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1 Introduction
In the case of the Cauchy problem of the linear heat equations

uy—Au=0 in (0,00) x R? (1.1)
u(0,z) = up(z) on R?

we see that the solutions for the initial data uo € L'(R?) satisfy
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(For the proof see [9]). Thus, we can observe that the solution u = u(t, z) to the Cauchy
problems for the linear heat equations (1.1) and (1.2) does not have the L%((0, 00) x R?)-
boundedness for the initial data uy in L!(R?), in general. In the case of the Cauchy
problems of the linear heat equations and also the linear damped wave equations, if we
choose the initial data uy to be in the Hardy space H!(R?) (see the definition below) in
stead of the L'(R?), then we can show the L?((0, c0) x R?))-boundedness of the solutions
(ct. [9], [14], [19]).

For the Cauchy problem of the Navier-Stokes equations, Leray [12], Hopf [7] showed
the existence of weak solutions, and Masuda [13] showed that the L?(R?)-norm of weak
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solutions tends to zero as time goes to infinity. Wiegner [20] showed the decay rate of
the weak solutions, for instance, ||u(t)||;z = O(t™%) as t — oo when the initial data
up € L'(R?). In [15] and [16], Miyakawa considered the Cauchy problem for the Stokes
equations and the Navier-Stokes equations and proved that ||Vu(t)|lw: = O(t_%) as
t — oo for the solutions in the case that the initial data up € H!(R?).

In this article, we will report that the solution to the Cauchy problems of the Navier-
Stokes equations and the 2D Hyperbolic Navier-Stokes equations, for the initial data in
L'(R?)? and in the natural energy class, has the L?((0,00) x R?)-boundedness. In order
to show these facts, the key points are the divergence free condition V - u = 0 and the
nonlinear term’s structure for the Navier-Stokes equations.

We consider the 2D Navier-Stokes equations

du+(u-Viu+Vr=2V-S in(0,00) x R?,
V-u=0 in (0,00) x R?, (1.3)
u(0, z) = up(x) in R?

where u(t,x) = (u(t, z),us(t,z)) and 7(t,z) denote unknown velocity field and scalar
pressure, uo(x) is given vector function, and S is the deformation tensor given by

S = £ ((Vu)+ T(Vw)). (1.4
In this situation the divergence free condition V -« = 0 implies that
2V - S = pAu.

We replace the Fourier type law (1.4) by the law of Cattaneo type relation
(1+78)S = g ((Vu) + T(Vu)) (1.5)

for small 7 > 0, which represents the first order Taylor approximation of the delayed
deformation condition

St+m7,z) = S(t,z)+79S(t,z)+ -
= £((Vw)+ "(Vw).

Applying 79, to (1); and adding the resulting equation to the original one gives us in
view of (1.5) that

70 — pAu+ Qu+ (1 +78,)Vr = —=(1 + 76;) ((u - V)u),
V.ou=0, (1.6)
(0, ) = ug, us(0, ) = uy.

This hyperbolic fluid model (1.6) was already derived in [2] and [3].
Here, we denote the projection P with respect to the Helmholtz decomposition in R?
by
Pu=u+Vnr, -An=V.u
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Then, the projection P is a bounded operator from L?(R?)? to L2(R?) where L?(R?) is
the standard L? space and

L2(R?*) = {u € L*(R*? : V-u= 0}

Applying P to (1.6), we have the Hyperbolic Navier-Stokes equations

{Tafu — pAu+ 0 = —P(1 4+ 78;)((u - V)u), (1.7)

u(0) = ug, u(0) = uy.

Before stating our main results, we shall introduce the function spaces. We use the
standard Sobolev spaces W™P(R") and the usual Lebesgue space LP(R") = WOP(R"), (1 <
p < 00) with the norm || - ||wm.» and || - || s, respectively. For simplicity, we shall use the
notation H™(R") = W™2(R") with the norm || - || gm.

R. Racke and J. Saal [10, 11} proved the following local and global in time existence
theorem to the Hyperbolic Navier-Stokes equations (1.7) in R" (n > 2).

Theorem 1. (/10]) Let n > 2 and m > %. For each
(0, 1) € (H™(R™) x H™(R™)) 1 L2 (R")
there exists a time T > 0 and a unique solution (u, ) to the equations (1.7) satisfying
u € C*([0, T), H™(R™)) N C*([0, T], H™1(R™))
A C(0, T, H™(R™) 1 L2 (R™),
V(p+7p) € C°([0,T), H™(R™)).

The ezistence time T can be estimated from below as

1

T>
1 -+ C(“U()“Hm+2 + HUIHH’"‘H)

with a constant C' > 0 depending only on m and the dimension n.

Theorem 2. ([11]) Let my > 3,m > m; + 9,4 < ¢ < 00,1/q+ 1/p = 1. There exists
€ > 0 such that if

[ (w0, wr) (| rm+2 e grmes + | (w0, ur) 2 + || (uoy wr) lwmi4s.pxwmitsn < e,

then there exists a unique global solution (u,n) to the hyperbolic Navier-Stokes equations
(1.7), satisfying

u € C*([0, T}, H™(R™)) N C*([0, T], H™!(R™))
NC([0, 7], H™*(R™)),

V(p+p.) € C°([0, T], H™(R™)).
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Also, there is My > 0, independent of T' such that

M(T) < My

M) = sup {1+ Hu®llwme + 1+ OF (), Tu(®)l s

HU )} u(b)lm + (1 + 0) e(t), Fea(e))
Remark 1.1. From Theorem 2, we see that for t > 0
lu@®)llze < C(L+1)7'72,

[1Geult), Vu(t))llzz < C(L+1t)7
where C' > 0 is independent of t.
Our main result is the following,.

Theorem 3. Let n = 2. The assumptions of Theorem 1 and 2 hold. Then, the solutions
u(t) to the hyperbolic Navier-Stokes equations (1.7) satisfiy the following property

/0 lu(s) [22ds < C

where C is independent of t.

Note that we have the same results to the Cauchy problem of the Navier-Stokes
equations (1.3) and (1.4) in R? for large initial data in L*(R?)2 N L2(R?).

2. Key Lemmas.

We will start with the definitions of function spaces (refer to [5]).

Definition 1. (Hardy space) Let n > 2. The Hardy space consists of functions f in
LY(R™) such that

b = [ suplé = f@)lds
Rn >0

is finite, where ¢.(z) = r"¢(r~'z) for r>0 and ¢ is a smooth function on R™ with
compact support in an unit ball with center of the origin B1(0) = {z € R™;|z|<1}.

The definition dose not depend on choice of a function ¢.
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Definition 2. (functions of bounded mean oscillation) Let n > 2 and f be a locally
integrable in R™, that is f € L. (R"). We say that f is of bounded mean oscillation
(abbreviated as BMO) if

[flasio = sup == [ 1f = (pldz<ce,

where the supremum ranges over all finite ball B C R™, | B| is the n-dimensional Lebesgue
measure of B, and (f)p denotes the integral mean of f over B, namely (f)s = ITil [ Fz)dz.

The class of functions of BMO, modulo constants, is a Banach space with the norm
Il - |lBmo defined above.

We will prepare the decisive Fefferman-Stein inequality, which means the duality between
H(R™) and BMO(R"), (H!(R™))* = BMO(R"). For the proof, see [5].

Lemma 2.1. (Fefferman-Stein inequality) Let n > 2. There is a positive constant C
depending only on n such that if f € H1(R") and g € BMO(R™), then

/R fods

Also, we shall use the following Poincaré inequality in R?, which is proved by the definition
‘of BMO and the usual Poincaré inequality in R2. For the detail of the proof, see [14] etc.

< Ol fllsallgll Bato-

Lemma 2.2. (Poincaré inequality) For f € H(R?), the following inequality holds.
| fllmo < CIIV fllza. (2.1)

Here, we introduce the function space Wy (R"), (1 < p < oo,n > 2) by
u

WyP(R™) = {u e € LP(R"),Vu € L”(IR")}

where w(z) = 1+ || if p # n, and w(z) = (1 + |z]) log(2 + |z|) if p = n. The following
Lemma proved by Amrouche and Nguyen [1] is key Lemma to show the linear parts in
our main results of this article.

Lemma 2.3. ([f])Letn > 2. If f € LY(R") and V - f =0, then [, f(z)dx =0 and

[ 1otz
Rn
for g € Wy (R?) N L®(R")

In order to estimate the nonlinear terms, we shall use the Lemmas 2.1 and 2.2, and
also use the following key Lemma, which is concerned with the property of the nonlinear
term’s structure for the Navier-Stokes equations.

Lemma 2.4. ([{]) If V-u =0, then
[(w - V)ullrr < Cllullza||Vul|z2.

< Clf e IVl
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