Limit of $Sine_{\beta}$ and Sch_{τ} processes

Fumihiko Nakano

Abstract

We discuss a simple generalization of the results by Allez-Dumaz [1] to study the behavior of $\operatorname{Sine}_{\beta}$ - and $\operatorname{Sch}_{\tau}$ -process as $\beta \to 0, \infty$.

1 Introduction

We first explain the background of this problem. Let $H := -\frac{d^2}{dt^2} + V$ be a Schrödinger operator on the real line and let $H_L := H|_{[0,L]}$ be its Dirichlet realization on [0,L]. Let $\{E_n(L)\}_{n\geq 1}$ be the eigenvalues of H_L in the increasing order. Fix the reference energy $E_0 > 0$ arbitrary. To study the local distribution of $E_n(L)$'s near E_0 , we consider the following point process:

$$\xi_L := \sum_{n \ge n(L)} \delta_{L(\sqrt{E_n(L)} - \sqrt{E_0})} \tag{1.1}$$

where $n(L) := \min\{n|E_n(L) > 0\}$; we only consider the positive eigenvalues. We take $\sqrt{E_n(L)}$ instead of $E_n(L)$ to unfold the eigenvalues with respect to the density of states. In [2, 4], we studied the behavior of ξ_L as L tends to infinity in the following two cases, some part of which can be regarded as a continuum analogue of [3].

(1) (decaying potential) We take $V(t) := a(t)F(X_t)$, where $a \in C^{\infty}(\mathbf{R})$, a(-t) = a(t), a is non-increasing for $t \geq 0$, and $a(t) = t^{-\alpha}(1+o(1))$, $t \to \infty$, $\alpha > 0$, and M is a torus, $F \in C^{\infty}(M)$, F is non-constant with $\langle F \rangle := \int_M F(x) dx = 0$. We sometimes need to work under the following condition.

(A) The subsequence $\{L_j\}_{j=1}^{\infty}$ satisfies $L_j \stackrel{j \to \infty}{\longrightarrow} \infty$ and

$$\sqrt{E_0}L_j = m_j\pi + \gamma + o(1), \quad j \to \infty$$

 $m_j \in \mathbf{N}, \ \gamma \in [0, \pi).$

Theorem 1.1

(1) [2] Let $\alpha > \frac{1}{2}$ and assume (A). Then we have a probability measure μ_{γ} on $[0, \pi]$ such that $\xi_{\infty} \stackrel{d}{=} \lim_{j \to \infty} \xi_{L_j}$ satisfies

$$\mathbf{E}[e^{-\xi_{\infty}(f)}] = \int_{0}^{\pi} d\mu_{\gamma}(\theta) \exp\left(-\sum_{n \in \mathbf{Z}} f(n\pi - \theta)\right).$$

- (2) [4] Let $\alpha = \frac{1}{2}$. Then $\xi_{\infty} \stackrel{d}{=} \lim_{L \to \infty} \xi_L$ is the Sine_{\beta}-process $\zeta_{Sine,\beta}$ [5] with $\beta = \beta(E_0) := 8E_0/C(E_0)$. C(E) is defined in Theorem 1.2.
- (2) (decaying coupling constant) We let the potential $V(t) := \lambda_L$ constant but $\lambda_L = L^{-\alpha}$, $\alpha > 0$ is size dependent.

Theorem 1.2 [4]

(1) Assume (A) and $\alpha > \frac{1}{2}$. Then $\xi_{\infty} \stackrel{d}{=} \lim_{j \to \infty} \xi_{L_j}$ satisfies

$$\mathbf{E}[e^{-\xi_{\infty}(f)}] = \exp\left(-\sum_{n \in \mathbf{Z}} f(n\pi - \gamma)\right).$$

(2) Assume (A) and $\alpha = \frac{1}{2}$. Then $\xi_{\infty} \stackrel{d}{=} \lim_{j \to \infty} \xi_{L_j}$ satisfies

$$\mathbf{E}[e^{-\xi_{\infty}(f)}] = \mathbf{E}\left[\exp\left(-\sum_{n \in \mathbf{Z}} f(\Psi_1^{-1}(2n\pi - 2\gamma))\right)\right]$$

where $\Psi_t(c)$ is a strictly-increasing function valued process such that for any $c_1, c_2, \dots, c_m, \Psi_t(c_1), \dots, \Psi_t(c_m)$ jointly satisfy the following SDE.

$$d\Psi_t(c_j) = \left(2c_j - Re\,\frac{i}{2E_0}\langle Fg_{\sqrt{E_0}}\rangle\right)dt$$

$$+\frac{1}{\sqrt{E_0}}\left\{\sqrt{\frac{C(E_0)}{2}}Re\,\left(e^{i\Psi_t(c_j)}dZ_t\right) + \sqrt{C(0)}dB_t\right\} \quad (1.2)$$

 $j=1,2,\cdots,m$, where Z_t is a complex Brownian motion independent of a Brownian motion B_t and

$$g_{\sqrt{E_0}} := (L + 2i\sqrt{E_0})^{-1}F, \quad g := L^{-1}(F - \langle F \rangle),$$

 $C(E_0) := \int_M |\nabla g_{\sqrt{E_0}}|^2 dx, \quad C(0) := \int_M |\nabla g|^2 dx.$

This SDE is the same as that satisfied by the phase function of " $\operatorname{Sch}_{\tau}$ " process [3] up to scaling. Thus we abuse the notation and call ξ_{∞} $\operatorname{Sch}_{\tau}$ - process and denote it by ζ_{Sch} .

To summarize both cases, for the extended case $\alpha > \frac{1}{2}$, ξ_L converges to a version of clock process, while for the critical case $\alpha = \frac{1}{2}$, ξ_L converges to those originating from the random matrix theory. If $\alpha < \frac{1}{2}$, we have no results but believe that ξ_{∞} is a Poisson process.

The purpose of this note is state the behavior of the limiting point processes for the critical case $(\alpha = \frac{1}{2})$ as $\beta \to 0, \infty$. For Sine_{\beta} - process, we have

Theorem 1.3

(1) $\zeta_{Sine,\beta} \to \zeta_{clock}$ as $\beta \to \infty$, where ζ_{clock} is a clock process satisfying

$$\mathbf{E}[e^{-\zeta_{clock}(f)}] = \int_0^{2\pi} \frac{d\theta}{2\pi} \exp\left(-\sum_{n \in \mathbf{Z}} f(2n\pi + \theta)\right).$$

(2) (Allez-Dumaz [1]) $\zeta_{Sine,\beta} \rightarrow Poisson(d\lambda/2\pi)$ as $\beta \rightarrow 0$, where $Poisson(\mu)$ is the Poisson point process with intensity measure μ .

Since $\beta(E_0)$ is strictly monotone increasing function of E_0 and since $\lim_{E_0\downarrow 0} \beta(E_0) = 0$, $\lim_{E_0\uparrow \infty} \beta(E_0) = \infty$, Theorem 1.3 is reasonable in view of Theorem 1.1.

Sch_{τ}-process is not stationary but invariant under the shift of 2π , so that we need some modification. Let $U := unif[0, 2\pi]$ be a uniform distribution on $[0, 2\pi]$ independent of ζ_{Sch} . Writing $\zeta_{Sch} =: \sum_{j} \delta_{\lambda_{j}}$, let

$$ilde{\zeta}_{Sch,eta} := \sum_{j} \delta_{ ilde{\lambda}_{j}}, \quad ilde{\lambda}_{j} := 2\lambda_{j} + U.$$

We used the terminology $\tilde{\zeta}_{Sch,\beta}$ instead of $\tilde{\zeta}_{Sch}$ because the law of that turns out to depend only on $\beta = \beta(E_0)$. The set of atoms of $\tilde{\zeta}_{Sch,\beta}$ is equal to Sch_{τ}^* (translation invariant "version" of Sch_{τ}) in [3] with $\tau = \frac{4}{\beta}$.

Theorem 1.4

- (1) $\tilde{\zeta}_{Sch,\beta} \to \zeta_{clock}$ as $\beta \to \infty$.
- (2) $\tilde{\zeta}_{Sch,\beta} \to Poisson(d\lambda/2\pi)$ as $\beta \to 0$.

Remark 1.1 Suppose $f \in C[0,\infty)$ is a non-increasing function with f(0) > 0, $f \geq 0$, $\int_0^\infty f(t)dt = 1$ and $\lim_{t\to\infty} f(t) = 0$. Let $\alpha_t^f(\lambda)$ be the solution to

$$d\alpha_t^f(\lambda) = \lambda \frac{\beta}{4} f\left(\frac{\beta}{4}t\right) dt + Re\left[\left(e^{i\alpha_t^f(\lambda)} - 1\right) dZ_t\right], \quad \alpha_0^f(\lambda) = 0$$

and let $\zeta_{f,\beta}$ be the point process whose counting function is given by $N_f[0,\lambda] = \alpha_{\lambda}^f(\infty)/2\pi$. Sine_{\beta} - process is a special case where $f(t) = e^{-t}$. It is straightforward to extend the result in [1] to show that

$$\zeta_{f,\beta} \to Poisson(d\lambda/2\pi), \quad \beta \to 0.$$

We can also show Theorem 1.4(2) by using this convergence.

The idea of proof of Theorem 1.4(2) is due to the work by Allez-Dumaz [1] which is outlined in Section 2. Theorem 1.3(1), 1.4(1) is proved in Section 3. But the idea of that is suggested by B. Valkó.

2 High temperature limit

We outline the proof of $\beta \to 0$ limit. Let $A := \{\lambda \in \mathbf{R} \mid \Psi_1(\lambda) \in 2\pi \mathbf{Z}\}$. By examining the SDE (1.2) satisfied by $\Psi_t(\lambda)$, $A + \theta = \{\lambda \in \mathbf{R} \mid \Psi_1(\lambda) \in 2\pi \mathbf{Z} + \theta\}$. Hence the set of atoms of $\tilde{\xi}_{\infty,\beta}$ satisfies

$$\{2\lambda_j\} + U = \{\lambda \in \mathbf{R} \mid \Psi_1(\lambda) \in 2\pi \mathbf{Z} + U'\}$$

where $U' = U - 2\gamma$ is an uniform distribution on $[0, 2\pi]$. Let

$$\alpha_t(\lambda) := \Psi_t(\lambda) - \Psi_t(0).$$

We shall show below that the point process ζ_{β} whose set of atoms is equal to

$$S := \{ \lambda \in \mathbf{R} | \alpha_{\lambda}(1) \in 2\pi \mathbf{Z} \} = \{ \lambda | \Psi_1(\lambda) \in 2\pi \mathbf{Z} + \Psi_1(0) \}$$

converges to $Poisson(d\lambda/2\pi)$ as $\beta \to 0$ from which Theorem 1.4(2) follows. The proof of $\zeta_{\beta} \stackrel{\beta \to 0}{\to} Poisson(d\lambda/2\pi)$ consists of following two steps.

Step 1 : $\zeta_{\beta}[\lambda_1, \lambda_2] \stackrel{\beta \to 0}{\longrightarrow} Poisson((\lambda_2 - \lambda_1)/2\pi)$ where $Poisson(\lambda)$ obeys the Poisson law with parameter $\lambda \in \mathbf{R}$.

Step 2: If $\lambda_1 < \lambda_2 < \lambda_3$, the limits of $\zeta_{\beta}[\lambda_1, \lambda_2]$, $\zeta_{\beta}[\lambda_2, \lambda_3]$ are independent.

Step 1: By (1.2), $\alpha(\lambda)$ satisfies

$$d\alpha_t(\lambda) = \lambda dt + \frac{2}{\sqrt{\beta}} Re \left[(e^{i\alpha_t(\lambda)} - 1) dZ_t \right], \quad t \in [0, 1],$$

so that by the time change t = cs, $c = \frac{\beta}{4}$, we have

$$d\alpha_s(\lambda) = \frac{\beta}{4}\lambda ds + Re\left[(e^{i\alpha_s(\lambda)} - 1)dZ_s\right], \quad s \in \left[0, \frac{4}{\beta}\right].$$

For fixed $\lambda \in \mathbf{R}$, let $\lambda \in \mathbf{R}$

$$\zeta_k := \inf \{ t \ge 0 | \alpha_t(\lambda) \ge 2k\pi \}$$

be the k-th jump time of $\left\lfloor \frac{\alpha_t(\lambda)}{2\pi} \right\rfloor$. Note that $\left\lfloor \frac{\alpha_t(\lambda)}{2\pi} \right\rfloor$ is non-decreasing w.r.t. t. By analyzing the SDE satisfied by $\log \tan \frac{\alpha_t(\lambda)}{4}$, we can show that, under $\alpha_0(\lambda) \stackrel{\beta \to 0}{\to} 0$, $\zeta_1/\frac{8\pi}{\beta\lambda}$ converges to the exponential distribution of parameter 1. Thus letting $\mu_{\lambda}^{\beta}[0,t]$ be the empirical measure of scaled $\{\zeta_k\}$

$$\mu_{\lambda}^{\beta}[0,t] := \sum_{k \ge 1} \delta_{\zeta_k} \left[0, \frac{8\pi}{\beta} t \right], \quad t \le \frac{1}{2\pi},$$

we have

$$\mu_{\lambda}^{\beta} \to \mathcal{P}_{\lambda} := Poisson\left(\lambda 1_{\left[0, \frac{1}{2\pi}\right]} dt\right), \quad \beta \to 0.$$

Moreover, using the fact that $\alpha_t(\lambda') - \alpha_t(\lambda) \stackrel{d}{=} \alpha_t(\lambda' - \lambda)$, we have

$$\zeta_{\beta}[\lambda, \lambda'] \stackrel{d}{=} \mu_{\lambda'-\lambda}^{\beta} \left[0, \frac{1}{2\pi}\right] \stackrel{\beta \to 0}{\to} Poisson\left(\frac{\lambda'-\lambda}{2\pi}\right).$$

Step 2: Let $0 < \lambda < \lambda' < \lambda''$. Since $\alpha_t(\lambda)$, $\alpha_t(\lambda')$, $\alpha_t(\lambda'') - \alpha_t(\lambda')$ are driven by the same Brownian motion, Z_t , the limits \mathcal{P}_{λ} , $\mathcal{P}_{\lambda'}$, $\mathcal{P}_{\lambda''-\lambda'}$ of μ_{λ}^{β} , $\mu_{\lambda'}^{\beta}$, $\mu_{\lambda''-\lambda'}^{\beta}$ are jointly realized as Poisson point processes under the same filtration. Let A_{λ} , $A_{\lambda'}$, $A_{\lambda''-\lambda'}$ be the corresponding set of atoms. We show that

$$A_{\lambda} \subset A_{\lambda'}, \quad A_{\lambda'} \cap A_{\lambda''-\lambda'} = \emptyset$$

which shows the independence of \mathcal{P}_{λ} and $\mathcal{P}_{\lambda''-\lambda'}$ which, in turn, shows the independence of $\zeta_{\beta}[0,\lambda]$ and $\zeta_{\beta}[\lambda'',\lambda']$.

3 Low temperature limit

We study the $\beta \to \infty$ limit. We prove Theorem 1.3(1) only; the proof of Theorem 1.4(1) is easier. The Laplace transform of Sine_{\beta}-process has the following representation [2].

$$\mathbf{E}[e^{-\zeta_{Sine,\beta}(f)}] = \int_0^{2\pi} \frac{d\theta}{2\pi} \mathbf{E} \left[\exp\left(-\sum_{n \in \mathbf{Z}} f\left((\Psi_1^{(\beta)})^{-1}(2n\pi + \theta)\right)\right) \right]$$

where $\Psi_t^{(\beta)}(\lambda)$ is increasing function valued process and the unique solution of the following SDE.

$$d\Psi_t^{(\beta)}(\lambda) = \lambda dt + \frac{2}{\sqrt{\beta t}} Re \left[\left(e^{i\Psi_t^{(\beta)}(\lambda)} - 1 \right) dZ_t \right], \quad \Psi_0^{(\beta)}(\lambda) = 0.$$

By [2], Lemma 3.1, it suffices to show

$$\Psi_1^{(\beta)}(\lambda) \stackrel{\beta\uparrow\infty}{\to} \lambda, \quad a.s.$$
 (3.1)

By using the estimate in [2], Lemma 6.4

$$\mathbf{E}[|\Psi_t^{(\beta)}(\lambda)|] \le Ct,$$

where the positive constant C is bounded w.r.t. β , we have

$$\mathbf{E}[|\Psi_t^{(\beta)}(\lambda) - \lambda t|^2] = \frac{4}{\beta} \int_0^t \mathbf{E}[|e^{i\Psi_t^{(\beta)}(\lambda)} - 1|^2] \frac{2ds}{s} \stackrel{\beta \uparrow \infty}{\to} 0$$

which yields (3.1) for some subsequence.

Acknowledgement The author would like to thank B. Valkó for letting him know the work [1] and also for a suggestion on the proof of Theorem 1.3(1). This work is partially supported by Grant-in-Aid for Scientific Research (C) no.26400145.

References

[1] Allez, R., Dumaz, L., : From sine kernel to Poisson statistics, arXiv. 1407.5402.

- [2] Kotani, S., Nakano, F.,: Level statistics for the one-dimensional Schrödinger operators with random decaying potential, Interdisciplinary Mathematical Sciences Vol. 17 (2014), 343-373.
- [3] Kritchevski, E., Valkó, B., and Virág, B., : The scaling limit of the critical one-dimensional random Schrödinger operators, Comm. Math. Phys. **314**(2012), 775-806.
- [4] Nakano, F: Level statistics for one-dimensional Schrödinger operators and Gaussian beta ensemble, J. Stat. Phys. **156**(2014), 66-93.
- [5] Valkó, B. and Virág, V.: Continuum limits of random matrices and the Brownian carousel, Invent. Math. 177(2009), 463-508.

Fumihiko Nakano

Department of Mathematics, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan. e-mail: fumihiko@math.gakushuin.ac.jp