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Limit of Sineg and Sch, processes

Fumihiko Nakano

Abstract

We discuss a simple generalization of the results by Allez-Dumaz
1] to study the behavior of Sineg- and Sch,-proceses as § — 0, co.
B

1 Introduction

We first explain the background of this problem. Let H := —% + V be a
Schrédinger operator on the real line and let Hy, := H|jo,z) be its Dirichlet
realization on [0, L]. Let {E,(L)},>1 be the eigenvalues of Hy, in the increas-
ing order. Fix the reference energy Ey > 0 arbitrary. To study the local
distribution of E,(L)’s near Ey, we consider the following point process :

€L = Z 6L(\/ET(L§-\/EF) (11)
n>n(L)
where n(L) := min{n|E,(L) > 0} ; we only consider the positive eigenvalues.
We take 1/ E,(L) instead of E, (L) to unfold the eigenvalues with respect to
the density of states. In [2, 4], we studied the behavior of {;, as L tends to
infinity in the following two cases, some part of which can be regarded as a
continuum analogue of [3].

(1) (decaying potential) We take V(t) = a(t)F(X;), where a €
C>=(R), a(—t) = a(t), a is non-increasing for ¢t > 0, and a(t) = t~*(1+o0(1)),
t — 00, a > 0, and M is a torus, FF € C*®(M), F is non-constant with
(F) := [y F(x)dx = 0. We sometimes need to work under the following

condition.
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(A) The subsequence {L;}32, satisfies L; 722 % and

\/E()Lj =m;T+v+ 0(1), J — 00
m; € N, v € [0, 7).

Theorem 1.1
(1) [2] Let a > 3 and assume (A). Then we have a probability measure .,

on [0, 7] such that £ Ll lim;_, &z, satisfies

Ele~t=)] = /07T dp(0) exp (—— > flnm— 9)) .

nezZ

(2) [4] Let o = % Then £ 4 lim; o &1 is the Sineg-process (sine s [5] with

B = B(Ey) := 8Ey/C(Ey). C(E) is defined in Theorem 1.2.

(2) (decaying coupling constant) We let the potential V(¢) := )\
constant but Ay = L™, a > 0 is size dependent.

Theorem 1.2 [}/
(1) Assume (A) and o > 3. Then & = lim; . €1, satisfies

Efe%()] = exp (— > flnm — 7)) :

neZ

(2) Assume (A) and o = 3. Then &y £ lim;_,o £, satisfies

Ele ()] = E [exp ( > T (2nm - 2’7)))}

nez

where W,(c) is a strictly-increasing function valued process such that for any
C1,C2,  +, Cm, We(cr), -+, Yilenm) jointly satisfy the following SDE.

AW, (c;) = (2(;] Reﬁ(Fg\/—)> dt

1 C(EO) 1We(cy)
+\/FE{ -~ Re (e™)dz,) +/C(0)dB,p (1.2)




j=1,2---,m, where Z; is a complex Brownian motion independent of a
Brownian motion B; and

95 = (L+20\/E)'F, g:= L™}(F — (F)),
C(Ey) = /M|vgm42dx, C(0) := /M|vg|2dx.

This SDE is the same as that satisfied by the phase function of “Sch,” process
[3] up to scaling. Thus we abuse the notation and call {w, Sch, - process and
denote it by (sen-

To summarize both cases, for the extended case a > %, &1, converges to
a version of clock process, while for the critical case o = %, £ converges
to those originating from the random matrix theory. If a < %, we have no
results but believe that & is a Poisson process.

The purpose of this note is state the behavior of the limiting point pro-
cesses for the critical case (o = %) as § — 0,00. For Sineg - process, we
have

Theorem 1.3
(1) Csines — Celock aS B — 00, where (o s @ clock process satisfying

~Cetoer(N) = [
E[e¢ctoek)] = —exp|— > f(2nm+6)].
nEZ

0o 27
(2) (Allez-Dumaz [1]) (simes — Poisson(d\/27) as B8 — 0, where
Poisson(u) is the Poisson point process with intensity measure fi.

Since B(Fy) is strictly monotone increasing function of E; and since
limg, 0 B(Eo) = 0, limpg,10 B(Eo) = 00, Theorem 1.3 is reasonable in view of
Theorem 1.1.

Sch,-process is not stationary but invariant under the shift of 27, so that
we need some modification. Let U := unif|[0,27] be a uniform distribution
on [0, 27] independent of (scn. Writing (scn =: 255 0y, let

(schyg = 25;\3,, A= 2)\ 4 U.
J

We used the terminology gsch,ﬂ instead of fgch because the law of that turns

out to depend only on G = G(Ep). The set of atoms of fgch,ﬁ is equal to Sch

(translation invariant “version” of Sch,) in [3] with 7 = —g—.
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Theorem 1.4

(]) ~C~SCh,ﬂ — Celock @S B — 00.
(2) sch,p — Poisson(d\/27) as 3 — 0.

Remark 1.1 Suppose f € C[0,00) is a non-increasing function with f(0) >
0, f >0, [5° f(t)dt =1 and lim;_o, f(t) = 0. Let o] (\) be the solution to

al () = )\g f (%&) dt + Re[(6®™ —1)dZ,], of()) =0

and let (5 g be the point process whose counting function is given by N¢[0, \] =
Oz)‘(oo) /2m. Sineg - process is a special case where f(t) = e~t. It is straight-
forward to extend the result in [1] to show that

Cs,g — Poisson(dA/2m), [ — 0.
We can also show Theorem 1.4(2) by using this convergence.

The idea of proof of Theorem 1.4(2) is due to the work by Allez-Dumaz [1]
which is outlined in Section 2. Theorem 1.3(1), 1.4(1) is proved in Section
3. But the idea of that is suggested by B. Valké.

2 High temperature limit

We outline the proof of § — 0 limit. Let A := {\ € R|¥;()\) € 27Z}.
By examining the SDE (1.2) satisfied by ¥;(\), A+ 60 = {} € R|¥1()) €
2mZ + 6}. Hence the set of atoms of £, g satisfies

{2X}+U={AeR |V (N\) €272+ U"}
where U’ = U — 2 is an uniform distribution on [0, 27]. Let
a(A) 1= T (A) — ¥, (0).
We shall show below that the point process (s whose set of atoms is equal to
S = {X € Rlay(1) € 2nZ} = {\|¥;1()\) € 27Z + ¥,(0)}

converges to Poisson(d\/2m) as B — 0 from which Theorem 1.4(2) follows.
The proof of (s g Poisson(d\/2m) consists of following two steps.



Step 1 : (g[A1, Ag] g Poisson((Aa — A1)/2m) where Poisson(\) obeys
the Poisson law with parameter A € R.
Step 2: If Ay < Ay < Ag, the limits of (g[A1, A2, {s[\2, A3] are independent.

Step 1 : By (1.2), a()\) satisfies

dog(\) = Adt + %Re (=™ — 1)az), teo,1],

so that by the time change t = cs, ¢ = %, we have

das(N) = g)\ds + Re [(eias()‘) ~ 1)dZs} , SE€ [O, —%] :

For fixed A € R, let A€ R
G = Inf {t > 0|ax(N) > 2k7}

be the k-th jump time of {%&&J Note that L%ET&J is non-decreasing w.r.t.
t. By analyzing the SDE satisfied by log tan ﬂt}z, we can show that, under
ap(A) g 0, ¢1/ ,—2—7; converges to the exponential distribution of parameter 1.
Thus letting 15[0,¢] be the empirical measure of scaled {(x}
8T 1
B
ux[0,t] =) 6 Ii(),——t}, t < —,
A[ ] ]gl Ck /B o

we have
uf\j — Py := Poisson (Al{o)i]dt , B —0.

Moreover, using the fact that ay(\') — ax(A) = (N — A), we have

1 AN =
/ _CL ﬁ - ﬁ—»O .
Ca[ M N = phy, [0, 27J — Poisson < 5 ) .

T

Step 2: Let 0 < A < X < M. Since a;(A), ax(N), au(N") — ay(X') are driven
by the same Brownian motion, Z;, the limits Py, Py, Pyr—x of uf, uf,, Wy _y
are jointly realized as Poisson point processes under the same filtration. Let
Ay, Ay, Ayxi_y be the corresponding set of atoms. We show that

A)\ C A)\/, A)\/ N A,\//_)J =0

which shows the independence of P, and Pys_y which, in turn, shows the
independence of (5[0, A] and (g[\", X].
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3 Low temperature limit

We study the 3 — oo limit. We prove Theorem 1.3(1) only ; the proof of
Theorem 1.4(1) is easier. The Laplace transform of Sineg-process has the
following representation [2].

E[eSsines()] = /27r —E

0 nez

exp (— of ((\Ilgﬂ))_l(er + 9)))

where \115‘3 )()\) is increasing function valued process and the unique solution
of the following SDE.

2 ,
dUP(\) = At + ke [(e”ﬁm“) - 1) dZt} . P =0

By [2], Lemma 3.1, it suffices to show
AN AN as. (3.1)
By using the estimate in [2], Lemma 6.4
E[%” (M) < Ct,

where the positive constant C' is bounded w.r.t. 3, we have

4 rt sy 2ds preo
BIw® ()~ xiP] = 5 [ B ® — 1P == 0

which yields (3.1) for some subsequence.
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