — x*- d/dz on (—o0,00). Then both
boundaries are natural and A\2(0) and A\, (0) are zero, consequently the
LP-independence follows. We would like to remark that the uniform
upper bound (ii) is not known, while the locally uniform upper bound
was shown in [16]. In this sense, we can say that the LP-independence
of the Ornstein-Uhlenbeck operator holds for the reason that A(0) = 0.

Let M = (P, X;) be a symmetric Lévy process with Lévy exponent
(o

Eq (exp(i(¢, X¢)) = exp(—t(€)).

Assume that

(5.6) / e~ Od¢ < 00, Vi >0,
Rd

We can show that the assumption (5.6) implies the strong Feller prop-
erty and A\2(0) equals to 0. Hence, A\y(p) <0 for any p € Ko and The
LP-independence of A, (u) follows.

If the Lévy measure J of M is exponentially localized, that is, there
exists a positive constant ¢ such that

(5.7) / el J(dr) < o0,
lz|>1

we can prove in the same way as in [29] that for u in the class K,
Ap() is independent of p. For example, the Lévy measure of the rela-
tivistic Schrodinger process, the symmetric Lévy process generated by
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V=A+m?2 —m, m > 0, satisfies (5.7) (Carmona, Master and Simon
[7]). On the other hand, the Lévy measure of the symmetric a-stable
process on R? is (K (d, @)/|z|**®) dz, and is not exponentially local-
ized, though its Lévy exponent satisfies (5.6). This is the reason why
we need to restrict the class of potentials to K.

6. RELATED TOPICS

Let M* = (Q, F, F, 6, P, X;) be a symmetric a-stable process on R!
with 0 < o < 2. Here {F;}:>0 is the minimal (augmented) admissible
filtration and 6;, ¢t > 0, is the shift operators satisfying X,(6;) = X+
identically for s,¢ > 0. When a > 1 (resp. a < 1), the process M* is
recurrent (resp. transient). Moreover, if o > 1, then M® is pointwise
recurrent. In this paper, we consider the recurrent case.

Let p(t,z,y) be the transition density function of M® and G(z,y)
the so-called compensated Green kernel: for a = d =1,

1 1
G(z,y) = . log m,
and fora >d =1,
__lz—ylt
@ Y) = @) cos(rarD)’

Let (£(®), D(£®)) be the Dirichlet form generated by M. It is given
by

(6.1)
@0 AL o 2) — uy)(o(z) = vly))
£ v) = AL, //Rlle\A |z — y[tte dedy
(6.2)
where

a2t (2L)
A2 = S =g

([18, Example 1.4.1]).
It is known that p € K is equivalent with

| (6.3) lim sup/} < G(z,y)|u|(dy) = 0.

a—0 -TERI

Let G#(z,y) be the Green function defined by

/O°° pff(xjdt = /Rl G*(z,y)f (y)dy.
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For a positive measure u € K denote by M# = (P4, X;, () the subpro-
cess by the multiplicative functional exp(—A%):

P} (dw) = exp(—Az (w)) P (dw),
where ( is the lifetime of M¥. Then G*(z,y) is the 0-resolvent of M*.
(E#, D(EH)) is a regular Dirichlet form generated by M* ([18, Theorem
6.1.1, Theorem 6.1.2]).

We now introduce a class Ko (G*) associated with the Green kernel
G*: v € K is said to be in Koo (GH) if

(6.4) lim sup G*(z,y)|v|(dy) = 0.

Booozert Jiy 2R
We call a measure v in Ko (G*) G#-Green tight measure. Since M¥ has
the strong Feller property ([1, Theorem 7.5]) and

. h v : V] —

o up BELAT <l sup 14 =,
Ko (G*) is contained in the class introduced in {8, Definition 2.2] ([21]).
It is known in [8, Proposition 2.2] that a measure v in K (G*) is G*-
Green bounded :
(6.5) sup G*(v)(z) = sup EF[AL] < oco.

z€R? R

Let p = pt — p~ € K — Koo(G*"). The Schrodinger operator H*

is said to be critical (resp. subcritical) if A(u) = 1 (resp. A(u) > 1).
Define
Bp(p) = sup “e—mu”p,p'
£>0

We see from the symmetry and interpolation that
le™ 2.2 < le™ llpp < lle™ [looc0, 1 < p < 00.
Hence

(6.6) Ba(1) < By() < Boolt), 1< p< o0

In Simon [25], H* is said to be critical if Aoo(p) = 0 but A ((1 +
e)u) < 0 for all € > 0 and is said to be subcritical if Aoo((1 + €)p) =0
for some € > 0. We see that if u = u* — = € Ky — K, then these
two definitions are equivalent. Here G;(z,y) is the 1-resolvent density
of M?; in fact, first note that for u €

glﬁ (u,u) :E(o‘)(u’u) +/ ’ule(R)d/.L+ + /1 u213(R)cdu+
R? R

<E@(u,u) + /1 w1pmdut + |G1(1a@men’) e - 7 (u,u).
R

Noting the bottom of spectrum (—d?/dz?)*/? equals 0, we can take a
sequence @, € CP(RY), n=1,2,... such that lim, . £ (pn, ps) =0
and [, ¢2dr = 1. Furthermore, since £ is spatially homogeneous,
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we may suppose that the support of every ¢, is contained in the com-
plement of B(R). Hence we see that

inf {€“+(u,u) : / ulde = 1} < IIGl(lB(R)°M+)’loo —0
IRl

as R — oo, and thus Aa(p) < Ofor p = put —p~ € Koo — Koo We
then know that A,(u) is independent of 1 < p < oo, because the
independence is equivalent with A2(u) < 0 by [33, Example 4.2] (for
recent results on the LP-independence, see [10]). Define

F(H):inf{g(u,u)—f-ﬁ w’dpy : / uzdle},HZO
R! R! v

and

G’(@) = mf {E(U,u) -+ 9/ u2d,u+ : 0 u2d,u,_ = 1} y 9 2 O
R? R!

- As shown above, if y € Ko — Ko then FI(§) < 0. Put
6p =sup{f >0: F(6) = 0}.

We see that 6 is a unique solution of G(0) = 1 and G(#) > 1 if and only
if 0 <6 < 6. Note Ap(p) = F(1). We then see that H¥ is critical in
the sense of Simon [25] if and only if A(u)(:= G(1)) =1 (<= 6y = 1).
Therefore, we have the next lemma. \

Lemma 6.1. Let p = pt —p~ € Koo — Koo. Then H* is critical in the
sense of Stmon if and only if AM(u) = 1.

For the argument above, the LP-independence of A,(u) is crucial. We
here give another proof of Theorem A.12 in [25] which is relevant to
the LP-independence.

Theorem 6.2. ([37]) Let p = put —p~ € Ko — Koo. Let f € By(RY)
with f >0 a.e. and m({f(z) > 0}) > 0. Then for any z € R

ay(z) = Jim ~log E, exp(~4¢)/(X,)]

exists. Moreover, the limit is equal to —Xa(u), in particular, indepen-
dent of f and x.

Proof. Define g(z) = E;[exp(—A})f(X1)]. The continuity of g fol-

lows from the strong Feller property of p{ ([1, Theorem 7.5]). Since

E[f(X1)] > 0 by the assumption on f and exp(—Af) > 0, P;-a.s., the

function g is strictly positive and continuous. Put mg = inf,cp(g) g(x) >
0. Then by the Markov property

E: [exp(—Af)f(X¢)] = E [exp(=Af_1)9(Xi-1)]
>mp-E; [eXp(—Af_l);t -1< TB(R)] , t>1.
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Hence Theorem 1.1 in [34] tells us that for x € B(R)
lim inf ! log E, [exp(—A}) f(X3))]

tooo

1
> liminf n log E, [exp(—Af_l);t -1< TB(R)]

t—00

> — A (:: — inf {Sﬂ(u,u) ru € C3°(B(R)), /l uldz = 1}) :
Noting Ar | Aa(u) as R 1 0o, we have )
liminf 7 1og Byfexp(~4%) £ (X,)] > ~do(s).
Since

lim sup ! log E; [exp(—Af) f(X,)]

t—o0 t
: 1 ;

< timsup ¢ 10g (1 sup Ex foxp(—41)] ) = ~Au(i),
t—o0 zeR!

the LP-independence of A, leads us to this theorem. D

The condition A(u) > 1 gives the following probabilistic meaning, so
called, gaugeability of = with respect to M*".

Theorem 6.3. ([8]) It holds that

M) > 1 <= sup E*' [exp(Ag_)] < 00.
zeR!

We define an ‘H*-harmonic functions probabilistically as follows:

Definition 6.4. A bounded finely continuous function h on R! is said
to be H*-harmonic, if for any relatively compact domain D C R!,

(6.7) h(z) = E; [exp(—A* )WM(X.,)], z€D
where 7p is the first exit time from D.

Lemma 6.5. Suppose that H* is critical, () = 1. If u~ has a com-
pact support, then there exists a bounded H*-harmonic function. If, in
addition, u* has a compact support, then there exists an H*-harmonic
function uniformly lower-bounded by a positive constant.

Proof. Fiest note that there exists a ground state h ([37]):

(6.8) &“'(h,h) = inf {5#* (u,u) : u € D(EF), / widu = 1} :
Rl
Then the function h satisfies
h(z) = BE [h(Xo,)] = Ex [exp(— ALD)R(X,,)]

where F'is the fine support of u~. Put M = sup,.p h(z). Noting that
0 < M < oo by the continuity of h, we have h(z) < M.
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_ When the support ut is also compact, we take R > 0 such that
B(R) D F Usupp[u™]. Since op = opg) + or(f and Ag; =
AR+ ART(6

9B(R)

UB(R))

UB(R))’

h(z) = Ex |exp(—A%; Ex,,

9B(R)

i lexp(= AR, ]

j
= E, [exp(— A%, )h(Xoy )]

by the strong Markov property. Since B(R) D supp[u’], we have
AR =(. Note Pz(05(r) < 00) = 1 by the recurrence of M*. Hence

9B(R).

h(z) = E, [h(XaE(R))] > inf h(z) >0

by the continuity of h. O

Lemma 6.6. Suppose p has a compact support. Then the function h
in Proposition 6.5 is p} -excessive. '

Proof. Since h is bounded continuous, lim;_,o pi'h(z) = h(zx).
Let z € B(m). By Definition 6.4, h satisfies

h(z) = E; [exp(= AL )A(X7,)]

for any n > m. Here 7, is the first exit time from B(n). It follows from
the Markov property that

E, [exp(—AS)h(X1); t < T

=E, [exp(—A})Ex, [exp(—A% )h(X7,)];t < Tm]

=E, [exp(—A}) exp(—A* 0 6,)h(X,, ©6,);t < Tm]

=E, [exp(—A4¥ )h(X,,);t < T < h(z).
Hence we have

Ph(@) = lim E, [exp(~ALA(X,)st < 7] < h(s).

0

Theorem 6.7. ([37]) Suppose p has a compact support. If Aoo(1t) = 0,
then Buo (1) < co.

Proof. If Aoo(p) = 0, then Ao(p) < Ao(pt) = 0 by (6.6). We easily
see that Ay(u) > 0 is equivalent to A(p) < 1, and thus A(p) < 0 is

equivalent to A(u) > 1.
If (i) > 1, then by Theorem 6.3

- + u-
prlloo,oo = Su]}g)1 Ew {:6 A#:l = Suﬂg1 IE»;" l:eAt ,t < C]

+ B
< sup E* [e“‘c } < o0,
zeR!

which implies foo (1) < oco.
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If AM(u) = 1, then by Proposition 6.5 there exists a bounded H*-
harmonic function uniformly lower-bounded by a positive constant.
Hence by Lemma 6.6

_AM h(AQ) 1 o
g < 4 = A h
[Pz oo < B [e inf g h(m)} inf ep1 h(z) E. [6 (Xt)]

h(z) < SUPger h(z)
~ infyegi A(z) T infiegr A(z)

O

Theorem 6.8. ([37]) Suppose that H* is subcritical. Then there exists
no bounded positive H*-harmonic function.

Proof. Let h be a bounded positive H*-harmonic function. Since, by

. . +
the Harris recurrence of M?%, P, (lim,, A’T‘B(n) =o00)=1asn — oo,

+

IP5+(TB(n) <()=E, [e'MB(m] — 0

as n — o0o. Moreover, the subcriticality of H* implies et e L'(Peh)
by Theorem 6.3. Hence we have

h(z) = E, [G—Ags(n)h(xfs(n))] < Hhlloo 'E5+ leAg—W'B(n) < C] —0

as n — 0o. O

Proposition 6.8 tells us that properties of #*-harmonic functions
are different whether M? is recurrent or transient. If M® is transient
and H* is subcritical, the function E,[exp(A~)] is a strictly positive, -
bounded H*-harmonic function. Moreover, if H* is critical, there ex-
ists no ‘H*-harmonic function uniformly lower-bounded by a positive
constant ([40]).
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