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1 Introduction

In this article we review a result of spectral analysis of a model in quantum electrody-
namics in [7]. Quantum electrodynamics describes the interaction system of electrons,
positrons and photons. We consider a system of a Dirac field coupled to a quantized radi-
ation field in the Coulomb gauge. We define the state space as a Hilbert space, and the full
Hamiltonian on the Hilbert space. The state space is defined by $\mathcal{H}_{QED}=\mathcal{H}_{Dirac}\otimes \mathcal{H}_{rad},$

where $\mathcal{H}_{Dirac}$ is a fermion Fock space and $\mathcal{H}_{rad}$ a boson Fock space. The full Hamiltonian
is ofthe form

$H_{QED}=H_{Dirac}\otimes I+I\otimes H_{rad}+\kappa_{I}H_{I}+\kappa_{II}H_{II}.$

Here $H_{Dirac}$ and $H_{rad}$ are energy Hamiltonians of the Dirac field and the radiation field,

respectively. $H_{I}$ and $H_{II}$ are interactions between the Dirac field and the radiation field, and
$\kappa_{I}\in R$ and $\kappa_{II}\in R$ are coupling constants. By imposing ultraviolet cutoffs on the field’s
operator and spatial cutoffs on the interactions, $H_{QED}$ is self-adjoint and bounded from
below on the Hilbert space. We analyze the property ofthe infimum ofthe spectrum. Ifthe
infimum ofthe spectrum ofis eigenvalue, we say that the ground state exists. The infimum
of the free Hamiltonian $H_{0}=H_{Dirac}\otimes I+I\otimes H_{rad}$ is eigenvalue, but it is embedded in the
continuous spectrum. The eigenvalue embedded in the continuous spectrum is not stable
when the interaction tums on. Hence the existence of the ground state of $H_{QED}$ is non-
trivial. Since the mid-1990s, the spectral analysis and scattering theory for the system of
particles coupled to quantum fields have been developed. In particular the analysis ofthe
embedded eigenvalue has been successfully analyzed. By applying the methods for the
system ofparticles coupled to quantum fields to $H_{QED}$ , we prove that $H_{QED}$ has a ground
state for all values of the coupling constants.
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2 Dirac Fields and Quantiled Radiation Fields

First we consider the Dirac fields. The state space for the Dirac field is defined by $\mathcal{H}_{Dirac}=$

$\mathcal{F}_{f}(L^{2}(R_{p}^{3};C^{4}))$ where $\mathcal{F}_{f}(L^{2}(R_{p}^{3};C^{4}))$ denotes the fermion Fock space over the Hilbert
space $L^{2}(R_{p}^{3};C^{4})$ . The energy Hamiltonian is defined by

$H_{Dirac}=d\Gamma_{f}(\omega_{M})$ ,

where $d\Gamma_{f}(\omega_{M})$ denotes the second quantization of the multiplication operator $\omega_{M}=$

$\sqrt{p^{2}+M^{2}},$ $M>0$ . Physically, the constant $M>0$ denotes the rest mass of electron.
The Dirac field operator $\psi(x)=(\psi_{l})_{l=1}^{4}$ with the ultraviolet cutoff $\chi_{D}=\chi_{D}(p)$ is defined
by

$\psi_{l}(x)=\sum_{s=\pm 1/2}(b_{s}(\frac{\chi_{D}u_{s,x}^{l}}{\sqrt{(2\pi)^{3}\omega_{M}}})+d_{s}^{*}(\frac{\chi_{D_{s,x}^{\sqrt{}}}^{\sim}}{\sqrt{(2\pi)^{3}\omega_{M}}}))$ ,

where $b_{s}(f)$ , $f\in L^{2}(R^{3})$ , is the amihilation operator of electrons and $d_{s}^{*}(g)$ , $g\in L^{2}(R^{3})$ ,

the creation operator of positrons, $u_{s,x}^{l}(p)=u_{s}^{l}(p)e^{-ip\cdot x}$ and $\sqrt\sims,x(p)=\sqrt{}s(-p)e^{-ip\cdot x}$ with

spinors $u_{s}^{l}$ and $\sqrt{}s$ . Creation operators and annihilation operators for the Dirac field satisfy
the canonical anti-commutation relations :

$\{b_{s}(g),b_{s}^{*},(h)\}=\{d_{s}(g),d^{*},(h)\}=\delta_{s,s’}(g,h)$ ,

$\{b_{s}(f),b_{s’}(g)\}=\{d_{s}(f),d_{s’}(g)\}=\{b_{s}(g),d_{s}^{*},(g)\}=0,$

where $\{X, Y\}=XY+YX.$

Formally, the distribution kemels of annihilation operators for the Dirac field are ex-
pressed by $b_{s}(p)$ and $d_{s}(p)$ . The distribution kernels of creation operators are also ex-
pressed by $b_{S}^{*}(p)$ and $d_{s}^{*}(p)$ . Then the energy Hamiltonian and the field operators are
denoted by

$H_{Dirac}= \sum_{s=\pm 1/2}\int_{R^{3}}\omega_{M}(p)(b_{s}^{*}(p)b_{s}(p)+d_{s}^{*}(p)d_{s}(p))dp,$

$\psi_{l}(x)=\sum_{s=\pm 1/2}\int_{R^{3}}\frac{\chi_{D}(p)}{\sqrt{(2\pi)^{3}\omega_{M}(p)}}(u_{s}^{l}(p)b_{s}(p)e^{ip\cdot x}+v_{s}^{l}(-p)X_{s}(p)e^{-ip\cdot x})dp.$
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Next we consider the quantized radiation field in the Coulomb gauge. The state space
is defined by where $\mathcal{H}_{rad}=\mathcal{F}_{b}(L^{2}(R_{k}^{3}\cross\{1,2\}))$ where $\mathcal{F}_{b}(L^{2}(R_{k}^{3}\cross\{1,2\}))$ denotes the
boson Fock space over the Hilbert space $L^{2}(R_{k}^{3}\cross\{1,2\})$ . The energy Hamiltonian is
defined by

$H_{rad}=d\Gamma_{b}(\omega)$ ,

where $d\Gamma_{b}(\omega)$ denotes the second quantization ofthe multiplication operator $\omega(k)=|k|.$

Here note that mass of photon is zero. The radiation field operator $A_{j}(x)=(A_{j}(x))_{j=1}^{3}$

with the ultraviolet cutoff $\chi_{rad}=\chi_{rad}(k)$ is defined by

$A_{j}( x)=\sum_{r=1,2}(a_{r}(\frac{\chi_{rad}e_{r,x}^{j}}{\sqrt{2(2\pi)^{3}\omega}})+a_{r}^{*}(\frac{\chi_{rad}e_{r,x}^{i}}{\sqrt{2(2\pi)^{3}\omega}}))$ ,

where $a_{r}(h)$ , $h\in L^{2}(R^{3})$ , and $a_{r}^{*}(h’)$ , $h’\in L^{2}(R^{3})$ , denote the annihilation operator and

the creation operator ofphotons, respectively, and $e_{r,x}^{j}(k)=e_{r}^{j}(k)e^{-ik\cdot x}$ with polarization

vector $e_{r}^{i}$ . Creation operators and annihilation operators for the radiation field satisfy the
canonical commutation relations :

$[a_{r}(f),a_{r’}^{*}(g)]=\delta_{r,\sqrt{}}(f,g)$ ,

$[a_{r}(f),a\sqrt{}(g)]=[a_{r}^{*}(f),a_{\sqrt{}}^{*}(g)]=0,$

where $[X, Y]=XY-YX.$

The distribution kemels of annihilation operator and creation operator of the radiation
field are also expressed by $a_{r}(k)$ and $a_{r}^{*}(k)$ . Then, the energy Hamiltonian and the field
operators ofthe radiation field are denoted by

$H_{rad}= \sum_{r=1,2}\int_{R^{3}}\omega(k)a_{r}^{*}(k)a_{r}(k)dk,$

$A_{j}( x)=\sum_{r=12},\int_{R^{3}}\frac{\chi_{rad}(k)e_{r}^{j}(k)}{\sqrt{2(2\pi)^{3}\omega(k)}}(a_{r}(k)e^{ik\cdot x}+a_{r}^{*}(k)e^{-ik\cdot x})dk.$

The quantization of the radiation field depends on the gauge. The quantization in the
Lorentz gauge, it need indefinite metric in the Hilbert space.
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3Main Theorem and Outline of the Proof

We define the state space and the total Hamiltonians for the interaction system ofa Dirac
field coupled to the radiation field. The state space is defined by $\mathcal{H}_{QED}=\mathcal{H}_{Dirac}\otimes \mathcal{H}_{rad}.$

The full Hamiltonian is defined by

H $=H,$
where $H_{I}$ and $H_{II}$ are given by

$H_{I}= \sum_{j=1}^{3}\int_{R^{3}}\chi_{I}(x)(\psi^{*}(x)\alpha_{j}\psi(x)\otimes A_{j}(x))dx,$

$H_{II}= \int_{R^{3}\cross R^{3}}\frac{\chi_{II}(x)\chi_{II}(y)}{|x-y|}(\psi^{*}(x)\psi(x)\psi^{*}(y)\psi(y)\otimes I)$ dxdy.

Here $\alpha_{j},j=1,2,3$ , are $4\cross 4$ Dirac matrices which satisfy $\{\alpha_{j}, \alpha_{l}\}=2\delta_{j,l}$ , and $\chi_{I}=\chi_{I}(x)$

and $\chi_{I1}=\chi_{II}(x)$ are spatial cutoffs.

First we consider the self-adjointness ofthe Hamiltonians. $H_{Dirac}$ and $H_{rad}$ are self-adjoint
operator with bounded from below, and hence $H_{0}=H_{Dirac}\otimes I+I\otimes H_{rad}$ is self-adjoint
and bounded ffom below. To prove the self-adjointness $ofH_{QED}$ , we assume the following
condition ;

(A.1 ; Ultraviolet Cutoff for the Dirac field)

$\int_{R^{3}}\frac{|\chi_{rad}(k)|^{2}}{\omega(k)^{k}}dk<\infty, k=1,2,$

(A.2 ; Ultraviolet Cutoff for the radiation field)

$\int_{R^{3}}\frac{|\chi_{D}(p)u_{s}^{l}(p)|^{2}}{\omega_{M}(p)}dp<\infty, \int_{R^{3}}\frac{|\chi_{D}(p)\sqrt{s}(-p)|^{2}}{\omega_{M}(p)}dp<\infty$

(A.3 ; Spatial Cutofi)

$\int_{R^{3}}|\chi_{I}(x)|dx<\infty,$ $\int_{R^{3}\cross R^{3}}\frac{|\chi_{II}(x)\chi_{II}(y)|}{|x-y|}$dxdy $<\infty.$
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By $(A.1)-(A.3)$, it holds that for $\Psi\in \mathcal{D}(H_{0})$ ,

$\Vert H_{I}\Psi\Vert\leq L_{I}\Vert H_{0}^{1/2}\Psi\Vert+R_{I}\Vert\Psi\Vert,$

$\Vert H_{II}\Psi\Vert\leq R_{II}\Vert\Psi\Vert,$

where $L_{I}\geq 0,R_{I}\geq 0$ and $L_{II}\geq 0$ are some constants. Then it is proven that $H_{I}$ is relatively
bounded to $H_{0}=H_{Dirac}\otimes I+I\otimes H_{rad}$ with infinitely small bound. We also see that $H_{II}$ is
bounded. Hence it holds that $H_{QED}$ is self-ajoint and bounded from below by Kato-Rellich
Theorem in [6].

Next we consider spectrum of the Hamiltonians. The spectrum of the $H_{Dirac}$ and $H_{rad}$ are
as follows:

$0 M 0$
Figure 1 : Spectrum $ofH_{Dirac}$ Figure 2 :Spectrum $ofH_{rad}$

Then the spectrum $ofH_{0}=H_{Dirac}\otimes I+I\otimes H_{rad}$ is as follows;

$0$

Figure 3 : Spectrum $ofH_{0}$

Thus we see that the infimum ofthe spectrum $ofH_{0}$ is eigenvalue, but it is embedded in the
continuous spectrum. Hence the existence of the ground state $ofH_{QED}$ is not trivial. The
existence of a ground state $ofH_{QED}$ for sufficiently small values of coupling constants is
proven in [6]. We prove the existence of a ground state $ofH_{QED}$ for all values of coupling
constants. To prove this, we assume the following conditions:
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(A.4 ; Spatial Localization)

$\int_{R^{3}}|x||\chi_{I}(x)|dx<\infty,$ $\int_{R^{3}\cross R^{3}}\frac{|\chi_{II}(x)\chi_{II}(y)|}{|x-y|}|x|$dxdy $<\infty$ , .

(A.5; Infrared Regularity condition)

$\int_{R^{3}}\frac{|\chi_{rad}(k)|^{2}}{\omega(k)^{5}}dk<\infty.$

(A.6)

$\int_{R^{3}}\frac{|\partial_{kj}\chi_{rad}(k)|^{2}}{\omega(k)}dk<\infty,\int_{R^{3}}\frac{|\chi_{rad}(k)\partial_{kj}e_{r}^{i}(k)|^{2}}{\omega(k)}dk<\infty.$

(A.7)

$\int_{R^{3}}\frac{|(\partial_{p^{j}}\chi_{D}(p))u_{s}^{l}(p)|^{2}}{\omega_{M}(p)}dp<\infty, \int_{R^{3}}\frac{|\chi_{D}(p)\partial_{p^{j}}u_{s}^{l}(p)|^{2}}{\omega_{M}(p)}dp<\infty,$

$\int_{R^{3}}\frac{|(\partial_{p^{j}}\chi_{D}(p))\sqrt{s}(-p)|^{2}}{\omega_{M}(p)}dp<\infty,\int_{R^{3}}\frac{|\chi_{D}(p)\partial p^{j}\sqrt{}s(-p)|^{2}}{\omega_{M}(p)}dp<\infty$

The conditions $(A.4)-(A.7)$ are used when we estimate the derivative bound of the anni-
hilation operators for the Dirac field and the radiation field. In particular (A.5) implies
that we neglect the influence of low-energy photons, which cause the infrared divergent
problem. Following Theorem 1 is the main result in [7].

Theorem 1 ([7])

Suppose $(A.1)-(A.7)$ . Then $H_{QED}$ has a ground state for all values ofcoupling
constants.

The strategy of the proof of Theorem 1 consists oftwo steps, and these are subsequently
explained.
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4 Outline of Proof of Theorem 1

[1st stepl
Let

$H_{m}=H_{Dirac}\otimes I+I\otimes H_{rad,m}+\kappa_{I}H_{I}+\kappa_{I}{}_{I}H_{II},$

where $H_{rad,m}=d\Gamma_{b}(\omega_{m})$ with $\omega_{m}(k)=\sqrt{k^{2}+m^{2}},m>0$ . Physically, $m>0$ denotes
the artificial mass of the photon. The infimum of the spectrum of $H_{0}(m)=H_{Dirac}\otimes$

$I+I\otimes H_{rad,m}$ is discrete eigenvalue. It is proven that $H_{m}$ has purely discrete spectrum
in $[E_{0}(H_{m}),E_{0}(H_{m})+m)$ . And then, $H_{m}$ has a ground state. The outline of the proof
is as follows. We use Weyl’s sequence method in [3] and partition of unity on Fock
space in [2]. Let $\lambda\in\sigma_{ess}(H_{m})$ . Then by Weyl’s theorem, there exists a Weyl sequence
$\{\Psi_{n}\}_{n=1}^{\infty}$ for $\mathcal{D}(H_{m})$ and $\lambda$ . Then by this sequence and partition of unity of Dirac field
and radiation field, we can show that $\lambda\geq E_{0}(H_{m})+m$ . Then we obtain that $\sigma_{ess}(H_{m})\subset$

$[E_{0}(H_{m})+m,\infty)$ , and the proof is obtained.

[2nd stepl
From 1st step, we see that $H_{m}$ has the ground state. Let $\Psi_{m},$ $m>0$ , be the normalized
ground state $ofH_{m}$ , i.e. $H_{m}\Psi_{m}=E_{0}(H_{m})\Psi_{m},$ $\Vert\Psi_{m}\Vert=1$ . Since $1^{\Psi_{m}\Vert}=1,$ $m>0$ , there
exists a subsequence $\{\Psi_{m_{j}}\}$ such that the weak limit of $\Psi_{m_{j}}$ as $jarrow\infty$ exists. To prove the
weak limits of $\Psi_{m_{j}}$ as $jarrow\infty$ is a non-zero vector, we consider the same strategy of [4]
and use derivative bound method for annihilation operators in [5]. Here in particular, we
need both a boson derivative bound for the radiation field and a fermion derivative bound
for Dirac fields.
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